
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:8, 2007

1148

The Hardware Implementation of a Novel Genetic
Algorithm

Zhenhuan Zhu, David Mulvaney, and Vassilios Chouliaras

Abstract—This paper presents a novel genetic algorithm, termed

the Optimum Individual Monogenetic Algorithm (OIMGA) and
describes its hardware implementation. As the monogenetic strategy
retains only the optimum individual, the memory requirement is
dramatically reduced and no crossover circuitry is needed, thereby
ensuring the requisite silicon area is kept to a minimum.
Consequently, depending on application requirements, OIMGA
allows the investigation of solutions that warrant either larger GA
populations or individuals of greater length. The results given in this
paper demonstrate that both the performance of OIMGA and its
convergence time are superior to those of existing hardware GA
implementations. Local convergence is achieved in OIMGA by
retaining elite individuals, while population diversity is ensured by
continually searching for the best individuals in fresh regions of the
search space.

Keywords—Genetic algorithms, hardware-based machine
learning.

I. INTRODUCTION

number of authors have described GA hardware solutions
and applied these to embedded applications, such as

sensor data processing [1][2] and algorithm acceleration
[3][4][5]. In such implementations, the need to incorporate
significant numbers of memory units is recognized as
adversely affecting both execution speed and the physical
silicon area required. For example, in the roulette GA [6],
memory is required to store the population data and the fitness
values. Such memory could be provided on-chip, in which
case it is likely to operate at full clock speed, but occupy
significant physical area that could otherwise have been used
for other GAs or processing elements. The alternative is to
provide off-chip memory, in which case not only may cost
considerations dictate the use of slower memory requiring a
number of clock cycles to access, but also, if a number of GAs
are combined in a single device, it is unlikely that the data
bandwidth will be sufficient to allow all GAs simultaneous
access to their respective populations. The compact GA [3] is
one approach specifically designed to address this memory
bottleneck issue. To permit their use in a wide range of
applications, implementations of GAs need to be flexible in
their structure to allow variations in the population size and
the lengths of individuals [3][4]. For example, a suitable
length for the individuals is typically influenced by the size of
the solution space and the diversity of the population is often
related to the number of individuals in that population. One

Authors are with Department of Electronic and Electrical Engineering,
Loughborough University, Loughborough, LE11 3TU, UK (e-mail: {z.zhu2,
d.j.mulvaney, v.a.chouliaras}@lboro.ac.uk).

important measure of the performance of GAs is their rate of
convergence. A hardware implementation based on ‘half-
siblings-and-a-clone’ [1] was shown to shorten the GA
convergence time.

The OIMGA algorithm introduced in this paper is
specifically designed to address the issues of memory
requirement and memory access speed. In addition to
achieving this, the results also demonstrate that OIMGA is
flexible in its structure, maintains diversity in its population
and its rate of convergence is significantly faster than that of
the existing GA hardware methods described above.

II. OIMGA ALGORITHM

OIMGA incorporates two searches that interact
hierarchically, namely a global search and a local search. In
the global search, regions are selected sequentially from the
entire search space for more detailed exploration by the local
search. In the global search, a single individual is maintained
(termed topChrom) that is the best (according to the fitness
criterion) obtained from all the local searches carried out so
far. The local search investigates the regions selected by the
global search in order to determine the local optimum
individual (LOI). This is achieved by generating an initial
population in a narrow range using micro mutation. If the
micro mutation results in a better individual this becomes the
new LOI. The process is repeated until a termination criterion
is satisfied.

As the best individual among all generations that have been
investigated is always kept, then the proof given by Radolph
[7] can be applied directly to demonstrate that OIMGA is
convergent. As the algorithm repeatedly initializes the
population space following a global search, OIMGA is very
effective in maintaining diversity and preventing premature
convergence.

