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Hopf bifurcation of a predator-prey model with time

delay and habitat complexity
Li Hongwei

Abstract—In this paper, a predator-prey model with time delay
and habitat complexity is investigated. By analyzing the characteristic
equations, the local stability of each feasible equilibria of the system
is discussed and the existence of a Hopf bifurcation at the coexistence
equilibrium is established. By choosing the sum of two delays as a
bifurcation parameter, we show that Hopf bifurcations can occur as
τ crosses some critical values. By deriving the equation describing
the flow on the center manifold, we can determine the direction of
the Hopf bifurcations and the stability of the bifurcating periodic
solutions. Numerical simulations are carried out to illustrate the main
theoretical results.
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I. INTRODUCTION

exhibit much more complicated dynamics than ordinary

differential equations since a time delay could cause a stable

equilibrium to become unstable and cause the population to

fluctuate. Time delays have been considered in mathematical

models of population dynamics and predator-prey systems by

many researchers, see [1], [2], [3], [4], [5], [6].

The most commonly used functional response in a predator-

prey interaction is Holling Type III [10]. This Type III re-

sponse function is represented mathematically by

g(x) =
ax2

1 + ahx2

where a is the attack coefficient and h is the handling time.

In his experiment, Holling did not consider the existence of

habitat complexity that can reduce the probability of capturing

a prey by reducing the searching efficiency of predator. So

the formula cannot be used directly in presence of habitat

complexity, and thus require modification. Since habitat com-

plexity is more likely to affect the attack coefficient than

the handling time for search [11], so the attack coefficient

a has to be replaced by a(1 − c), where 0 < c < 1
is a dimension less parameter that measures the degree or

strength of habitat complexity. Assume that the complexity is

homogeneous throughout the habitat. Then the total number

of prey caught, following Kot [12], is given by

V = a(1− c)Tsx,

where Ts = T−hV. Here T is the total time, Ts is the available

search time and h is the handling time required per prey.
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Solving for V , we get the modified Holling type III predation

formula that incorporates the effect of habitat complexity as

V =
Ta(1− c)x2

1 + a(1− c)hx2
.

Since predator′s functional response is defined as the amount

of prey catch per predator per unit of time, so the functional

response in presence of habitat complexity will be represented

by

g(x) =
a(1− c)x2

1 + a(1− c)hx2
.

It is to be noted, when c = 0, i.e., when there is no complexity,

we get back the original Holling Type III response function.

Therefore, this modified functional response would be suitable

for predator-prey interaction with habitat complexity. In partic-

ular, it would be more appropriate for laboratory, for example,

in case of Luckinbill experiment[15]. Assume that prey popu-

lation follows density-dependent logistic growth with intrinsic

growth rate r and carrying capacity k. If predation process

obeys the modified Type III response function, then the general

predator-prey model would be transformed to the following

system:
dx
dt

= rx(1− x
k
)− a(1−c)xy

1+a(1−c)hx2 ,

dy
dt

= ba(1−c)x(t−τ)y(t−τ)
1+a(1−c)hx2(t−τ) − dy.

(1)

In system (1.1), x(t) and y(t) represent the densities of prey

and predator at time t respectively.

The initial conditions for system (1.1) take the form

x(t) = φ1(t), y(t) = ψ2(t),
φ1(t) ≥ 0, φ2(t) ≥ 0, t ∈ [−τ, 0),
φ1(0) > 0, φ2(0) > 0,

(2)

where (φ1(t), φ2(t)) ∈ ([−τ, 0], R2
+0).

It is well-known by the fundamental theory of functional

differential equations [8], that system (1.1) has a unique solu-

tion (x(t), y(t)) satisfying initial conditions (1.2). It is easy to

show that all solutions of system (1.1) corresponding to initial

conditions (1.2) are defined on [0,+∞) and remain positive

for all t ≥ 0. The organization of this paper is as follows. In

the next section, by analyzing the corresponding characteristic

equations, the local stability of each of the feasible equilibria

of system (1.1) is discussed and the existence of a Hopf

bifurcation at the coexistence equilibrium is established. In

Section 3, the stability and direction of periodic solutions

bifurcating from Hopf bifurcations are investigated by using

the normal form theory and the center manifold theorem due

It                                                                                              is well-known     that delay differential equations
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to Hassard. Finally, in Section 4, numerical simulations are

carried out to support the theoretical analysis of the research.

