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Abstract—This paper presents a novel genetic algorithm, termed 

the Optimum Individual Monogenetic Algorithm (OIMGA) and 
describes its hardware implementation. As the monogenetic strategy 
retains only the optimum individual, the memory requirement is 
dramatically reduced and no crossover circuitry is needed, thereby 
ensuring the requisite silicon area is kept to a minimum. 
Consequently, depending on application requirements, OIMGA 
allows the investigation of solutions that warrant either larger GA 
populations or individuals of greater length. The results given in this 
paper demonstrate that both the performance of OIMGA and its 
convergence time are superior to those of existing hardware GA 
implementations. Local convergence is achieved in OIMGA by 
retaining elite individuals, while population diversity is ensured by 
continually searching for the best individuals in fresh regions of the 
search space. 

Keywords—Genetic algorithms, hardware-based machine 
learning. 

I.  INTRODUCTION 

number of authors have described GA hardware solutions 
and applied these to embedded applications, such as 

sensor  data processing [1][2] and algorithm acceleration 
[3][4][5]. In such implementations, the need to incorporate 
significant numbers of memory units is recognized as 
adversely affecting both execution speed and the physical 
silicon area required. For example, in the roulette GA [6], 
memory is required to store the population data and the fitness 
values. Such memory could be provided on-chip, in which 
case it is likely to operate at full clock speed, but occupy 
significant physical area that could otherwise have been used 
for other GAs or processing elements. The alternative is to 
provide off-chip memory, in which case not only may cost 
considerations dictate the use of slower memory requiring a 
number of clock cycles to access, but also, if a number of GAs 
are combined in a single device, it is unlikely that the data 
bandwidth will be sufficient to allow all GAs simultaneous 
access to their respective populations. The compact GA [3] is 
one approach specifically designed to address this memory 
bottleneck issue. To permit their use in a wide range of 
applications, implementations of GAs need to be flexible in 
their structure to allow variations in the population size and 
the lengths of individuals [3][4]. For example, a suitable 
length for the individuals is typically influenced by the size of 
the solution space and the diversity of the population is often 
related to the number of individuals in that population. One  
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important measure of the performance of GAs is their rate of 
convergence. A hardware implementation based on ‘half-
siblings-and-a-clone’ [1] was shown to shorten the GA 
convergence time. 

The OIMGA algorithm introduced in this paper is 
specifically designed to address the issues of memory 
requirement and memory access speed. In addition to 
achieving this, the results also demonstrate that OIMGA is 
flexible in its structure, maintains diversity in its population 
and its rate of convergence is significantly faster than that of 
the existing GA hardware methods described above. 

II.  OIMGA ALGORITHM 

OIMGA incorporates two searches that interact 
hierarchically, namely a global search and a local search. In 
the global search, regions are selected sequentially from the 
entire search space for more detailed exploration by the local 
search. In the global search, a single individual is maintained 
(termed topChrom) that is the best (according to the fitness 
criterion) obtained from all the local searches carried out so 
far. The local search investigates the regions selected by the 
global search in order to determine the local optimum 
individual (LOI). This is achieved by generating an initial 
population in a narrow range using micro mutation. If the 
micro mutation results in a better individual this becomes the 
new LOI. The process is repeated until a termination criterion 
is satisfied. 

As the best individual among all generations that have been 
investigated is always kept, then the proof given by Radolph 
[7] can be applied directly to demonstrate that OIMGA is 
convergent. As the algorithm repeatedly initializes the 
population space following a global search, OIMGA is very 
effective in maintaining diversity and preventing premature 
convergence. 

Compared with the existing methods described above, the 
convergence time of OIMGA is likely to be shorter due to 
reductions both in the total search space explored and in the 
population size [8]. A further execution speed enhancement in 
the hardware implementation is also easily identifiable since 
the executions of the global and the local searches are prime 
candidates for hardware pipelining. Table 1 shows the 
parameters available to a designer using the OIMGA 
algorithm, while Fig. 1 shows the pseudocode of OIMGA 
itself.  
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TABLE I 
OIMGA PARAMETERS 

l individual length 
n population size 
m the size of the miniature space around the LOI 
t_gens maximum number of consecutive global generations 