Compared with the existing methods described above, the
convergence time of OIMGA is likely to be shorter due to
reductions both in the total search space explored and in the
population size [8]. A further execution speed enhancement in
the hardware implementation is also easily identifiable since
the executions of the global and the local searches are prime
candidates for hardware pipelining. Table 1 shows the
parameters available to a designer using the OIMGA
algorithm, while Fig. 1 shows the pseudocode of OIMGA
itself.

A

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:8, 2007

1149

TABLE I
OIMGA PARAMETERS

l individual length
n population size
m the size of the miniature space around the LOI
t_gens maximum number of consecutive global generations

without improvement
k_gens

maximum number of consecutive local generations without
improvement

d_adjustor range of mutation of an individual
pm probability of mutation

Fig. 1 The pseudocode for the OIMGA algorithm

III. IMGA HARDWARE DESIGN

Fig. 2 shows the main structure of the hardware
implementation of OIMGA. The LOI-generator initiates the
local process by randomly producing a population that
includes n individuals, and then searches for the LOI. In the
micro-mutation unit, the individuals are allowed to evolve in
value only within the range indicated by the value of
d_adjustor and any change of range is controlled by the
d_controler. The fitness value of the generated individual is
calculated by the fitness-unit and the local-evaluator
compares the fitness of the current LOI with that of the
previous one and replaces it if its fitness is better. The search
in the local space is repeated m times. If, during these
searches, a new LOI is not found then the range that

d_adjustor indicates is decreased. Should the fitness of the
LOI not improve over k_gens cycles, then the LOI is sent to
the global evaluator. The global evaluator implements the
global process and retains the globally best individual and its
fitness value found from all the local searches. The global
process terminates when the fitness has not improved over
t_gens operations of the local process.

Fig. 2 The main structure of OIMGA

A. LOI Generator
The LOI generator shown in Fig. 3 includes a random

number generator RNG that produces an l-bit random
individual whose fitness value is calculated by the fitness unit
and stored in the register loiFit. The unit cmp1 is used to
compare the fitness of loiFit with that of the best fitness value
held in bestFit and, if it is better, bestFit is replaced by loiFit
and the new individual (of length l) replaces that held in the
register bestChrom. The n bit counter ensures that the entire
process is carried out n times, where n is the population size.
Note that in order to modify the size of the population, it is
only necessary to change the length of the counter.

Fig. 3 LOI generator

g=t_gens;
while g>0 % start a global search
 k=k_gens;
 d=d_adjustor;
 for i=1:n % find an individual with best fitness
 loiChrom=[rand(1,l)<0.5]; % random l-bit individual
 loiFit=fitness(loiChrom,l); % find its fitness
 if loiFit>bestFit % keep an elite individual and
 bestChrom=loiChrom; % its fitness
 bestFit=loiFit;
 end
 end
 while k>0 % start a local search
 exchange=0; % number of exchanges of tempChrom and
 % bestChrom
 for i=1:m % perform local search m times
 tempChrom=bestChrom;
 for j=d:l % produce a micro mutation in the
 % range d to l
 if rand<pm % 'rand' is a random number
 tempChrom(j)=not(tempChrom(j));
 % invert the jth bit
 end
 end
 tempFit=fitness(tempChrom,l);
 if tempFit>bestFit % keep elite local individual
 bestChrom=tempChrom; % individual and
 bestFit=tempFit; % its fitness
 exchange=exchange+1;
 k=k_gens; % restore k value
 d=d_adjustor; % restore d value
 end
 end
 if exchange=0 % decrease range (d-l) if no exchange
 d=d+1;
 end
 k=k-1;
 end
 if bestFit>topFit % global evaluation - keep elite
 topChrom=bestChrom; % individual and its fitness
 topFit=bestFit;
 g=t_gens;
 end
 g=g-1;
end

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:8, 2007

1150

B. Micro-mutation Unit
The micro-mutation unit is shown in Fig. 4. If the

probability of mutation pm is greater than RNGi and
d_MRSRi is set, the ith

 bit of bestChrom is mutated. The
register tempChrom holds the value of the chromosome
following mutation and is evaluated in the fitness unit. If its
fitness is better than that in bestFit (as determined in the local
evaluator shown in Fig. 5), the signal cmp2 operates the tri-
state gate to replace bestChrom by the value in tempChrom.
To modify the length of the individual, a corresponding
change can be made to the number of bits in the micro
mutation unit.

