
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2743

Abstract—The Petri net tool INA is a well known tool by the

Petri net community. However, it lacks a graphical environment to
cerate and analyse INA models. Building a modelling tool for the
design and analysis from scratch (for INA tool for example) is
generally a prohibitive task. Meta-Modelling approach is useful to
deal with such problems since it allows the modelling of the
formalisms themselves. In this paper, we propose an approach based
on the combined use of Meta-modelling and Graph Grammars to
automatically generate a visual modelling tool for INA for analysis
purposes. In our approach, the UML Class diagram formalism is
used to define a meta-model of INA models. The meta-modelling
tool ATOM3 is used to generate a visual modelling tool according to
the proposed INA meta-model. We have also proposed a graph
grammar to automatically generate INA description of the
graphically specified Petri net models. This allows the user to avoid
the errors when this description is done manually. Then the INA tool
is used to perform the simulation and the analysis of the resulted INA
description. Our environment is illustrated through an example.

Keywords—INA, Meta-modelling, Graph Grammars, AToM3,

Automatic Code Generation.

I. INTRODUCTION
HE Petri nets INA (Integrated Net Analyser) tool was
developed by Prof. Dr. Peter H. Starke [12]. It is an

interactive menu-driven program that allows a user to edit (in
a textual form), reduce, execute and analyze Petri nets models.
One of the advantages of Petri nets is their graphical
representations of the models. However, INA tool is not
graphical and the user has to transform the graphical
representation to a textual description manually. So there is a
risk of errors during the transformation process. The cost of
building a visual tool for INA from the scratch is prohibitive.
Meta-Modelling approach is useful to deal with such
problems, as it allows (possibly graphical) the modelling of
the formalisms themselves [8]. A model of formalism should
contain enough information to permit the automatic generation
of a tool to check and build models subject to the described

Raida El Mansouri is with the Department of Computer Science, Faculty of
Engineering, University Mentouri Constantine, Algeria (e-mail:
raidaelmansouri@ yahoo.fr)..

Elhillali Kerkouche is with the Department of Computer Science,
University of Oum Elbouaghi, Algeria (e-mail: elhillalik@ yahoo.fr).

Allaoua Chaoui is with the Department of Computer Science, Faculty of
Engineering, University Mentouri Constantine, Algeria
(e-mail: a_chaoui2001@ yahoo.com).

formalism’s syntax. If this specification is done graphically,
the time to develop a modelling tool can be drastically
reduced to a few hours.

Since meta-model and model are stored as graphs, further
manipulations of the models can be described graphically and
formally as graph grammars [13]. Some of these
manipulations are model simulation or animation, model
optimisation, for example, to reduce its complexity, model
transformation into another model (equivalent in behaviour),
expressed in a different formalism, and the generation of
textual model representations for use by existing simulators or
tools. In this paper we will focus on the last kind of model
transformation. These ideas presented above are implemented
in ATOM3: A Tool for Multi-formalism and Meta-Modelling
[2].

In this paper, we propose an INA Petri net meta-model and
we use the meta-modelling tool AToM3 to generate
automatically a visual modelling tool to process models in
INA formalism. We also define a graph grammar to translate
the models created in the generated tool to a textual
description in INA language (INA specification). Then the
tool INA is used to perform the analysis of the resulted INA
specification.

This paper is organized as follows: section II outlines some
related work. In section III, we give an example of a graphical
representation of a Petri nets model, its specification in INA,
and justify the need for an automatic translator from the
graphical representation to the INA specification. In section
IV, we recall some concepts about Graph Grammars and
AToM3 tool. In section V, we define a meta-model for INA
Petri net models and generate a visual tool for this formalism.
In section VI, we propose a graph grammar to generate INA
specification of models created with our tool. In section VII,
we illustrate our tool through an example. Finally, section
VIII concludes the paper.

II. RELATED WORK
The AToM3 has been proven to be a very powerful tool

allowing the meta-modeling and the transformations between
formalisms. In [5] the authors proposed a transformation of
non deterministic finite state automata to their equivalent
deterministic finite state automata. In [6] the authors presented
a transformation between Statecharts (without hierarchy) and
Petri Nets. In [4)] a transformation between Statecharts and
DEVS is given. In [7] the authors used meta-modeling and

A Graphical Environment for Petri Nets INA
Tool Based on Meta-Modelling and Graph

Grammars

Raida El Mansouri, Elhillali Kerkouche, and Allaoua Chaoui

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2744

graph grammars to process GPSS models. The processing of
UML Class Diagrams, Activity Diagrams, and many others
using graph transformation can be found in [9] and [2]. In
UML Activity Diagram for example, the authors were defined
a graph grammar to transform UML Activity Diagram models
into theirs equivalent Petri Nets models. Whereas in GPSS,
the authors were defined a graph grammar to generate textual
code for the HGPSS simulator from GPSS models. In this
paper we propose a framework (a tool) based on the combined
use of Meta-Modeling and Graph Grammars to generate a
graphical environment for INA tool allowing the user to create
the graphical representation of a Petri net model and then
generate automatically its equivalent INA specification.