II. LOCAL STABILITY AND HOPF BIFURCATION

In ecology, stress is given on the stability of the coexisting

equilibrium. We are, therefore, interested to investigate the

local stability of the interior equilibrium of the system (1.1)

which is given by E(x0, y0), where x0 =
√

d
a(1−c)(b−hd) and

y0 = br
dk
x0(k − x0). Note that x0 and y0 will be biologically

meaningful if c < 1− d
ak2(b−dh) , hd+

d
ak2

< b < 1.

Let X(t) = x(t) − x0, Y (t) = y(t) − y0 are the perturbed

variables. The system (1.1) can be expressed in the matrix

form after linearization as follows:

d

dt

(

X(t)
Y (t)

)

= A1

(

X(t)
Y (t)

)

+A2

(

X(t− τ)
Y (t− τ)

)

, (3)

where

A1 =

(

r − 2r
k
x0 +

2r(dh−b)(k−x0)
kb

−d
b

0 −d

)

,

and

A2 =

(

0 0

− 2d(hd−b)(k−x0)
k

d

)

.

The characteristic equation of system (2.1) is given by

|A1 +A2e
−ξτ − ξI| = 0

namely

Φ(ξ, τ) = ξ2 − (A+Be−ξτ )ξ + (C +De−ξτ ) = 0, (4)

where

A = r − 2r

k
x0 −

2a(1− c)x0y0
(1 + a(1− c)hx20)

2
− d, B = d,

C = −d(r − 2r

k
x0 −

2a(1− c)x0y0
(1 + a(1− c)hx20)

2
),

D = d(r − 2r

k
x0).

When there is no delay (i.e., τ = 0), the corresponding

characteristic equation is given by

ξ2 − (A+B)ξ + (C +D) = 0

and the corresponding eigenvalues are ξ1,2 =
(A+B)±

√
(A+B)2−4(C+D)

2 . For the stability of the equilibrium,

real parts of the above two roots must be negative. Since

C + D > 0, so ξ1 and ξ2 will have negative real parts

if A + B < 0. After some algebraic manipulation and

considering the existence condition, one can show that the

non-delayed system will be stable if the conditions of the

following theorem are hold.

Theorem 2.1: The system (1.1) is locally asymptotically

stable without delay around the coexisting equilibrium point

E if

(I) hd+ d
ak2

< b < 1,

(II) 1− 4d3h2

a(2hd−b)2k2(b−hd)c < 1− d
ak2(b−dh) .

For the delay-induced system (1.1), the interior equilibrium

E will be asymptotically stable if all the roots of the corre-

sponding characteristic have negative real parts. To determine

the nature of the stability, we require the sign of the real parts

of the roots of the (2.2). We start with the assumption that

E is asymptotically stable in case of non-delayed system and

then find conditions for which E is still stable for all delays

[13]. By Rouche′s Theorem [14] and the continuity in τ , the

transcendental (2.2) has roots with positive real parts if and

only if it has purely imaginary roots. From this, we shall be

able to find conditions for all eigenvalues to have negative real

parts.

Let

ξ(τ) = η(τ) + iω(τ),

where η and ω are real. As the interior equilibrium E of the

non-delayed system is stable, we have η(0) < 0. By continuity,

if τ(> 0) is sufficiently small, we still have η(τ) < 0 and E is

still stable. The change of stability will occur at some values

of s for which η(τ) = 0, ω(τ) 6= 0, that is n will be purely

imaginary. Let τ̄ be such that η(τ̄) = 0 and ω(τ̄) = ω̄ 6= 0,so

that ξ = iω(τ̄) = iω̄. In this case, the steady state loses

stability and eventually becomes unstable when η(τ) becomes

positive. In other words, if such an ω(τ̄) does not exist, i.e.,

if ξ be not purely imaginary for any τ = τ̄ , then the steady

state E will always be stable.

Now, iω is a root of (2.2) if and only if

−ω̄2 − (A+Be−iω̄τ̄ )iω̄ + (C +De−ω̄τ̄ ) = 0.

According to the real and imaginary parts of both sides, we

get

−ω̄2 + C = Bω̄ sin ω̄τ̄ −D cos ω̄τ̄ ,

Aω̄ = −(Bω̄ cos ω̄τ̄ +D sin ω̄τ̄).