Fig. 4 Micro mutation unit

C. Local Evaluator
The local evaluator shown in Fig. 5 uses the fitness values

to select the better individual from tempFit and bestFit, and
keeps this elite individual and its fitness value during local
evolution.

Fig. 5 Local evaluator

D. Adjusting the Range of Mutation
During an evolution process, generally the times between

modifications to the fitness values decrease, indicating that the
evolution is converging to a final value. To speed up
convergence, it is appropriate to reduce the allowed change of
mutation values in order to investigate the space in the more
immediate vicinity of the current best individual.

Initially, the bits in the mask right shift register shown in
Fig. 6 are all set, MRSRi,=1, i∈[1,l]. The initial value of the
range held in d_initial is set to a predefined value, signifying
that all but this number of bits in the individuals should be
mutated. This value is copied into d_counter. The exchange
register (exchange) is initialized with 0 and is incremented
whenever the local evaluator replaces the current best

individual. The value in d_counter defines the number of
shifts that are performed by the MRSR (with the left-most bit
zero filled); at each shift d_counter decrements by 1. To
understand the operation, consider the case where the initial
value held in d_counter is 3. In this case, following the shift
operations, the state of MRSR is shown as follows.

⎩
⎨
⎧

≤≤
≤≤

=
li

i
MRSRd i 4 1

30 0
_ (1)

These values indicate that the range of mutation is in [4, l].
During local evolution based on LOI, exchange will be
increased by 1 if bestChrom and bestFit are replaced. After
each generation of local evolution, d_initial will increase by 1
if exchange is still 0, thereby reducing the number of bits that
are mutated in the micromutation unit.

Fig. 6 Circuitry to adjust the range of mutation

E. Global Evaluator
The principle of operation of the global evaluator, shown

in Fig. 7, is very similar to that of the local evaluator. The
global evaluator selects the better individual from bestFit and
topFit, and keeps the elite individual from all generations and
its corresponding fitness value in topChrom and topFit
respectively.

Fig. 7 Global evaluator

IV. RESULTS

To evaluate the efficiency of a number of hardware
implementations of GAs with OIMGA, namely half-siblings-
and-a-clone [1], roulette [6] and compact GA [3], the two
benchmark functions defined by Zhang and Zhang [9] shown
in the following equations were used.

 f1(x)=|x(1-x)2sin(200πx)| x∈(0,1) (2)

f2(x)=(1-2sin20(3πx)+sin20(20πx))20 x∈(0,1) (3)

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:8, 2007

1151

f1(x) has 200 local maximum and minimum values in its
defined range (Fig. 8), while f2(x) has 20 local maximum and
minimum values in its defined range (Fig. 9). It is very
difficult to determine analytically the maximum and minimum
values of the two functions by methods other than using some
form of search [9].

Fig. 8 Benchmark function f1(x)

Fig. 9 Benchmark function f2(x)

Presented here are results of a number of experiments to

assess the following three aspects of the four hardware GA
implementations: the quality of the solution produced, the
calculation time and the hardware component requirements.

The GA implementations (other than OIMGA) were carried
out according to the descriptions given by the respective
authors. The simulations were all developed and run in
MATLAB [10] on the same host computer system. Since
MATLAB cannot fully reproduce the cycle-accurate timings
of a hardware implementation, the timings can only be
regarded as indicative.

In the first set of experiments, the performance of the GAs
in determining the maximum values of the functions f1(x) and
f2(x) were investigated for various values of population size
and individual lengths. Fig. 10 shows that for a fixed
individual length, OIMGA outperformed the other GA
implementations, particularly for small populations. The
performance of the compact GA was noticeably inferior to the
other implementations. The poor performance of the compact
GA was also apparent when the population size was fixed and
the maximum function values determined for a range of

lengths of the individuals, Fig. 11. The remaining three GAs
all performed similarly under this test.

