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Abstract—Yeast cells live in a constantly changing environment 
that requires the continuous adaptation of their genomic program in 
order to sustain their homeostasis, survive and proliferate.  Due to the 
advancement of high throughput technologies, there is currently a 
large amount of data such as gene expression, gene deletion and 
protein-protein interactions for S. Cerevisiae under various 
environmental conditions. Mining these datasets requires efficient 
computational methods capable of integrating different types of data, 
identifying inter-relations between different components and 
inferring functional groups or ‘modules’ that shape intracellular 
processes.  This study uses computational methods to delineate some 
of the mechanisms used by yeast cells to respond to environmental 
changes.  The GRAM algorithm is first used to integrate gene 
expression data and ChIP-chip data in order to find modules of co-
expressed and co-regulated genes as well as the transcription factors 
(TFs) that regulate these modules. Since transcription factors are 
themselves transcriptionally regulated, a three-layer regulatory 
cascade consisting of the TF-regulators, the TFs and the regulated 
modules is subsequently considered.  This three-layer cascade is then 
modeled quantitatively using artificial neural networks (ANNs) 
where the input layer corresponds to the expression of the up-stream 
transcription factors (TF-regulators) and the output layer corresponds 
to the expression of genes within each module. This work shows that 
(a) the expression of at least 33 genes over time and for different 
stress conditions is well predicted by the expression of the top layer 
transcription factors, including cases in which the effect of up-stream 
regulators is shifted in time and (b) identifies at least 6 novel 
regulatory interactions that were not previously associated with 
stress-induced changes in gene expression. These findings suggest 
that the combination of gene expression and protein-DNA interaction 
data with artificial neural networks can successfully model biological 
pathways and capture quantitative dependencies between distant 
regulators and downstream genes.
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I. INTRODUCTION

N contrast to the twentieth-century perception in biology, 
whose basic approach was to isolate each part of a system 
of interest and characterize the individual members with 

great detail, current biological research has reached a different 
era. Nowadays the focus has moved from the individual to the 
whole, trying to get a maybe blur, but more complete picture 
of the system under study.  The advent of the so-called ‘-
omics’ technologies and the development of new 
computational approaches able to cope with the massive 
amount of data available, constitute the systems biology 
approach where the components of a biological system, i.e. 
the cell, are not studied in isolation but as parts of a large 
complicated network.  The processes inside this network are 
carried out by the organized interactions of functionally 
coherent groups of biomolecules, the so-called functional 
modules, entities that are now recognized as the basic 
structural unit in any biological system [1]. Whether 
modularity is the effect of natural selection or whether it arose 
because of biased mutational mechanisms, is still an open 
question [2], but modularity is ubiquitous and has been 
observed in many biological networks, including protein-
protein interaction [3-5], metabolic [6-9] and transcriptional 
regulatory networks [9-11].

The concept of modularity simplifies the study of biological 
systems. The reconstruction of gene networks from gene 
expression data requires the identification of every interaction 
between the participating genes.  Despite the large number of 
available data, there is an even larger number of parameters 
that need to be estimated in complex networks and methods 
based on Boolean models, Bayesian networks, differential 
equations or hybrids of those can only be restricted to small 
subsystems [12].  Parameter optimization is often successful at 
the level of gene module analysis, where genes in the same 
regulatory module for example are expected to be co-
expressed and thus regulated in a coordinated way by the 
same set of regulators [11, 13, 14]. The commonality of their 
properties allows the consideration of each module as a single 
node in the network. Therefore, inferring the network can be 
reduced to a problem with two subtasks: identification of the 
modules and identification of the regulators responsible for 
the concerted action [12].  

Clustering algorithms applied to gene expression data have 
been extensively used to identify modules of genes that are 
co-regulated across experimental conditions [15, 16].  Other 
methods include biclustering algorithms where data from 
microarray experiments are organized in matrices and genes 
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can be grouped in potentially overlapping modules [11, 17]. 
Microarray data have also been modeled as linear mixtures of 
latent variables [18] while projection methods are used to 
decompose the data into mutually independent groups and 
place genes into non-exclusive modules [19, 20].   