From the above two equations, we obtain

f(ω̄) = ω̄4 + (A2 −B2 − 2C) + (C2 −D2) = 0. (5)

If we assume ω̄2 = Y,M = A2 − B2 − 2C,N = C2 −D2,

f(ω̄) could be reduced to

Φ(Y ) = Y 2 +MY +N = 0. (6)

Note that

M = A2 −B2 − 2C = (−r + 2rhd

b
− 2rhd

bk
x0)

2

is always positive. If N > 0 then all roots of the (2.4) have

negative real parts for all delay and the equilibrium E is

locally asymptotically stable. If N < 0, then the (2.4) has

one positive root. It follows that the (2.4) will have a positive

root ω̄. This implies that the characteristic (2.2) will have a

pair of purely imaginary roots ±iω̄ such that η(τ̄) = 0 and

ω(τ̄) = ω̄. Solving for τ̄ , we have

τ̄j =
1

ω̄
cos−1(

ω̄2(D −AB)− CD

B2ω̄2 +D2
)+

2jπ

ω̄
, j = 0, 1, 2, 3, · · ·

Also we can verify the following transversally condition:

d

dτ
Re(ξ) > 0
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and τ = τ̄ , where τ̄ is the value of τ̄j for j = 0.

Differentiating (2.2) with respect to τ , we obtain

2ξ dξ
dτ

− (A+Be−ξτ ) dξ
dτ

− ξBe−ξτ (−τ dξ
dτ

− ξ)

+De−ξτ (−τ dξ
dτ

− ξ) = 0

This gives

( dξ
dτ
)−1 = 2ξ−A

(Dξ−Bξ2)e−ξτ + Bξτ−Dτ−B
Dξ−Bξ2

= 2ξ−A
Aξ2−Cξ−ξ3

− B
Dξ−Bξ2

− τ
ξ

At τ = τ̄ , ξ = iω̄, since M > 0, then

[d(Reξ(τ))
dτ

]−1
τ=τ̄ = (A2

−B2
−2C)ω̄2+2ω̄4

B2ω̄2+D2

= Mω̄2+2ω̄4

B2ω̄2+D2 > 0,

By continuity, the real part of η(τ) becomes positive when

τ > τ̄ and the steady state becomes unstable. Moreover, a

Hopf bifurcation occurs when τ passes through the critical

value τ̄ . Now we can state the following theorem:

Theorem 2.2: Suppose conditions of the Theorem 2.1 hold.

Then the following results are true. (i) If N ≤ 0, then the

equilibrium E of the system (1.1) is locally asymptotically

stable for τ < τ̄ and unstable when τ > τ̄ where

τ̄ =
1

ω̄
cos−1[

ω̄2(D −AB)− CD

B2ω̄2 +D2
] (7)

when τ = τ̄ , a Hopf-bifurcation occurs as τ passes through

the critical value τ̄ [9].

(ii) If N > 0, then the equilibrium E of the system (1.1) is

locally asymptotically stable for all τ ≥ 0.

III. STABILITY OF BIFURCATED PERIODIC SOLUTIONS

In the previous section, we have obtained the conditions

under which a family of periodic solutions bifurcate from the

positive equilibrium of system (1.1) when the delay crosses

through the critical value τj . In this section, we shall study

the direction of these Hopf bifurcations and stability of bifur-

cated periodic solutions arising through Hopf bifurcations by

applying the normal form theory and center manifold theorem

introduced by Hassard et al. [9].

Let x̄(t) = x(t) − x∗1, ȳ(t) = y(t) − y∗, then system (1.1)

can be transformed into

dx̄(t)
dt

= (−r + 2rhd
bk

(k − x0))x̄(t)− d
b
ȳ(t)− r

k
x̄(t)2

− a(1− c)f(x̄(t), ȳ(t)),

dȳ
dt

= −dȳ(t) + 2r(b−dh)(k−x0)
bk

x̄(t− τ) + dȳ(t− τ)

+ ab(1− c)f(x̄(t− τ), ȳ(t− τ)),

(8)

where

f(x, y) =
c2xy(x+ 2x0) + x2(c3 − 2a(1− c)hx0y0x)

c22(c2 + a(1− c)h(x2 + 2x0x))
,

c2 = 1 + a(1− c)h(x0)
2, c3 = y∗(1− 3a(1− c)h(x0)

2).

Let t = sτ, x̄(sτ) = x̂(s), ȳ(sτ) = ŷ(s), τ = τ0 + µ, µ ∈
R, τ0 is defined by (2.5), then system (3.1) can be transformed

as an FDE in C = C([−1, 0], R2), we still denote x = x̂, y =
ŷ,

dx
dt

= (τ0 + µ)((−r + 2rhd
bk

(k − x0))x(t)− d
b
y(t)

− r
k
x̄(t)2 − a(1− c)f(x(t), y(t))),

dy
dt

= (τ0 + µ)(−dy(t) + 2r(b−dh)(k−x0)
bk

x(t− 1)

+ dy(t− 1) + ab(1− c)f(x(t− 1), y(t− 1))).

