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    Abstract—In this paper a new fast simplification method is 
presented. Such method realizes Karnough map with large number of 
variables. In order to accelerate the operation of the proposed 
method, a new approach for fast detection of group of ones is 
presented. Such approach implemented in the frequency domain. The 
search operation relies on performing cross correlation in the 
frequency domain rather than time one. It is proved mathematically 
and practically that the number of computation steps required for the 
presented method is less than that needed by conventional cross 
correlation. Simulation results using MATLAB confirm the 
theoretical computations. Furthermore, a powerful solution for 
realization of complex functions is given. The simplified functions 
are implemented by using a new desigen for neural networks. Neural 
networks are used because they are fault tolerance and as a result they 
can recognize signals even with noise or distortion. This is very 
useful for logic functions used in data and computer communications. 
Moreover, the implemented functions are realized with minimum 
amount of components. This is done by using modular neural nets 
(MNNs) that divide the input space into several homogenous regions. 
Such approach is applied to implement XOR function, 16 logic 
functions on one bit level, and 2-bit digital multiplier. Compared to 
previous non- modular designs, a clear  reduction in the order of 
computations and hardware requirements is achieved. 
  

Keywords—Boolean Functions, Simplification, Karnough Map, 
Implementation of Logic Functions, Modular Neural Networks 

I.  INTRODUCTION 

INIMIZATION of the Boolean expression is very 
important. The purpose of simplification of Boolean 
functions is to reduce the number of gates in a logic 

circuit. By simplifying the logic function, the original number 
of digital components (gates) required to implement digital 
circuits can be reduced. Less number of logic gates means less 
power consumption, sometimes the circuit works faster and 
also when number of gates is reduced, cost also comes down. 
Therefore, by  reducing  the number of gates, the chip size and 
the cost will be reduced and the computing speed will be 
increased [1-35]. There are many ways to simplify a logic 
design, such as algebraic simplification, Karnough maps, 
Tabulation Method and Diagrammatic technique using 'Venn-
like diagram'. 
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Karnough map has the advantage that it is simple to realize 
and easy to implement.  The Karnough map technique was 
proposed by M. Karnaugh [9]. Later Quine and McCluskey 
reported tabular algorithmic techniques for the optimal 
Boolean function minimization [10,11]. Almost all techniques 
have been embedded into many computer aided design 
packages and in all the logic design university textbooks [1-
37]. K-map is a graphical representation of a truth table using 
Gray code order. It is suitable for elimination by grouping 
redundant terms in a Boolean expression. By optimizing the 
algorithm it is possible to simplify entirely a given Boolean 
expression. Unfortunately almost all the techniques along with 
the Espresso technique [14] do not always guarantee optimal 
solutions. 

The main objective of this paper is to solve the problem of 
minimizing Boolean functions with large number of variables. 
This is done by performing the simplification process in the 
frequency domain rather than time domain. The proposed 
method can be implemented by using parallel processors. As a 
result, fast computing and simplification can be achieved.  
 
II. FAST TERM DETECTION BY USING CROSS CORRELATION IN 

THE FREQUENCY DOMAIN 

Finding a group of ones in the input two  dimensional 
matrix is a searching problem. Each position in the input 
matrix is tested for the presence or absence of group of ones. 
At each position in the input matrix, each sub-matrix is 
multiplied by a window of ones, which has the same size as 
the sub-matrix. When the final output is maximum, this means 
that the sub-matrix under test contains ones and vice versa. 
Thus, we may conclude that this searching problem is a cross 
correlation between the matrix under test and the window of 
ones. Here, a fast algorithm for detecting groups of ones based 
on two dimensional cross correlations that take place between 
the tested matrix and the sliding window is described. Such 
window is represented by a group of ones. The convolution 
theorem in mathematical analysis says that a convolution of f 
with h is identical to the result of the following steps: let F and 
H be the results of the Fourier transformation of f and h in the 
frequency domain. Multiply F and H in the frequency domain 
point by point and then transform this product into spatial 
domain via the inverse Fourier transform [56]. As a result, 
these cross correlations can be represented by a product in the 
frequency domain. Thus, by using cross correlation in the 
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frequency domain a speed up in an order of magnitude can be 
achieved during the searching process [36-54].     

 In the detection phase, a sub-matrix X of size mxz (sliding 
window) is extracted from the tested large input matrix, which 
has a size PxT. Let W be the group of ones matrix which has 
dimensions of mxz. The output can be calculated as follows:  
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Eq. 1 represents the output for a particular sub-matrix X. It can 
be computed for the whole matrix Ψ as follows: 
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Eq.(2) represents a cross correlation operation. Given any two 
functions f and g, their cross correlation can be obtained by 
[56]: 
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Therefore, Eq.(2) can be written as follows [36-54]: 

ΨWh ⊗=                             (4) 

here h is the output when the sliding window is located at 
position (u,v) in the input matrix Ψ and (u,v)∈[P-m+1,T-
n+1].  