III. INA SPECIFICATION
Consider the following graphical representation of a Petri

net model for three programmers and two terminals [12].

Fig. 1 Three programmers sharing two terminals

To perform analysis using INA tool, the graphical
representation must be mapped to its equivalent INA
specification. The textual description for INA tool (INA
specification) of the above graphical representation is given in
the file 3_prog_2_term.pnt as follows:

Fig. 2 The INA specification of the graphical representation of the

net given in Fig. 1

When this INA specification is performed manually there is
a risk of errors. So an automatic mapping from a graphical
representation to INA specification will be welcome. So, we
recall that our aim is to provide a user with a graphical tool for
INA allowing it to create a graphical Petri net model (for
example the model of Fig. 1) and then generate automatically
the textual description for INA tool (for example the
description of Fig. 2). The INA tool can be called for analysis
purposes.

IV. GRAPH GRAMMARS AND ATOM3

We recall in the following subsections some basic notions
about graph grammars and AToM3.

A. Graph Grammars
Graph grammar [1] [13] is a generalization of Chomsky

grammar for graphs. It is a formalism in which the
transformation of graph structures can be modelled and
studied. The main idea of graph transformation is the rule-
based modification of graphs as shown in Fig. 2.

Fig. 3 Rule-based Transformation of Graphs

Graph grammars are composed of production rules; each
having graphs in their left hand side (LHS) and right hand side
(RHS). Rules are compared with an input graph called host
graph. If a matching is found between the LHS of a rule and a
subgraph in the host graph, then the rule can be applied and
the matching subgraph of the host graph is replaced by the
RHS of the rule. A rewriting system iteratively applies

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2745

matching rules in the grammar on the host graph until no more
rules are applicable.

B. AToM3
AToM3 is a visual tool for multi-formalism modelling and

meta-modelling. The two main tasks of AToM3 are meta-
modelling and model transformation. For meta-modelling,
AToM3 supports visual modelling using Entity Relationship
(ER) formalism or UML Class Diagram formalism, which
means that in AToM3, we can use either ER model or UML
Class Diagram model to meta-model the new formalisms of
interest. To be able to fully specify modelling formalisms, the
meta-formalism may be extended with the ability to express
constraints (which cannot be expressed within ER or UML
Class Diagram alone). Constraints provide a view on how a
construct can be connected to another to be meaningful, and
thus specify static semantics of the formalism. Whereas the
meta-modelling formalism frequently uses a graphical
notation, constraints are concisely expressed in textual form.
For this purpose, some systems, including AToM3 use the
Object Constraint Language OCL used in the UML. As
AToM3 is implemented in the scripting language Python,
arbitrary Python code may be also used. Once we build the
meta-models for the interested models, AToM3 can generate
automatically a visual modelling environment, in which you
can build and edit the new models.

For model transformation, AToM3 supports graph
rewriting, which uses graph Grammar rules to visually guide
the procedure of the transformation (see section 4). The rules
are specified by the user, and the rules are ordered according
to certain criteria depending on the features of the model to be
transformed. Expressing computations in the form of graph
grammars has some advantages over an implicit representation
(embedding the transformation computation in a program
using a traditional programming language) [3]. The main
advantages can be summarized as follows:

• It is an abstract, declarative, high level representation
of the computation. This enables exchange, re-use,
and symbolic analysis of the transformation model.

• The theoretical foundations of graph rewriting
systems may assist in proving correctness and
convergence properties of the transformation tool.

V. META-MODELING OF INA PETRI NETS
To build models of INA Petri nets formalism in AToM3, we

have to define a meta-model for the Petri nets formalism. The
meta-formalism used in our work is the UML Class Diagram
and the constraints are expressed in Python code [11].

Since INA Petri nets models consist of places, transitions,
and arcs from places to transitions and from transitions to
places, we have proposed to meta-model INA Petri nets model
two Classes to describe Places and Transitions, and two
associations for Input Arcs and Output Arcs as shown in Fig.
3. We have also specified the visual representation of each
class or association according to the notation presented in Fig.
1.