without improvement 
k_gens  
 

maximum number of consecutive local generations without 
improvement 

d_adjustor  range of mutation of an individual 
pm probability of mutation 

Fig. 1 The pseudocode for the OIMGA algorithm 

III.  IMGA HARDWARE DESIGN 

Fig. 2 shows the main structure of the hardware 
implementation of OIMGA. The LOI-generator initiates the 
local process by randomly producing a population that 
includes n individuals, and then searches for the LOI. In the 
micro-mutation unit, the individuals are allowed to evolve in 
value only within the range indicated by the value of 
d_adjustor and any change of range is controlled by the 
d_controler. The fitness value of the generated individual is 
calculated by the fitness-unit and the local-evaluator 
compares the fitness of the current LOI with that of the 
previous one and replaces it if its fitness is better. The search 
in the local space is repeated m times. If, during these 
searches, a new LOI is not found then the range that 

d_adjustor indicates is decreased. Should the fitness of the 
LOI not improve over k_gens cycles, then the LOI is sent to 
the global evaluator. The global evaluator implements the 
global process and retains the globally best individual and its 
fitness value found from all the local searches. The global 
process terminates when the fitness has not improved over 
t_gens operations of the local process. 

 
Fig. 2 The main structure of OIMGA 

A.  LOI Generator 
The LOI generator shown in Fig. 3 includes a random 

number generator RNG that produces an l-bit random 
individual whose fitness value is calculated by the fitness unit 
and stored in the register loiFit. The unit cmp1 is used to 
compare the fitness of loiFit with that of the best fitness value 
held in bestFit and, if it is better, bestFit is replaced by loiFit 
and the new individual (of length l) replaces that held in the 
register bestChrom. The n bit counter ensures that the entire 
process is carried out n times, where n is the population size. 
Note that in order to modify the size of the population, it is 
only necessary to change the length of the counter. 

 
Fig.  3  LOI generator 

g=t_gens; 
while g>0 % start a global search  
  k=k_gens; 
  d=d_adjustor; 
  for i=1:n  % find an individual with best fitness 
    loiChrom=[rand(1,l)<0.5]; % random l-bit individual 
    loiFit=fitness(loiChrom,l);  % find its fitness 
    if loiFit>bestFit     % keep an elite individual and 
      bestChrom=loiChrom; % its fitness 
      bestFit=loiFit; 
    end 
  end 
  while k>0 % start a local search 
    exchange=0; % number of exchanges of tempChrom and 
                % bestChrom  
    for i=1:m   % perform local search m times 
      tempChrom=bestChrom; 
      for j=d:l  % produce a micro mutation in the 
                 % range d to l 
        if rand<pm    % 'rand' is a random number 
          tempChrom(j)=not(tempChrom(j));  
                      % invert the jth bit 
        end 
      end 
      tempFit=fitness(tempChrom,l); 
      if tempFit>bestFit  % keep elite local individual 
        bestChrom=tempChrom; % individual and 
        bestFit=tempFit;    % its fitness 
        exchange=exchange+1; 
        k=k_gens;   % restore k value 
        d=d_adjustor;   % restore d value 
      end 
    end 
    if exchange=0 % decrease range (d-l) if no exchange 
      d=d+1; 
    end 
    k=k-1; 
  end 
  if bestFit>topFit   % global evaluation - keep elite 
    topChrom=bestChrom;  % individual and its fitness 
    topFit=bestFit; 
    g=t_gens; 
  end 
  g=g-1; 
end 
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B.   Micro-mutation Unit 
The micro-mutation unit is shown in Fig. 4. If the 

probability of mutation pm is greater than RNGi and 
d_MRSRi is set, the ith

 bit of bestChrom is mutated. The 
register tempChrom holds the value of the chromosome 
following mutation and is evaluated in the fitness unit. If its 
fitness is better than that in bestFit (as determined in the local 
evaluator shown in Fig. 5), the signal cmp2 operates the tri-
state gate to replace bestChrom by the value in tempChrom. 
To modify the length of the individual, a corresponding 
change can be made to the number of bits in the micro 
mutation unit. 

 
Fig. 4 Micro mutation unit 

C.  Local Evaluator 
The local evaluator shown in Fig. 5 uses the fitness values 

to select the better individual from tempFit and bestFit, and 
keeps this elite individual and its fitness value during local 
evolution. 