Module inference provides new insights about the 
organization of gene activities for different intracellular 
processes.  However, it offers little or no information about 
the type of regulation (e.g. positive or negative) exerted by 
various regulators onto the members of a given module under 
different conditions. This limitation was first confronted by 
Segal et al [21] who used a probabilistic model on gene 
expression data to identify the modules, their regulators and 
the conditions under which the regulation takes place. Since 
then, several other studies incorporated heterogeneous 
experimental data to infer the module networks, such as motif  
information [22-24], chromatin immunoprecipitation (ChiP-
chip) [25-27] and protein interaction data [28, 29]. 

ChiP-chip data provide direct information about the binding 
(direct physical interaction) of a regulator (transcription 
factor) to the corresponding gene.  Transcription factors 
regulate the expression of a gene by binding to specific 
locations at the promoter of the gene and activating or 
repressing its transcription.  Genes that are bound by the same 
regulators (cause) and display similar expression (result) can 
be considered as participants in the same biological process 
and assigned to the same module. Studies that integrate 
binding and gene expression information result in the 
identification of module networks, where genes are classified 
in modules that are regulated by a common set of transcription 
factors. Several approaches have been developed to infer such 
networks including MA-networker [26], COGRIM [30], 
ReMoDiscovery [31], SAMBA [32] and GRAM [33].  The 
latter is a heuristic method that identifies module networks by 
first searching for a core set of genes tightly co-regulated 
using a stringent criterion for the transcription factor binding.  
The group of genes is then expanded using both a relaxed 
binding criterion and an expression profile that is similar to 
the mean expression of the initial group.   

Most of the abovementioned studies have been 
performed on S. Cerevisiae, due to the simplicity of its 
genome and the availability of large amounts of data.  A 
plethora of expression studies are currently available 
concerning the response of yeast to different environmental 
changes [34-38], underlying the importance of this 
mechanism.  Particularly for unicellular organisms such as 
yeast, maintaining their internal homeostasis in a constantly 
changing surrounding is of vital importance [39, 40].  In 
response to drastic and stressful changes, yeast cells 
reorganize their expression program in order to arrest normal 
cellular processes and activate specific pathways so they can 
adjust to the novel conditions.  During hyperosmotic shock 
stress, for example, cells arrest normal growth, accumulate 
glycerol internally by closing Fps1p channel and trigger the 
high-osmolarity glycerol pathway resulting in regulation of 
gene expression [41].   

The perception of how biological networks contribute 
to specific intracellular processes will improve further if the 
regulatory interactions are investigated at more than one level. 

It is well known that transcription factors are themselves 
transcriptionally regulated, as part of complicated regulatory 
cascades that exist in the cell.  In this work the regulatory 
module-hypothesis is expanded into three layer cascades: the 
level of the gene modules that show the concertized action of 
genes, the level of the regulators (TFs) of the modules and the 
level of the regulators of these regulators (TF-regulators).  
The models capture both the structure and the regulatory 
function of these cascades using artificial neural networks 
(ANNs) where the input layer corresponds to the expression 
of the up-stream transcription factors (TF-regulators) and the 
output layer corresponds to the expression of genes within 
each module. Since the expression profile of a transcription 
factor over time is not necessarily indicative of the timing of 
its activity - possibly due to various post-transcriptional and 
post-translational modifications [42, 43]- our models also 
consider simplified time delays.       