Given our meta-model, we have used AToM3 tool to generate
a graphical environment for INA Petri nets models. Figure 4
shows the generated INA graphical environment and a dialog
box to edit a place. Each place has two attributes (name and
initial marking) which are defined in the proposed Meta-
model (see Fig. 3 in INAPlace class).

(a) (b)

Fig. 4 (a) INA PN Model (b) INA Tool

VI. GENERATION OF INA SPECIFICATION
In order to analyse INA models, it is necessary to translate

these models into their equivalent representations in INA
specification. In this section we show how to use the
modelling environment obtained in the previous section to
generate INA specification. We do this by defining a Graph
Grammar to traverse the INA model and generate the
corresponding code in INA. The advantage of using a graph
grammar to generate the textual code is the graphical and
high-level fashion. The graph grammar has an initial Action
which opens the file where the code will be generated and
decorates all the Transition and Place elements in the model
with temporary attributes to be used in the conditions
specified in the rules. In Transition elements, we use two
attributes: current and visited. The current attribute is used to
identify the transition in the model whose code has to be
generated, whereas the visited attribute is used to indicate
whether code for the transition has been generated yet. In
Place elements, we use also two attributes: fromVisited and
toVisited. The fromVisited attribute is used to indicate whether
this place is processed as input place whereas the toVisited
attribute is used to indicate if this place is processed as output
place.

In our graph grammar, we have proposed seven rules which
will be applied in ascending order by the rewriting system
until no more rules are applicable. We are concerned here by
automatic code generation, so none of these rules will change
the INA models (i.e, in each of the six rules, the LHS is the
same as the RHS). These rules are shown in figure 5 and
described as follows:

Rule1: genLHS_rl(priority 1): is applied to locate a place
(not previously processed) which is related to current

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2746

transition with an input arc, and generate the corresponding
INA specification.

Rule2: betweenLHSandRHS(priority 2): is applied to
generate Maude code which separates LHS and RHS of the
equivalent rewriting rule.

Rule3: genRHS_rl(priority 3): is applied to locate a place
(not previously processed) which is related to current
transition with a output arc, and generate the corresponding
Maude specification.

Rule4: genTC(priority 4): is applied to generate the
appropriate Maude syntax depending on the TC of the
transition, and mark the transition as visited.

Rule5: InitialisePlace(priority 5):This rule is applied to locate
and initialise temporary attributes in places for processing the
next transition.

Rule6: SelectTransition(priority 6): is applied to select a
transition that has not been previously processed to generate
its equivalent in INA specification.

Rule7: SelectTransition(priority 7):

The graph grammar has also a final action which erases the
temporary attributes from the entities and closes the output
file. Finally, we have assigned the execution of this graph
grammar to a button labelled as "Generate INA specification"
in Fig. 4.

Fig. 5 Graph Grammar to generate INA specification from the

graphical representation

VII. CASE STUDY
In this section, we reconsider the same example presented

in section 3 to illustrate our approach. We present first the
graphical model describing this example via the generated
tool. Thereafter, the translating of this graphical model into its
equivalent INA specification using proposed graph grammar
will be shown.

A. Example Presentation
This example is about three programmers sharing two

terminals. Each programmer is either working at a terminal or
pausing. Programmer 1 needs two terminals at the same time
in order to work. The Fig. 6 presents the graphical model of
this problem created in our tool.

Fig. 6 3_prog_2_term problem created in our tool

B. Translating INA Petri Nets Model to INA Specification

In order to translate the graphical representation of the
3_prog_2_term problem into INA specification using the
graph grammar defined in previous section, one have to click
on the "Conv.to.INA" button in the interface of the generated
tool. The result of this translation is the file (3_prog_2-
term.pnt) which contains the description of the net and the
initial marking in INA syntax as shown in Fig. 7.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2747

Fig. 7 Generated INA specification of 3_prog_2_term

VIII. CONCLUSION
In this paper, we have proposed an approach based on

combining Meta-modelling and Graph Grammars to
automatically generate a visual modelling tool for ECATNets
for simulation and analysis purposes. ECATNets are a
category of algebraic Petri Nets based on a safe combination
of algebraic abstract types and high level Petri Nets.
ECATNets’ semantic are defined in terms of rewriting logic
allowing us to built models by formal reasoning. The cost of
building a visual modelling tool (for ECATNets for example)
from scratch is prohibitive. We have demonstrated in this
work that Meta-Modelling approach is useful to deal with this
problem since it allows the modelling of the formalisms
themselves. By means of Graph Grammars, models
manipulations are expressed on a formal basis and in a
graphical way. In our approach, the UML Class diagram
formalism is used as meta-formalism to propose a meta-model
of ECATNets. The meta-modelling tool ATOM3 is used it to
generate a visual modelling tool according to the proposed
ECATNets meta-model. We have also proposed a graph
grammar to generate Maude description of the graphically
specified ECATNets models. Then the rewriting logic
language Maude is used to perform the simulation of the
resulted Maude specification.