(9)

For φ = (φ1, φ2)
T ∈ C([−1, 0], R2), we define

Lµφ = Bφ(0) + Cφ(−1),

where

B = (τ0 + µ)

(

−r + 2rhd
bk

(k − x0) −d
b

0 −d

)

,

C = (τ0 + µ)

(

0 0
2r(b−dh)(k−x0)

k
d

)

.

and

F (µ, φ) = (τ0+µ)

(

− r
k
φ1(0)

2 − a(1− c)f(φ1(0), φ2(0))
ab(1− c)f(φ1(−1), φ2(−1)).

)

By the Riesz representation theorem, there exists a 2×2 matrix

function η(θ, µ) : [−1, 0] −→ R2 whose elements are of

bounded variation such that

Lµφ =
∫ 0

−1
[dη(θ, µ)]φ(θ) for φ ∈ C([−1, 0], R2). (10)

In fact, we choose

η(θ, µ) = Bδ(θ) + Cδ(θ + 1)

Then (3.3) is satisfied.

For φ ∈ C([−1, 0], R2), define

A(µ)φ =

{

dφ(θ)
dθ

, − 1 ≤ θ < 0
∫ 0

−1
[dη(s, µ)]φ(s), θ = 0

and

R(µ)φ =

{

0, − 1 ≤ θ < 0
F (µ, θ), θ = 0

Then system (3.1) is equivalent to the following operator

equation

U̇(t) = A(µ)Ut +R(µ)Ut,

where U = (x, y)T , Ut = U(t+ θ) for θ ∈ [−1, 0].
For ψ ∈ C([−1, 0], (R2)∗), define

A∗ψ(s) =

{

−dψ(s)
ds

, − 1 ≤ s < 0
∫ 0

−1
[dηT (t, 0)]ψ(−t), s = 0

For φ ∈ C([−1, 0], R2) and ψ ∈ C([−1, 0], (R2)∗), define a

bilinear form

〈φ, ψ〉 = ψ̄T (0)φ(0)−
∫ 0

−1

∫ θ

ξ=0

ψ̄T (ξ − θ)dη(θ)φ(ξ)dξ.

where η(θ) = η(θ, 0). Then A(0) and A∗ are adjoint operators.

From the discussion in Section 2, we know that ±iτ0ω0 are

eigenvalues of A(0) and therefore they are also eigenvalues of

A∗. It is not difficult to verify that
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Lemma 3.1: q(θ) = (1, ρ)T eiω0τ0θ and q∗(s) =
D(1, ρ∗)T eiω0τ0s are the eigenvectors of A(0) and A∗ cor-

responding to the eigenvalue iτ0ω0 and −iτ0ω0 respectively,

and 〈q∗(s), q(θ)〉 = 1, 〈q∗(s), q̄(θ)〉 = 0, where

ρ = −2r(b− hd)(k − x0)e
−iω̄τ0

k(iω̄ + d− de−iω̄τ0)
,

ρ∗ =
d

b(iω̄ − d+ de−iω̄τ0)
,

D̄ =
1

1 + ρρ̄∗ + ρ̄∗τ0e−iω̄τ0(dρ̄+
2r(b−dh)(k−x0)

bk
)
.

Following the algorithms given in Hassard et al[9] and using a

computation process similar to that of Wei and Ruan [7] with

the help of Mathematic 8.0, we can obtain the coefficients

which will be used for determining the important qualities:

g20 = 2τ0D̄(− r
k
− a(1−c)c3

c3
2

− 2a(1−c)x0

c2
2

ρ

+ ab(1−c)
c3
2

ρ̄∗e−2iω̄τ0(c3 + 2c2x0ρ)),

g11 = 2τ0D̄(− r
k
− a(1−c)c3

c3
2

− 2a(1−c)x0

c3
2

Re(ρ)

+ ab(1−c)
c3
2

ρ̄∗(c3 + 2c2x0Re(ρ))),

g02 = 2τ0D̄(− r
k
− a(1−c)c3

c3
2

− 2a(1−c)x0

c2
2

ρ̄

+ ab(1−c)
c3
2

ρ̄∗e2iω̄τ0(c3 + 2c2x0ρ̄))

g21 = 2τ0D̄[(− r
k
− a(1−c)c3

c3
2

)(W
(1)
20 (0) + 2W

(1)
11 (0)

+ 12a2(1−c)2hx0(c3+c2y0)
c4
2

− a(1−c)x0

c2
2

(W
(1)
20 (0)ρ̄

+W
(2)
20 (0) + 2W

(1)
11 (0)ρ+W

(2)
11 (0))