II. METHODS

A. Data acquisition and preprocessing 
Microarray gene expression data from yeast cells in 

response to different environmental stresses [34] were 
downloaded from http://genome-
www.stanford.edu/yeast_stress/. The dataset comprised of 
measurements for the expression of 6152 yeast genes for 19 
different conditions over several time points (173 experiments 
in total) as well as over-expression and knockout experiments. 
The stress conditions included 1) heat shock from 250C to 
370C, 2) heat shock from various temperatures to 370C, 3) 
steady-state temperature growth, 4) temperature shift from 
370C to 250C, 5) mild heat shock at variable osmolarity, 6) 
response of mutant cells to heat shock, 7) hydrogen peroxide 
treatment, 8) response of mutant cells to H2O2 exposure, 9) 
menadione exposure, 10) diamide treatment, 11) DTT 
exposure, 12) hyper-osmotic shock, 13) hypo-osmotic shock, 
14) amino acid starvation, 15) nitrogen source depletion, 16) 
diauxic shift, 17) stationary phase, 18) steady-state growth on 
alternative carbon sources, 19) steady-state growth at constant 
temperatures, 20) over-expression studies, 21) knockout 
experiments for several time points many of which were 
performed in duplicates or triplicates.  For the case of 
replicated experiments the average expression value was used 
in our analysis.  In an attempt to focus on responses specific to 
certain stress conditions, over-expression and knockout 
experiments were excluded and the rest of the experiments 
were divided in four main categories as shown in Table I.    

A dataset containing genome-wide location analysis for 
the binding of 106 transcriptional regulators to promoter 
sequences across the genome [44] was downloaded from 
http://jura.wi.mit.edu/cgi-
bin/young_public/navframe.cgi?s=17&f=downloaddata.  In 
the respective study [7], the authors used a myc epitope tag for 
each transcription factor and performed a genome-wide 
location analysis using microarrays to detect, through 
hybridization, those promoter regions of the genome that were 
enriched in epitope tags after chromatin immunoprecipitation 
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experiments.  Binding data are represented as confidence 
values (P values) for each microarray spot.   

TABLE I
STRESS CONDITIONS ORGANIZED INTO FOUR CATEGORIES

Category A 
(heat shock) 

Category B 
(starvation) 

Category C1  Category C2 

Heat shock from 
250C to 370C

Amino acid 
starvation 

Hydrogen 
peroxide 
treatment 

Hydrogen 
peroxide 
treatment 

Heat shock from 
various 
temperatures to 
370C

Nitrogen source 
depletion

Menadione 
exposure 

Menadione 
exposure 

Steady-state
temperature 
growth 

Diauxic shift Diamide 
treatment 

Diamide 
treatment 

Temperature 
shift from 370C
to 250C

Stationary phase DTT exposure DTT exposure 

Mild heat shock 
at variable 
osmolarity 

Steady-state
growth on 
alternative
carbon sources 

 Hyper-osmotic 
shock

Steady-state
growth at 
constant
temperatures  

  Hypo-osmotic 
shock

B. Identification of gene modules 
For each of the four data categories, the GRAM 

algorithm [33] was used to infer modules of genes which 
share a common expression pattern as well as a common set of 
regulators. The algorithm first uses the protein-DNA binding 
data to group genes according to their common regulators, 
with a stringent criterion for this binding.  Then, gene modules 
are refined to contain only those genes with similar expression 
profiles across all tested conditions. Finally, modules are 
expanded by the incorporation of genes with a similar 
expression pattern bound by a relaxed value.   

C. Modeling regulatory networks 
Since transcription factors (TFs) are nodes in a 

complex regulatory cascade, they are themselves 
transcriptionally regulated. For GRAM-inferred gene modules 
that were regulated by at least two transcription factors, the 
YEASTRACT database was used (http://www.yeastract.com/) 
to find proteins that regulate these transcription factors.  In 
addition to bibliographical support, a protein was assumed to 
transcriptionally regulate the gene coding for a specific 
transcription factor only if it had at least one binding site 
upstream the promoter of that gene.  Binding site data were 
retrieved from the SGD database 
(http://www.yeastgenome.org/).  

