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Abstract—The goal of Gene Expression Analysis is to 

understand the processes that underlie the regulatory networks and 
pathways controlling inter-cellular and intra-cellular activities. In 
recent times microarray datasets are extensively used for this 
purpose. The scope of such analysis has broadened in recent times 
towards reconstruction of gene networks and other holistic 
approaches of Systems Biology. Evolutionary methods are proving to 
be successful in such problems and a number of such methods have 
been proposed. However all these methods are based on processing 
of genotypic information. Towards this end, there is a need to 
develop evolutionary methods that address phenotypic interactions 
together with genotypic interactions. We present a novel 
evolutionary approach, called Phenomic algorithm, wherein the focus 
is on phenotypic interaction. We use the expression profiles of genes 
to model the interactions between them at the phenotypic level. We 
apply this algorithm to the yeast sporulation dataset and show that 
the algorithm can identify gene networks with relative ease.  
 

Keywords—Evolutionary computing, Gene expression analysis, 
Gene networks, Microarray data analysis, Phenomic algorithms.  

I. INTRODUCTION 
ICROARRAY datasets are obtained through carefully 
planned experiments conducted by biologists on 

microarray slides. These datasets typically have a small 
number of records but a large number of attributes. This 
situation is opposite to that of traditional datasets where the 
number of records is usually large, whereas the attributes are 
relatively few. Moreover dimensionality reduction techniques 
are not very effective because they affect the final results to a 
very large extent. Hence innovative methods are adopted to 
determine useful patterns from of the dataset [1].  

Since microarray datasets are unlike traditional datasets, 
traditional data mining techniques do not work here. 
Clustering is performed to identify genes and subsets of genes 
which can be used to differentiate two or more cell-types, 
stages in disease development, or sub-types of a disease.  

Gene networks represent relationships between genes, 
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based on observations of how the expression level of each 
gene affects the expression levels of the others [2]. In order to 
reverse engineer and elucidate such relationships from gene 
expression measurements, it is necessary to compare 
expression patterns of genes. The challenge is to carry out the 
huge number of comparisons in a coordinated manner such 
that all relationships of interest are discovered. Evolutionary 
methods have been used for such a reconstruction of gene 
networks with some success by others [3]. 

Gene expression data could be used to model interaction of 
genes and hence could overcome the problem of objective 
function characterization which plagues evolutionary 
algorithms. Is it possible to use the gene expression patterns to 
model the interaction between individuals? In this research 
work, we show that it is possible and this leads to a method of 
assigning fitness to individuals without requiring an explicit 
objective function. 

The rest of this paper is organized as follows: In Section 2 
the related work done by others is reviewed. In Section 3 the 
biological background of the problem is explained. In Section 
4 the computational background of the problem is explained. 
Section 5 is devoted to a discussion about the methodology 
adopted by the phenomic algorithm. The problem is precisely 
stated and the details of methods and techniques to be adopted 
are explained. Section 6 presents the results and discussion. 
Section 7 concludes the paper and is followed by a list of 
references.  

II. RELATED WORK 
Contemporary gene expression analysis research 

encompasses work done during the last ten years to identify 
and analyze gene expression patterns. Before that gene 
expression analysis was technically limited to a handful of 
genes per study. The methods used then included Northern 
blot and real-time PCR, which were limited in number of 
genes, but individual measurements were fairly accurate [4].  

Several high-throughput technologies were developed to 
overcome the limitations of traditional methods. These high-
throughput methods allow more genes to be studied (typically 
in thousands) but the measurement of each gene is usually less 
accurate than those resulting from traditional methods. 
However this is a small price to pay since the information 
gained from measuring the expression of thousands of genes 
simultaneously is considered significant [5].  

The microarray revolution was kicked off by Schena and 
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other researchers [6] through their seminal paper on DNA 
microarrays. Since then researchers have tried out both 
traditional as well as non-traditional approaches to analyze 
microarray data. Among traditional approaches are the 
statistical approaches followed by Kuo [7], Troyanskaya [8], 
Baggerly [9], and Didier [10]. Most of these were univariate 
analyses based on calculation of p values and ANOVA. 
Phillips [11] stressed the need for multivariate analyses in 
such complex domains. 

Machine learning techniques have been used to perform 
unsupervised as well as supervised learning from microarray 
data. The use of hierarchical clustering, self-organizing maps, 
and multidimensional scaling can be found in Ramaswamy 
[12], Nikkila [13], Fuller [14] and Eisen [15]. Such 
unsupervised learning techniques are of limited value since 
the sample size in microarray data is usually small. Supervised 
learning techniques are increasingly employed, as seen in the 
use of support vector machines [16] and artificial neural 
networks [17].  The problem of analyzing temporal gene 
expression data was first introduced, when a tutorial was 
presented in the Pacific Symposium on Biocomputing by 
D’haesseleer, Liang and Somogyi [3]. 