Now, the above cross correlation can be expressed in terms of 
the Fourier Transform: 

( ) ( )( )W*FF1FΨW Ψ •−=⊗          (5) 

(*) means the conjugate of the FFT for the group of ones 
matrix. Hence, by evaluating this cross correlation, a speed up 
ratio can be obtained comparable to conventional cross 
correlation.  

The complexity of cross correlation in the frequency domain 
can be analyzed as follows: 

1. For a tested matrix of NxN elements, the 2D-FFT requires a 
number equal to N2log2N2 of complex computation steps. The 
same number of complex computation steps required for 
computing the 2D-FFT for the group of ones matrix can be 
done off line.  
2. The inverse 2D-FFT is computed. So, (1+1) forward 
transforms have to be computed. Therefore, for an matrix 
under test, the total number of the 2D-FFT to compute is 
2N2log2N2. 
3. The input matrix and the group of ones matrix should be 
multiplied in the frequency domain. Therefore, a number of 
complex computation steps equal to qN2 should be added.  
4. The number of computation steps required by the fast cross 
correlatioon is complex and must be converted into a real 
version. It is known that the two dimensional Fast Fourier 

Transform requires (N2/2)log2N2 complex multiplications and 
N2log2N2 complex additions [59]. Every complex 
multiplication is realized by six real floating point operations 
and every complex addition is implemented by two real 
floating point operations. So, the total number of computation 
steps required to obtain the 2D-FFT of an NxN matrix is: 

ρ=6((N2/2)log2N2) + 2(N2log2N2)             (6) 

which may be simplified to: 

ρ=5N2log2N2                        (7) 

Performing complex dot product in the frequency domain also 
requires 6qN2 real operations. 
5. In order to perform cross correlation in the frequency 
domain, the group of ones matrix must have the same size as 
the input matrix. Assume that the input object has a size of 
(nxn) dimensions. So, the search process will be done over 
sub-matrixes of (nxn) dimensions and the group of ones 
matrix will have the same size. Therefore, a number of zeros = 
(N2-n2) must be added to the group of ones matrix. This 
requires a total real number of computation steps = q(N2-n2) 
for all neurons. Moreover, after computing the 2D-FFT for the 
group of ones matrix, the conjugate of this matrix must be 
obtained. So, a real number of computation steps =qN2 should 
be added in order to obtain the conjugate of the group of ones 
matrix for all neurons.  Also, a number of real computation 
steps equal to N is required to create butterflies complex 
numbers (e-jk(2Πn/N)), where 0<K<L. These (N/2) complex 
numbers are multiplied by the elements of the input matrix or 
by previous complex numbers during the computation of the 
2D-FFT. To create a complex number requires two real 
floating point operations. So, the total number of computation 
steps required for the fast cross correlation becomes: 

σ=(10N2log2N2) +6N2+(N2-n2)+N2 +N              (8) 

which can be reformulated as: 

σ=(10N2log2N2) + (8N2-n2) +N                 (9) 

6. Using a sliding window of size nxn for the same matrix of 
NxN elements, (2n2-1)(N-n+1)2 computation steps are required 
when using traditional cross correlation for the searching 
process. The theoretical speed up factor η can be evaluated as 
follows: 

   N )2n-2(8N )2N2log2(10N
 2 1)n-1)(N-2(2nη
++

+=          (10) 

The theoretical speed up ratio Eq. 10 with different sizes of 
the input matrix and different in size group of ones matrixes is 
listed in Table 1. Practical speed up ratio for manipulating 
matrixes of different sizes and different in size group of ones 
matrixes is listed in Table 2 using 2.7 GHz processor and 
MATLAB ver 5.3. An interesting property with FNNs is that 
the number of computation steps does not depend on either the  
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TABLE I 

 THE THEORETICAL SPEED UP RATIO FOR KARNOUGH MAPS WITH DIFFERENT SIZES 

Matrix size Speed up ratio (n=20) Speed up ratio (n=25) Speed up ratio (n=30) 

100x100 3.73 5.13 6.45 
200x200 4.07 6.02 8.18 
300x300 4.06 6.13 8.51 
400x400 4.01 6.11 8.56 
500x500 3.95 6.05 8.53 
600x600 3.90 5.98 8.47 
700x700 3.84 5.92 8.39 
800x800 3.80 5.86 8.32 
900x900 3.75 5.80 8.25 