− a(1−c)(c2−4a(1−c)hx2

0
)

c3
2

ρ̄]

+ ab(1−c)
c4
2

ρ̄∗e−iω̄τ0(c2c3(W
(1)
20 (−1)

+ 2W
(1)
11 (−1))− 12a(1− c)hx0(c3 + c2y0)

+ c22x0(W
(1)
20 (−1) +W

(2)
20 (−1))ρ̄e2iω̄τ0

+ c2(c2 − 4a(1− c)hx20)ρ̄))

(11)

where

W20(θ) =
ig20

w0τ0
q(0)eiω0τ0θ+

iḡ20

3w0τ0
q̄(0)e−iω0τ0θ+E1e

2iω0τ0θ,

and

W11(θ) = − ig11

w0τ0
q(0)eiω0τ0θ +

iḡ11

w0τ0
q̄(0)e−iω0τ0θ + E2.

Moreover E1, E2 satisfy the following equations, respectively,
(

r − 2rhd
bk

(k − x0) + 2iω̄ d
b

2r(b−dh)(k−x0)
bk

e−2iω̄τ̄ 2iω̄ + d− de−2iω̄τ0

)

E1

=

(

− r
k
− a(1−c)c3

c3
2

− 2a(1−c)x0

c2
2

ρ
ab(1−c)
c3
2

e−2iω̄τ0(c3 + 2c2x0ρ)

)

,

(

r − 2rhd
bk

(k − x0)
d
b

2r(b−dh)(k−x0)
bk

0

)

E2

=

(

− r
k
− a(1−c)c3

c3
2

− 2a(1−c)x0

c2
2

ρ
ab(1−c)
c3
2

(c3 + 2c2x0ρ)

)

,

Because each gij is expressed by the parameters and delay

in (1.1), we can compute the following quantities:

C1(0) =
i

2ω0τ0
(g11g20 − 2|g11|2 − 1

3 |g02|2) +
g21
2 ,

µ2 = − ReC1(0)
Reλ′(τ0)

,

β2 = 2Re{C1(0)},
T2 = ImC1(0)+µ2Imλ

′(τ0)
ω0τ0

.

(12)

It is known that µ2 determines the direction of the Hopf

bifurcation: if µ2 > 0 (µ2 < 0), then the Hopf bifurca-

tion is supercritical (subcritical) and the bifurcating periodic

solutions exist for τ > τ0 (τ < τ0). β2 determines the

stability of the bifurcating periodic solutions: the bifurcating

periodic solutions on the center manifold are stable (unstable)

if β2 < 0 (β2 > 0); and T2 determines the period of the

bifurcating periodic solutions: the period increases (decreases)

if T2 > 0(T2 < 0).

From the discussion in Section 2, we know that

Re(λ′(τ0)) > 0, therefore we have the following result,

Theorem 3.1: The direction of the Hopf bifurcation of

system (1.1) at the origin when τ = τj(j = 0, 1, 2, · · ·) is

supercritical (subcritical) and the bifurcating periodic solutions

on the center manifold are stable (unstable) if Re{C1(0)} <
0(> 0); particularly, when τ = τ0, the stability of the

bifurcating periodic solutions is the same as that on the center

manifold.

IV. COMPUTER SIMULATIONS

To demonstrate the algorithm for determining the properties

of Hopf bifurcation in Section 3 and the Hopf bifurcation

results in Section 4, we carry out numerical simulations on

a particular case of (1.1) in the following form.

In (1.1), let a = 0.045, b = 0.215, d = 1, h = 0.05, c =
0.5, k = 898; r = 2.5. It is easy to show that system (1.1) has

a unique coexistence equilibrium

E∗(16.4122, 8.66033).

By calculation, we have

C −D = −1.05016 < 0, ω̄ ≈ 0.39336,

τ0 ≈ 0.853, C1(0) ≈ 0.0915442− 0.776854i,

µ2 ≈ −0.0720903, β2 ≈ 0.183088, T2 ≈ −0.665963.

By Theorem 2.1, E∗ is locally asymptotically stable if 0 <
τ < τ0 and is unstable if τ > τ0, and system (1.1) undergoes

a Hopf bifurcation at E∗ when τ = τ0, we know that the

bifurcation is supercritical and the bifurcating periodic solution

is asymptotically stable(see Fig. 1). With the increasing of

the delays, System (1.1) will show the complicated dynamical

behaviors. A numerical simulation illustrates this fact (see Fig.

2).
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Fig1: τ = 0.9 > 0.853, E∗ is unstable.
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Fig2: τ = 0.8 < 0.853, E∗ is locally asymptotically stable.
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