As an indication of the current trend, several researchers 
have compared rank-based gene selection methods with 
genetic algorithms. An effective parallel genetic algorithm has 
been presented by Liu, Iba, and Ishizuka [18]. Though they 
prove the efficacy of genetic algorithms in finding optimal 
gene sets, their method can only be applied to few classes. An 
extension of their work in terms of better fitness functions and 
multi-class classification is worth pursuing. Another work by 
Ooi and Tan [19] addresses the problem of multi-class 
prediction by employing an elaborate genetic algorithm 
combined with a maximum likelihood classifier.   

Deutsch [20] has presented a work wherein a novel means 
of reducing the number of high-ranked genes is explored. It 
uses an evolutionary algorithm known as replication algorithm 
which is used in quantum simulations and protein folding. The 
combination of genetic algorithms and artificial neural 
network models can result in powerful solutions. Creighton 
and Hanash [21] have used data mining to discover 
association rules in gene expression datasets. Though the 
method used by them is based on the classical A-priori 
algorithm, it nevertheless could be an ideal application for the 
use of genetic algorithms.  

Recently interest has developed in reverse engineering a 
gene network from its activity profiles. In a first attempt, a 
simple method was introduced that showed that reverse 
engineering is possible in principle [22]. A more systematic 
and general algorithm was developed by Liang et al. [23], 
using mutual information to identify a minimal set of inputs 
that uniquely define the output for each gene at the next time 
step. Akutsu et al. [24], [25] proposed simplified reverse 
engineering algorithms and rigorously examined the input 
data requirements.  

D’haeseleer et al. [26] conclude their thesis on reverse 
engineering of gene networks with the following suggestion: 

“Since it is the ultimate goal to identify the causative 
relationships between gene products that determine important 
phenotypic parameters, top priority should be given to 
develop reverse engineering methods that provide significant 
predictions. Alternative computational approaches should be 
applied to given data sets, and their predictions tested in 
targeted experiments to identify the most reliable methods.”  

III. BIOLOGICAL BACKGROUND 
Ever since their inception, two types of microarray 

technologies have dominated. These are the complementary 
DNA (cDNA) microarrays and the oligonucleotide 
microarrays. Despite differences in their experiment protocols, 
both technologies measure the expression level of genes.  

The range of applications of microarrays is potentially vast: 
they have been used to study expression profiles of genes in 
areas of development, the study of progression of a disease, 
survival upon onset of disease, and response to various drug 
compounds. 

Applications which depend on the clustering of microarray 
data are the study of gene function, gene regulation, cellular 
processes, and subtypes of cells. Genes with similar 
expression patterns (coexpressed genes) can be clustered 
together with similar cellular functions. Coexpressed genes in 
the same cluster are likely to be involved in the same cellular 
processes. A strong correlation of expression patterns between 
genes indicates co-regulation. This can lead to an elucidation 
of regulatory networks. Clustering of different samples on the 
basis of corresponding expression profiles can also reveal 
subtypes of cells, which may otherwise be difficult to identify. 

It is possible to divide clustering tasks into three categories: 
gene-based clustering, sample-based clustering, and subspace 
clustering [27]. In gene-based clustering, the genes are treated 
as objects of which the samples are the features. The aim 
would be to find clusters of co-expressed genes based on their 
expression patterns. In sample-based clustering, the samples 
are treated as the objects of which the genes are the features. 
The aim, in this case, would be to partition the samples into 
homogenous groups, where each group would correspond to 
some macroscopic phenotype. The third category, subspace 
clustering, considers both genes as well as samples 
symmetrically, so that either may be treated as objects or 
samples. The aim would be to find subsets of genes that 
participate in any cellular process which takes place only in a 
subset of samples. 

In this work, we focus on gene-based clustering. But the 
methods that we develop could be used for subspace 
clustering also, provided that the sample space is processed in 
a symmetrical way. In order to focus on phenotypic 
interactions, we have opted to go closer to nature rather than 
resorting to computing shortcuts. This strategy of going closer 
to nature by incorporating gene expression into a messy 
genetic algorithm is adopted in [28]. Computing shortcuts 
might bring short-term benefits but do not fare well in 
realizing long-term strategies [29]. Nature has evolved 
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strategies which ensure success in the long-term and it is such 
techniques that we wish to mimic. 