In a future work, we are planning to hide the steps of the
Simulation. The objective of this hiding is to unburden the
user from having to manually invoke Maude language and to
manipulate the textual version of the result of simulation. For
this purpose, the result of simulation (final state) will be
returned in graphically way in ECATNets model structure.

REFERENCES
[1] AGG Home page: http://tfs.cs.tu-berlin.de/agg/
[2] Home page: http://atom3.cs.mcgill.ca/
[3] Bardohl, R., H. Ehrig, J. De Lara and G. Taentzer (2004). "Integrating

Meta Modelling with Graph Transformation for Efficient Visual

Language Definition and Model Manipulation". Lecture Notes in
Computer Science 2984, pp.: 214-228.

[4] Borland, S., Vangheluwe, H (2003): Transforming Statecharts to DEVS.
A. Bruzzone and Mhamed Itmi, editors, Summer Computer Simulation
Conference, Student Workshop, pp. S154-- S159, Society for Computer
Simulation International (SCS), Montréal, Canada (2003).

[5] De Lara, J., Vangheluwe, H (2002): AToM3: A Tool for Multi-
Formalism Modelling and Meta-Modelling. Lecture Notes in Computer
Science 2306, pp.174--188. Presented also at Fundamental Approaches
to Software Engineering - FASE'02 , in European Joint Conferences on
Theory And Practice of Software - ETAPS'02, Grenoble, France(2002).

[6] De Lara, J., Vangheluwe, H.(2002): Computer aided multi-paradigm
modelling to process petri-nets and statecharts. In International
Conference on Graph Transformations (ICGT), Lecture Notes in
Computer Science, vol. 2505, pp. 239--253, Springer-Verlag, Barcelona,
Spain(2002).

[7] De Lara, J., Vangheluwe, H. (2002): Using meta-modelling and graph
grammars to process GPSS models. Hermann Meuth, editor, 16th
European Simulation Multi-conference (ESM), pp. 100--107, Society for
Computer Simulation International (SCS), Darmstadt, Germany (2002).

[8] De Lara, J and H. Vangheluwe (2004). "Meta-Modelling and Graph
Grammars for Multi-Paradigm Modelling in AToM3". Manuel
Alfonseca. Software and Systems Modelling, Vol 3(3), pp.: 194-209.
Springer-Verlag. Special Section on Graph Transformations and Visual
Modeling Techniques.

[9] De Lara, J., Vangheluwe, H. (2005): Model-Based Development: Meta-
Modelling, Transformation and Verification, The Idea Group Inc, pp. 17
(2005)

[10] DOME (1999). Home page: http://www.htc.honeywell.com/dome/
[11] Python home page: htpp://www.python.org
[12] Roch S. and Starke P.H. (2002). Integrated Net Analyze, User manual,

2002.
[13] "Handbook of Graph Grammars and Computing by Graph

Transformation". Vol.1 World Scientific.

Raida Elmansouri is Assistant Professor in the department of Computer
science, Faculty of Engineering, University Mentouri Constantine, Algeria.
Her research field is formal methods and Information Systems.

Elhillali Kerkouche is Assistant Professor in the department of Computer
science, University of Oum Ebouaghi, Algeria. His research field is formal
methods and Distributed Systems.

Allaoua Chaoui is with the department of computer science, Faculty of
Engineering, University Mentouri Constantine, Algeria. He received his
Master degree in Computer science in 1992 (in cooperation with the
University of Glasgow, Scotland) and his PhD degree in 1998 from the
University of Constantine (in cooperation with the CEDRIC Laboratory of
CNAM in Paris, France). He has served as associate professor in Philadelphia
University in Jordan for five years and University Mentoury Constantine for
many years. During his career he has designed and taught courses in Software
Engineering and Formal Methods. Dr Allaoua Chaoui has published many
articles in International Journals and Conferences. He supervises many Master
and PhD students. His research interests include Mobile Computing, formal
specification and verification of distributed systems, and graph transformation
systems.