The above interaction relationships were used to build 
three layer cascades in which the output layer comprised of a 
gene in a module derived from GRAM, the middle layer 
contained the regulators (TFs) of that gene and the top layer 
the regulators (TFs) of the middle-layer regulators. The 
structure of these cascades was then used to constrain the 
connectivity in three-layer Artificial Neural Network models 

(ANNs). Examples of such networks are shown in Figures 1 
and 2 in the Results section. The activation functions for all 
ANN models were sigmoidal-logarithmic in the middle-layer 
nodes and linear in the output layer.   

 The ANN models were developed in order to 
investigate whether the expression of upstream regulators 
(top-layer TFs) can predict the expression of genes two steps 
down in the cascade (output-layer). To answer this question, 
for each ANN model representing a respective biological 
cascade, the expression profile of the top-layer regulators was 
used as input to the model and the expression of the down-
stream gene was assessed as the output. The middle-layer 
regulators were only used to constrain the network 
connectivity and they served as hidden nodes, i.e. their 
expression was not provided to the model. ANN models were 
developed and trained within the Matlab environment using 
the Neural Network Toolbox with the back-propagation 
algorithm.  For each model, training was done using 50% of 
the experimental conditions and the remaining 50% was used 
for validation and testing. Validation during training was done 
using 25% of the data in order to avoid over-fitting while the 
rest 25% was used as a test set. This procedure was repeated 
100 times and the training/validation/test data sets were 
randomly selected for each repetition. The correlation 
coefficient between the model predictions and the desired 
output for the test set was estimated for each run. The model’s 
performance was assessed as the average correlation 
coefficient taken over the test set for 100 runs and was 
considered good for values higher than 0.70, except for the C1 
condition in which the threshold was lowered to 0.65.  

To capture the influence of possible time delays 
between the top-layer regulators and the target genes all time-
course experiments in the expression dataset were re-
analyzed. 74 networks with poor performance were re-trained 
using delayed expression data whereby, the expression of the 
target gene was shifted one or two time steps ahead. The 
networks’ performance was assessed as described previously. 
The analysis was restricted to a maximum of two time delay 
steps due to the limited temporal resolution used to sample the 
yeast expression data.      

D. Statistical significance 
To assess the statistical significance of the models’ 

prediction accuracy, all ANNs were also trained using 
randomly shuffled data in the expression profile of the output 
gene.

III. RESULTS

Using the GRAM algorithm, the genes involved in the 
four stress categories were grouped into co-expression 
modules in which the genes were regulated by common 
transcription factors.  For each category, a number of 87-100 
modules were identified, each of which was regulated by 1-3 
transcription factors.  As shown in Table II, the majority of 
the modules had only one regulator. The number of genes in 
modules with one regulator was nearly double compared to 
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modules with two or three regulators, suggesting that genes in 
larger modules are more likely to be involved in more than 
one process. Since the goal of this study is to investigate 
whether non-linear ANNs can quantitatively model a single 
regulatory cascade, the analysis was limited to the 89 modules 
with at least two regulators. 

TABLE II
STATISTICS OF THE MODULES IDENTIFIED BY GRAM

 Category A Category B Category 
C1

Category C2 

Number of 
modules 

99 100 89 87 

Number of 
modules 
with one 
regulator 

73 76 69 68 

Number of 
modules 
with >2 & < 
10
regulators 

26 24 20 19 

Average
number of 
genes in 
modules 
with one 
regulator 

24.6 22.63 15.84 15.45 

Average
number of 
genes in 
modules 
with >2 
regulator 

10.5 11.58 8 8.47 

For each transcription factor that regulated these 89 
modules the regulators (also TFs) that regulate these 
transcription factors were identified bibliographically.  
Modules for which there was insufficient information about 
upstream regulators (i.e. the TF regulators were unknown or 
the TFs did not have a binding-site motif in their promoter 
region) or with a very large number of regulators (>10) per TF 
were excluded from the analysis. This filtering resulted in 26 
modules which were in turn used to built three-layer 
regulatory cascades. Note that each module corresponded to a 
single structural cascade as genes in the module were 
regulated by the same TFs. However, for each gene in each 
module a different neural network was trained, validated and 
tested as described in the Methods section. A total of 94 
ANNs was simulated, corresponding to genes in the 26 
modules distributed over all four categories. 18 ANN models 
had a correlation coefficient r > 0.7, among which three had a 
correlation coefficient r > 0.8.  For category C1 the threshold 
was lowered to 0.65 and thus two more ANNs were identified. 
A representative example for such a network is shown in 
Figure 1 for gene YLR179C (r=0.723). 