IV. COMPUTATIONAL BACKGROUND 
Several researchers have proposed evolutionary algorithms 

for gene expression analysis, with varying degrees of success 
[30]. The curse of the elusive objective function is highlighted 
in many cases. The evolutionary algorithm needs to attach a 
fitness to each individual solution. The fitness of an individual 
is the manifestation of its phenotypic composition [31], [32].  

The phenotype is dependent on the genotype. An objective 
function is generally used here to characterize this 
dependence. But in the absence of an appropriate objective 
function, researchers use several roundabout means to elicit 
the fitness. We intend to follow a more direct and intuitive 
path here. By embedding the expression of a gene within the 
individual, we have a ready reference for determining fitness. 

When constructing gene networks, we study the 
relationship between genes. As shown in Fig. 1, if gi and gj 
are objects representing two such genes, their expression 
patterns across m samples may be written as 

{ }mkwg iki ≤≤= 1   and { }mkwg jkj ≤≤= 1 . The 

proximity between genes can be expressed in terms of a 
correlation coefficient. Some correlation coefficients which 
are frequently used in gene expression studies are given by 
Eq. (1) and Eq. (2), where wij represents the expression level 
of the ith gene in the jth sample and μgi represents the average 
of expression levels of the ith gene over all the samples. 
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Each gene object is normalized with zero mean and 
variance before calculating the distance. Since Euclidean 

distance does not capture the profiles of the expression 
patterns, another measure that is used is pearson correlation 
coefficient [7], [33]. 
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Once the proximity measure for the genes is defined, the 

gene interactions such as “meet”, “know”, “like”, “dislike” 
can be defined as operations on genes gi and gj, as follows: 

.,),( onceleastatpartnerswerejgandigiffTRUEreturnsjgigmeet  
.),( knownisgandgformeasureproximitytheiffTRUEreturnsggknow jiji

 
.),( DtoequalorthanlessisgandgformeasureproximityiffTRUEreturnsgglike jiji
 

.),( DthanmoreisgandgformeasureproximityiffTRUEreturnsggdislike jiji
 

 
These operations determine the character of the phenotypic 

interactions that take place between gene objects. By storing 
links between genes that “like” each other it is possible to 
elucidate the relationships that are required for reconstructing 
the gene network. 

V. THE PHENOMIC ALGORITHM 
Gene expression is a crucial link between the genotype and 

the phenotype and hence plays a significant role in evolution. 
The genes express through transcription into mRNA which is 
translated into proteins. Proteins are the workhorses of the cell 
and are responsible for all the intra-cellular, inter-cellular and 
extra-cellular processes. Thus the genotype realizes the 
phenotype through gene expression.  

Gene expression data embodies the characteristics of the 
phenotype and can be modeled as individuals in a genetic 
algorithm. Since the focus is on interactions between genes 
and their role in diseases, each gene is modeled as an 
individual whose expression pattern across samples represents 
that gene's phenotypic tendencies. 

Evolutionary methods which are used in the analysis of 
microarray datasets ignore the inherent advantages due to the 
ready availability of the expression of genes. An approach 
based on phenotypic features which exploits these inherent 
advantages is the basis for developing this new evolutionary 
algorithm. Since the focus is on phenotypic features, rather 
than genetic features, the new name “phenomic algorithm” is 
proposed. The following are the main characteristics of the 
phenomic algorithm: 

1. Modeling genes as individuals: The expression pattern of 
each of the genes is embedded within an object that represents 
an individual in the evolutionary algorithm. This type of a 
representation is the first step in gene-based clustering 
algorithms [27]. 

2. Simulating gene interaction: An environment for 
expression and interaction of individuals is simulated. 
Through random replication a population of individuals is 
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Fig. 1 Expression matrix representing a microarray dataset and 
corresponding notation 
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created and a host of interactions are performed on randomly 
chosen partners from this population. Interaction between 
partners would be similar to those encountered in nature. 
Partners would meet, know, like, or dislike each other. 

3. Enforcing natural processes: The passage of time in 
nature affects individuals in the population. As interaction 
proceeds they learn more and more about each other. But new 
generations must be given a chance to bring in new 
relationships. This is done through consolidation of the 
population from time to time. Consolidation involves 
identification of individuals that have been replicated and 
removal of multiple copies. Only one copy of each type is left 
behind. The individuals that are removed are replaced by 
randomly choosing new individuals from the rest of the gene-
pool. 