0.140

0.141

0.142

0.143

0.144

0.145

0.146

0.147

0.148

0.149

0.150

16 32 64 128 256
population size, n

fu
nc

tio
n

m
ax

im
um

OIMGA
Clone
Roulette
Compact

(a) Estimated f1(x) maxima

0.600

0.700

0.800

0.900

1.000

1.100

1.200

16 32 64 128 256
population size, n

fu
nc

tio
n

m
ax

im
um

 (x
10

6)

OIMGA
Clone
Roulette
Compact

(b) Estimated f2(x) maxima

Fig. 10 Maxima of the benchmark functions found by the GAs for a
range of population sizes and at a fixed individual length (l) of 32.

Each data point shown was calculated from results averaged over 200
tests, except for the compact GA where only 20 tests were carried out

0.140

0.141

0.142

0.143

0.144

0.145

0.146

0.147

0.148

0.149

0.150

16 32 64 128 256
length of each individual, l

fu
nc

tio
n

m
ax

im
um

OIMGA
Clone
Roulette
Compact

(a) Estimated f1(x) maxima

0.600

0.700

0.800

0.900

1.000

1.100

1.200

16 32 64 128 256
length of each individual, l

fu
nc

tio
n

m
ax

im
um

 (x
10

6)

OIMGA
Clone
Roulette
Compact

(b) Estimated f2(x) maxima

Fig. 11 Maxima of the benchmark functions found by the GAs for a
range of individual lengths and at a fixed population size (n) of 128.

Each data point shown was calculated from results averaged over 200
tests, except for the compact GA where only one test was carried out

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:8, 2007

1152

The second set of experiments investigated the calculation
times to reach convergence when determining the maximum
values of the functions f1(x) and f2(x) for the different
population sizes and individual lengths. In Fig. 12, it can be
seen that the compact GA performed poorly across a range of
population sizes, with the calculation times often being two
orders of magnitude greater than those of the other GAs. It can
be seen from Fig. 12 that, as the population size is increased,
the calculation times of OIMGA increase less steeply than
those of the other GAs. More detailed investigations revealed
that, with the doubling of the population size, the calculation
times for OIMGA increased at only half the rate of the half-
siblings-and-a-clone and the roulette GAs. Fig. 13 shows that
the calculation times for the compact GA were particularly
long when the length of the individuals was increased beyond
32. These results also show that the other GA methods
produced shorter calculation times and OIMGA performed
particularly well in the more demanding cases where the
individuals were of greater length and the population larger.

0.01

0.10

1.00

10.00

100.00

16 32 64 128 256
population size, n

ca
lc

ul
at

io
n

tim
e

(s
)

OIMGA
Clone
Roulette
Compact

(a) Estimated f1(x) calculation times

0.01

0.10

1.00

10.00

100.00

16 32 64 128 256
population size, n

ca
lc

ul
at

io
n

tim
e

(s
)

OIMGA
Clone
Roulette
Compact

(b) Estimated f2(x) calculation times

Fig. 12 Calculation times of the benchmark functions found by the
GAs for a range of population sizes and at a fixed individual length

(l) of 32. Each data point shown was calculated from results averaged
over 200 tests, except for the compact GA where only 20 tests were

carried out

In order to generate representative figures, the experimental
procedure to produce the results involved adjustment of the
respective parameters of each of the GAs (other than for l and
m whose values were purposely varied to obtain the results).
The parameters used by OIMGA for the estimation of the
maximum values of f1(x) and f2(x) are given in Table II. Note
that altering the width of the fitness value affects not only the
system performance, but also has an effect on other hardware
requirements, such as the width of the comparator.