 
Fig. 5 Local evaluator 

 

D.  Adjusting the Range of Mutation 
During an evolution process, generally the times between 

modifications to the fitness values decrease, indicating that the 
evolution is converging to a final value. To speed up 
convergence, it is appropriate to reduce the allowed change of 
mutation values in order to investigate the space in the more 
immediate vicinity of the current best individual. 

Initially, the bits in the mask right shift register shown in 
Fig. 6 are all set, MRSRi,=1, i∈[1,l]. The initial value of the 
range held in d_initial is set to a predefined value, signifying 
that all but this number of bits in the individuals should be 
mutated. This value is copied into d_counter. The exchange 
register (exchange) is initialized with 0 and is incremented 
whenever the local evaluator replaces the current best 

individual. The value in d_counter defines the number of 
shifts that are performed by the MRSR (with the left-most bit 
zero filled); at each shift d_counter decrements by 1. To 
understand the operation, consider the case where the initial 
value held in d_counter is 3. In this case, following the shift 
operations, the state of MRSR is shown as follows. 

⎩
⎨
⎧

≤≤
≤≤

=
li

i
MRSRd i 4    1

30    0
_  (1) 

These values indicate that the range of mutation is in [4, l]. 
During local evolution based on LOI, exchange will be 
increased by 1 if bestChrom and bestFit are replaced. After 
each generation of local evolution, d_initial will increase by 1 
if exchange is still 0, thereby reducing the number of bits that 
are mutated in the micromutation unit. 

 
Fig. 6 Circuitry to adjust the range of mutation 

E.  Global Evaluator 
The principle of operation of the global evaluator, shown 

in Fig. 7, is very similar to that of the local evaluator. The 
global evaluator selects the better individual from bestFit and 
topFit, and keeps the elite individual from all generations and 
its corresponding fitness value in topChrom and topFit 
respectively. 

 
Fig. 7 Global evaluator 

IV.  RESULTS 

To evaluate the efficiency of a number of hardware 
implementations of GAs with OIMGA, namely half-siblings-
and-a-clone [1], roulette [6] and compact GA [3], the two 
benchmark functions defined by Zhang and Zhang [9] shown 
in the following equations were used. 

    f1(x)=|x(1-x)2sin(200πx)|                     x∈(0,1)             (2) 

f2(x)=(1-2sin20(3πx)+sin20(20πx))20    x∈(0,1)             (3) 
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f1(x) has 200 local maximum and minimum values in its 
defined range (Fig. 8), while f2(x) has 20 local maximum and 
minimum values in its defined range (Fig. 9). It is very 
difficult to determine analytically the maximum and minimum 
values of the two functions by methods other than using some 
form of search [9]. 

 
Fig. 8 Benchmark function f1(x) 

 

 
Fig. 9 Benchmark function f2(x) 

 
Presented here are results of a number of experiments to 

assess the following three aspects of the four hardware GA 
implementations: the quality of the solution produced, the 
calculation time and the hardware component requirements. 

The GA implementations (other than OIMGA) were carried 
out according to the descriptions given by the respective 
authors. The simulations were all developed and run in 
MATLAB [10] on the same host computer system. Since 
MATLAB cannot fully reproduce the cycle-accurate timings 
of a hardware implementation, the timings can only be 
regarded as indicative. 

In the first set of experiments, the performance of the GAs 
in determining the maximum values of the functions f1(x) and 
f2(x) were investigated for various values of population size 
and individual lengths. Fig. 10 shows that for a fixed 
individual length, OIMGA outperformed the other GA 
implementations, particularly for small populations. The 
performance of the compact GA was noticeably inferior to the 
other implementations. The poor performance of the compact 
GA was also apparent when the population size was fixed and 
the maximum function values determined for a range of 

lengths of the individuals, Fig. 11. The remaining three GAs 
all performed similarly under this test. 
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(a) Estimated f1(x) maxima 
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(b) Estimated f2(x) maxima 

Fig. 10 Maxima of the benchmark functions found by the GAs for a 
range of population sizes and at a fixed individual length (l) of 32. 