Fig. 1.  The three-layer regulatory cascade for gene 
YLR179C. The structure of the cascade represents the connectivity 
of the respective ANN model, which had a correlation coefficient of 
0.723±0.100.

Since transcriptional regulation is a process that could 
require a significant amount of time (tens of minutes) before 
results are seen in the expression of a target gene, the next 
step was to consider such time-delay cases for the 74 ANNs 
with poor performance. Specifically, the expression profile of 
target genes (output-layer) was shifted forward by one or two 
time-steps compared to the expression of top-layer TFs for 
each condition and the ANNs were retrained. For a single 
time-shift, 7 ANN models were identified corresponding to 4 
different modules that had r > 0.7.  For a two-step shift, 6 
more ANNs were found corresponding to 3 modules that had r 
> 0.65. A representative example for an one-time step network 
is shown in Figure 2 for gene YCL059C (r=0.712). It should 
be noted that the trend in correlation coefficient values was 
module-dependent, as one would expect since genes within a 
module have similar expression profiles. Thus, no significant 
differences in r values were observed between ANNs 
corresponding to genes belonging to the same module. 
Overall, for a total of 26 modules tested, all of the 33 genes 
contained in 19 of these modules were successfully modeled 
using ANNs achieving correlation coefficients > 0.7 (in 
categories A, B and C2) or > 0.65 (in category C1).  

Fig. 2. The three-layer regulatory cascade for gene 
YCL059C. The respective ANN model incorporates a one-time step 
shift in the expression of the target gene. The model had a correlation 
coefficient of 0.712±0.162 

Finally, it is important to point out that both of the 
genes shown in Figures 1 and 2 (and others successfully 
modeled by ANNs) are regulated directly or/and indirectly by 
TFs that have been implicated in the yeast stress response. 
Moreover, the expression of both of these genes has been 
shown to change in response to environmental stimuli.  
Specifically, YLR179C is up-regulated in conditions of 
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oxidative stress [45] while YCL059C is altered in conditions 
including heat shock [46] and oxidative stress [46, 47].  

Fig. 3: Average correlation coefficients for the best ANNs 
using both true (dark grey) and shuffled (black) expression values for 
each target gene.  Error bars correspond to standard deviation. (A) 
Condition A (B) Condition B, (C) Conditions C1 and C2 

To assess the accuracy of our ANN models in 
predicting the expression profile of downstream genes across 
numerous conditions, the expression values of the target gene 
were randomly shuffled and the 33 (20 zero-delay + 7 one-
step delay + 6 two-step delay) networks were re-trained. The 
correlation coefficient for the shuffled data in all networks 
dropped dramatically, indicating that the performance of the 
ANN models is far from random chance. Figure 3 illustrates 
the average correlation coefficients for each of the 33 ANNs 
organized according to their condition category, for both true 
and shuffled data. 

In addition to the quantitative modeling of 33 three-
layer regulatory cascades, the approach used in this study 
resulted in the identification of a set of 35 transcription factors 
whose interaction network is illustrated in Figure 4. As 
evident from the figure, 23 of these TFs have previously been 
associated with the yeast stress response either directly 
(experimentally) or indirectly (computationally).  4 
transcription factors have been associated with cellular 
processes that could be influenced by stress conditions, such 
as the cell cycle while 8 transcription factors have no 
association with stress or other closely related processes. 
Given that all of these transcription factors participate in ANN 
models which can accurately model their effect on 
downstream genes under stress, it is highly likely that these 
TFs play a key role in the response of yeast to environmental 
stress.