4. Conservation of memes and phenotypic characteristics: 
Memes are patterns of gene interactions which give rise to 
functions and such patterns are conserved across generations. 
The principle of the extended phenotype [34], [35] envisages 
phenotypes which are not restricted to the boundaries of 
individuals. Several species collaborate in stable patterns 
which are part of food chains and similar artifacts of 
ecosystems. Such patterns need to be conserved since they 
may be part of the final solution. 

The flowchart shown in Fig. 2 represents a randomized 
search strategy incorporating some of the ideas given above. 
In the flowchart, initially a microarray dataset is divided into n 
segments. The initial population is obtained by replicating the 
initial segment as many times as necessary to obtain N 
individuals. This replication is randomized and hence some 
individuals may have a larger representation in the population. 

During the evolutionary phase, the individuals interact and 
it is during these interactions that the relationships between 
genes are captured. The actual nature of information captured 
depends on the application. For example, when constructing 
gene networks, one would be interested in capturing the links 
between genes. A link can be construed between two genes 
which are close to each other according to some distance 
measure. The distance measure used could be euclidean 
distance, pearson correlation coefficient or spearman 
correlation coefficient. These have been routinely used in 
gene expression studies as proximity measures [27], [36]. 

After a predetermined number of randomized interaction 
cycles, the population is consolidated to remove replicated 
individuals. This process is akin to death of some of the 
population and is done on a random basis. The links 
embedded in dying individuals are carried over to the 
survivors. 

A birth process at this stage brings in new individuals from 
the rest of the microarray data segments (one by one). Again 
there is randomized replication and the process repeats over 
and over again. All segments are ultimately absorbed and will 
have interacted and consolidated so that the final population 
hold the results of the process. As seen from experimental 
results, this algorithm is able to discover links between genes 
when applied to gene expression data. 

 Initialize population with first 
segment replicated n times and set 

segment count to 0 

Interaction between individuals 

Consolidation of population 

Set segment limit flag 

Add next segment to 
population and increment 

segment count 

Population 
reduced by N/n? 

Segment count 
= n? 

Segment limit flag 
set? 

Output 
results

Stop

Yes 

No 

Yes

Yes 

No
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Fig. 2 Flowchart depicting the basic phenomic algorithm 
 

VI. RESULTS AND DISCUSSION 
We have applied the phenomic algorithm to the problem of 

reconstruction of gene networks. Specifically, we have chosen 
the yeast sporulation dataset used by DeRisi [37] which 
represents the temporal expression patterns of 6118 genes of 
Saccharomyces cerevisiae. The dataset is available at 
http://gepas.bioinfo.cipf.es/data/sporulation/sporulation.txt. 

We have followed the preprocessing strategy adopted by 
DeRisi [37] and chosen only those genes that have a 2.2-fold 
change in mRNA levels. Thus only 698 genes are chosen for 
further processing.  

The pearson correlation coefficient, as given in Eq. (2), is 
used to determine the distance between gene profiles. Only 
those gene relationships which are closer than a preset 
distance threshold are considered significant. For various 
values of distance threshold d, the gene networks obtained are 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

2132

 

 

shown in Fig. 3, Fig. 4, and Fig. 5. 
 

 
Fig. 3 A gene network derived from the yeast sporulation dataset, 

with a distance threshold d=0.01 
 

 
Fig. 4 A gene network derived from the yeast sporulation dataset, 

with a distance threshold d=0.015 
 

 
Fig. 5 A gene network derived from the yeast sporulation dataset, 

with a distance threshold d=0.02 
 

The gene networks derived by the phenomic algorithm 
show relationships between genes that have been recorded in 
the Saccharomyces Genome Database at 
http://www.yeastgenome.org/ [38]. When distance threshold d 
is more than 0.05, the phenomic algorithm finds networks 

with a large number of relationships. At that stage additional 
information is required if significant relationships have to be 
identified.   

VII. CONCLUSION 
We have presented a new evolutionary algorithm that 

focuses on the phenotypic, rather than genetic, features of an 
individual. The relationships between genes are elicited by 
allowing interaction between individuals in a virtual 
environment that simulates the survival of the fittest. These 
relationships form the links between genes in the gene 
network. The algorithm was applied to yeast sporulation data 
and the resulting gene networks were found to be biologically 
relevant. 

Gene networks represent complex relationships among 
genes, and several types of gene networks have been proposed 
that focus on one type of interaction or the other. Hence we 
have gene regulatory networks, metabolic networks, protein-
protein interaction networks, etc. Currently we are working on 
extending the phenomic algorithm by bringing in additional 
information resources [39] at the interaction stage, so that 
other types of relationships between genes can be derived. 
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