Hardware implementations of GAs mainly consist of
random number generators, comparators, registers and
memory. The requirement of each component can be
described with its total bit number (TBN). For example, if
there are ten 8-bit registers in a circuit, their TBN is 80 bits.
To illustrate the relative complexities of the GAs investigated
in the current work, the values in Table 3 were obtained from
algorithmic estimates of the hardware requirements of four
different classes of component. It can be seen that the TBN for
the compact GA and OIMGA solutions are an order of
magnitude less than those for the other GA methods.
However, in contrast with OIMGA, the modest hardware
requirement of the compact GA has clearly been achieved at
the expense of performance.

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

16 32 64 128 256
length of each individual, l

ca
lc

ul
at

io
n

tim
e

(s
)

OIMGA
Clone
Roulette
Compact

(a) Estimated f1(x) calculation times

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

16 32 64 128 256
length of each individual, l

ca
lc

ul
at

io
n

tim
e

(s
)

OIMGA
Clone
Roulette
Compact

(b) Estimated f2(x) calculation times

Fig. 13 Calculation times of the benchmark functions found by the
GAs for a range of individual lengths and at a fixed population size

(n) of 128. Each data point shown was calculated from results
averaged over 200 tests, except for the compact GA where only one

test was carried out

TABLE II
OIMGA PARAMETER VALUES

Function

m

t_gens

k_gens

d_adjuster

pm

width of
fitness
value

f 1 (x) 10 4 5 3 0.382 32
f 2 (x) 16 6 5 4 0.382 32

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:8, 2007

1153

TABLE III
HARDWARE REQUIREMENTS OF THE GA IMPLEMENTATIONS

GA

random
number

generators

comparators

registers

memory

total

OIMGA 160 224 296 0 680
Clone 32 96 256 4096 4480
Roulette 59 64 478 8192 8793
Compact 256 262 352 0 870

V. CONCLUSION

The paper has introduced a new GA algorithm that is
particularly suited for hardware implementation because of its
minimal memory requirement and its ability to allow both the
size of the population and the length of the individuals to be
altered simply by replicating existing logic units. When run on
benchmark problems, the new algorithm compared favorably
with other hardware solutions found in the literature, both in
terms of its execution time and in its performance on
benchmark problems. Future publications will present the
results of our investigations of implementing the GAs in a
hardware design language and running cycle-accurate
simulations in order to determine more precisely their relative
performances.

REFERENCES
[1] Sharawi, M.S., Quinlan, J. and Abdel-Aty-Zohdy, H.S., “A hardware

implementation of genetic algorithms for measurement
characterization”, IEEE 9th International Conference of Electronics,
Circuits, and Systems, Dubrovnik, Croatia, 3, 2002, pp.1267-1270.

[2] Hauser, J.W. and Purdy, C.N., “Sensor data processing using genetic
algorithms”, IEEE Mid- West Symp. on Circuits and Systems, August
2000.

[3] Aporntewan, C. and Chongstitvatana, P., “A hardware implementation
of the compact genetic algorithm”, 2001 IEEE Congress on
Evolutionary Computation, Seoul, Korea, 2001, pp.27-30.

[4] Wakabayashi, S., Koide, T., Toshine, N., Yamane, M. and Ueno, H.,
“Genetic algorithm accelerator GAA-II”, Proc. Asia and South Pacific
Design Automation Conference, Yokohama, Japan, January 2000.

[5] Scott, S.D., Samal, A. and Seth, S., “HGA: A hardware-based genetic
algorithm”, Proc. 3rd ACM/SIGDA Int. Symp. on FPGAs, 1995, pp.53-
59.

[6] Ramamurthy, P. and Vasanth, J., “VLSI implementation of genetic
algorithms” (under review).

[7] Radolph, G., “Convergence analysis of canonical genetic algorithms”,
IEEE Trans. Neural Networks, 5(1), 1994, pp.96-101.

[8] Li, J. and Wang, S., “Optimum family genetic algorithm”, Journal of
Xi’an Jiao Tong University, 38, Jan 2004.

[9] Zhang, L. and Zhang, B., “Research on the mechanism of genetic
algorithms”, Journal of Software, 11(7), 2000.

[10] Matlab, http://www.mathworks.com/.