IV. CONCLUSION

In this work a semi-dynamic method was introduced that 
models the structure of three layer regulatory cascades and 
predicts quantitatively the expression of genes that are 
differentially expressed during the stress response in S.
Cerevisiae.  The first step was to identify gene modules in 
which members share a similar expression profile and a 
common set of regulators (transcription factors) under four 
generalized stress categories. Then prior knowledge from 
existing databases was used to identify upstream transcription 
factors that regulate the module regulators, thus forming 
three-layer regulatory cascades.  These cascades were 
modeled using artificial neural networks with constrained 
connectivity, as dictated by the structure of their internal 
interactions.  The ANNs were trained using as input the 
expression profile of the top-layer transcription factors and as 
output the expression of each target gene in a module. The 
models’ ability to predict the expression level of each target 
gene across numerous time points and different stress 
conditions was evaluated using a cross validation method.   

Out of a total of 94 ANNs tested, 33 models were able to 
accurately predict the expression of down-stream genes. 
Among these, 13 ANN models incorporated a delay step since 
they achieved a significantly higher performance when the 
expression of the target gene was shifted one (7 models) or 
two (6 models) time points into the future, compared to the 
expression of the top-layer transcription factors. The 
performance of all models was significantly higher than the 
models’ prediction accuracy on shuffled data, further 
supporting the validity of this approach.   Moreover, the 
results show that this formalism can capture the modularity of 
the differentially expressed genes since the ANNs prediction 
accuracy is very similar for genes belonging to the same 
module.  
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Fig. 4: The network of interactions between all transcription factors 
involved in the 33 successful ANNs. Arrows indicate the direction of 
regulation. Orange boxes represent transcription factors that have 
been implicated in the yeast response to environmental stresses. Cyan 
boxes represent transcription factors that have been implicated in 
processes that could be influenced by stress conditions, such as cell 
cycle and thus they may be involved indirectly to stress response.  
Grey boxes represent transcription factors which, according to our 
knowledge have not been implicated in stress conditions.      

An important advantage of the method presented here 
compared to other inference techniques, lies in its semi-
dynamic nature. ANN models take into consideration time-
series data in order to estimate the expression profile of target 
genes not only for different stress conditions but also over a 
time course. This semi-dynamic nature of the models allows 
the consideration of time delays which are frequently 
observed in transcriptional cascades. Feed-forward ANNs 
have been previously used to infer the structure of the 
transcriptional regulatory network in yeast [50] and find 
interconnection among clusters of co-regulated genes [51].  
Both of these studies focused on inferring the connectivity of 
regulatory cascades while this work builds on the connectivity 
map in order to provide quantitative predictions about the 
expression profile of downstream genes. Finally, the models 
not only offer advantages over the quantitative prediction of 
gene expression in stress-activated regulatory cascades, but 
can also provide new insights regarding the possible role of 
specific transcription factors that have not been previously 
associated with stress. Out of the 35 transcription factors that 
participate in the high performance ANN models, 27 have 
previously been experimentally or computationally associated 
with some environmental stress response. It is highly possible 
that the remaining 6 also play a key role in the response of 
yeast cells to stressful conditions  
A possible explanation for the poor performance of the 
remaining 61 ANN models could be the over-reliance on 
bibliographical information for the identification of the top-
layer regulators. This information is often inaccurate or 
incomplete since not all transcription factor-gene interactions 

have been extensively characterized. This may have resulted 
in the formation of ANN models whose structure -and thus 
regulatory action- is only partially correct.  An additional 
possibility is that the effect of top-layer regulators on the 
expression of the target gene is differentially shifted in time, 
whereby different regulators are associated with different time 
delays. Such a feature will be investigated in future efforts. 

In conclusion, this work provides a new multi-step 
approach for modeling both the structure and the effects on 
gene expression in stress-induced regulatory cascades in S.
Cerevisiae.  The proposed method could easily be applied in 
other organisms and other intracellular processes where the 
expression profile of genes over time and under different 
conditions is of interest.  
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