Each data point shown was calculated from results averaged over 200 
tests, except for the compact GA where only 20 tests were carried out 
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(a) Estimated f1(x) maxima 
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(b) Estimated f2(x) maxima 

Fig. 11 Maxima of the benchmark functions found by the GAs for a 
range of individual lengths and at a fixed population size (n) of 128. 

Each data point shown was calculated from results averaged over 200 
tests, except for the compact GA where only one test was carried out 
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The second set of experiments investigated the calculation 
times to reach convergence when determining the maximum 
values of the functions f1(x) and f2(x) for the different 
population sizes and individual lengths. In Fig. 12, it can be 
seen that the compact GA performed poorly across a range of 
population sizes, with the calculation times often being two 
orders of magnitude greater than those of the other GAs. It can 
be seen from Fig. 12 that, as the population size is increased, 
the calculation times of OIMGA increase less steeply than 
those of the other GAs. More detailed investigations revealed 
that, with the doubling of the population size, the calculation 
times for OIMGA increased at only half the rate of the half-
siblings-and-a-clone and the roulette GAs. Fig. 13 shows that 
the calculation times for the compact GA were particularly 
long when the length of the individuals was increased beyond 
32. These results also show that the other GA methods 
produced shorter calculation times and OIMGA performed 
particularly well in the more demanding cases where the 
individuals were of greater length and the population larger. 
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(a) Estimated f1(x) calculation times 
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(b) Estimated f2(x) calculation times 

Fig. 12 Calculation times of the benchmark functions found by the 
GAs for a range of population sizes and at a fixed individual length 

(l) of 32. Each data point shown was calculated from results averaged 
over 200 tests, except for the compact GA where only 20 tests were 

carried out 
 

In order to generate representative figures, the experimental 
procedure to produce the results involved adjustment of the 
respective parameters of each of the GAs (other than for l and 
m whose values were purposely varied to obtain the results). 
The parameters used by OIMGA for the estimation of the 
maximum values of f1(x) and f2(x) are given in Table II. Note 
that altering the width of the fitness value affects not only the 
system performance, but also has an effect on other hardware 
requirements, such as the width of the comparator. 

Hardware implementations of GAs mainly consist of 
random number generators, comparators, registers and 
memory. The requirement of each component can be 
described with its total bit number (TBN). For example, if 
there are ten 8-bit registers in a circuit, their TBN is 80 bits. 
To illustrate the relative complexities of the GAs investigated 
in the current work, the values in Table 3 were obtained from 
algorithmic estimates of the hardware requirements of four 
different classes of component. It can be seen that the TBN for 
the compact GA and OIMGA solutions are an order of 
magnitude less than those for the other GA methods. 
However, in contrast with OIMGA, the modest hardware 
requirement of the compact GA has clearly been achieved at 
the expense of performance. 
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(a) Estimated f1(x) calculation times 
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(b) Estimated f2(x) calculation times 

Fig. 13 Calculation times of the benchmark functions found by the 
GAs for a range of individual lengths and at a fixed population size 

(n) of 128. Each data point shown was calculated from results 
averaged over 200 tests, except for the compact GA where only one 

test was carried out 

 
 

TABLE II 
OIMGA PARAMETER VALUES 

 
Function 

 
m  

 
t_gens 

 
k_gens  

 
d_adjuster 

 
pm  

width of 
fitness 
value 

f 1 (x) 10  4  5 3 0.382 32 
f 2 (x) 16 6 5  4  0.382 32 
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TABLE III 
HARDWARE REQUIREMENTS OF THE GA IMPLEMENTATIONS 

 
GA 

random 
number 

generators 

 
comparators 

 
registers 

 
memory

 
total 

OIMGA 160 224 296 0 680 
Clone 32 96 256 4096 4480 
Roulette 59 64 478 8192 8793 
Compact 256 262 352 0 870 

V.  CONCLUSION 

The paper has introduced a new GA algorithm that is 
particularly suited for hardware implementation because of its 
minimal memory requirement and its ability to allow both the 
size of the population and the length of the individuals to be 
altered simply by replicating existing logic units. When run on 
benchmark problems, the new algorithm compared favorably 
with other hardware solutions found in the literature, both in 
terms of its execution time and in its performance on 
benchmark problems. Future publications will present the 
results of our investigations of implementing the GAs in a 
hardware design language and running cycle-accurate 
simulations in order to determine more precisely their relative 
performances. 
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