1000x1000  3.71 5.74 8.19 
1100x1100 3.67 5.69 8.12 
1200x1200 3.64 5.65 8.06 
1300x1300 3.61 5.60 8.01 
1400x1400 3.59 5.56 7.95 
1500x1500 3.56 5.53 7.90 
1600x1600 3.54 5.49 7.86 
1700x1700 3.51 5.46 7.81 
1800x1800 3.49 5.43 7.77 
1900x1900 3.47 5.40 7.73 
2000x2000 3.45 5.37 7.69 

 
 

TABLE II 
 PRACTICAL SPEED UP RATIO FOR KARNOUGH MAPS WITH DIFFERENT SIZES USING MATLAB VER 5.3 

Matrix size Speed up ratio (n=20) Speed up ratio (n=25) Speed up ratio (n=30) 

100x100 5.34 8.08 11.97 
200x200 4.02 7.13 10.54 
300x300 3.49 6.59 9.99 
400x400 2.89 6.18 9.31 
500x500 2.67 5.95 9.96 
600x600 2.49 5.82 9.38 
700x700 2.38 5.71 8.99 
800x800 2.29 5.59 8.78 
900x900 2.33 5.78 8.98 

1000x1000 2.19 5.63 8.76 
1100x1100 2.25 5.60 8.64 
1200x1200 2.22 5.57 8.56 
1300x1300 2.18 5.54 8.50 
1400x1400 2.15 5.50 8.45 
1500x1500 2.11 5.46 8.40 
1600x1600 2.08 5.42 8.36 
1700x1700 2.05 5.39 8.32 
1800x1800 2.02 5.36 8.28 
1900x1900 1.99 5.32 8.24 
2000x2000 1.96 5.29 8.21 

 

 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:3, 2011

306

size of the input sub-matrix or the size of the group of ones 
matrix (n). The effect of (n) on the number of computation 
steps is very small and can be ignored.   This  is  in contrast  to  
conventional cross correlation in which the number of 
computation steps is increased with the size of both the input 
sub-matrix and the group of ones matrix (n). 

III. IMPLEMENTATION OF SIMPLIFIED FUNCTIONS BY USING 
MNNS 

Here, a powerful solution for realization of complex 
functions is given. The simplified functions are implemented 
by using a new desigen for neural networks. Neural networks 
are used because they are fault tolerance. Therefore, they can 
recognize signals even with noise or distortion. This is very 
useful for logic functions used in data and computer 
communications. The implemented functions are realized with 
minimum amount of components. MNNs present a new trend 
in neural network architecture design. Motivated by the 
highly-modular biological network, artificial neural net 
designers aim to build architectures which are more scalable 
and less subjected to interference than the traditional non-
modular neural nets [57]. There are now a wide variety of 
MNN designs for classification. Non-modular classifiers tend 
to introduce high internal interference because of the strong 
coupling among their hidden layer weights [58]. As a result of 
this, slow learning or over fitting can be done during the 
learning process. Sometime, the network could not be learned 
for complex tasks.  Such tasks tend to introduce a wide range 
of overlap which, in turn, causes a wide range of deviations 
from efficient learning in the different regions of input space 
[60]. Usually there are regions in the class feature space which 
show high overlap due to the resemblance of two or more 
input patterns (classes). At the same time, there are other 
regions which show little or even no overlap, due to the 
uniqueness of the classes therein. High coupling among 
hidden nodes will then, result in over and under learning at 
different regions [64]. Enlarging the network, increasing the 
number and quality of training samples, and techniques for 
avoiding local minina, will not stretch the learning capabilities 
of the NN classifier beyond a certain limit as long as hidden 
nodes are tightly coupled, and hence cross talking during 
learning [58]. A MNN classifier attempts to reduce the effect 
of these problems via a divide and conquer approach. It, 
generally, decomposes the large size / high complexity task 
into several sub-tasks, each one is handled by a simple, fast, 
and efficient module. Then, sub-solutions are integrated via a 
multi-module decision-making strategy. Hence, MNN 
classifiers, generally, proved to be more efficient than non-
modular alternatives [62]. However, MNNs can not offer a 
real alternative to non-modular networks unless the MNNs 
designer balances the simplicity of subtasks and the efficiency 
of the multi module decision-making strategy. In other words, 
the task decomposition algorithm should produce sub tasks as 
they can be, but meanwhile modules have to be able to give 
the multi module decision making strategy enough 
information to take accurate global decision [60,61].  

In previous papers [52-54], it has been shown that this model 
can be applied to realize non-binary data. In this paper, it is 
proven that MNNs can solve some problems with a little 
amount of requirements than non-MNNs. In section 2, XOR 
function, and 16 logic functions on one bit level are simply 
implemented using MNN. Comparisons with conventional 
MNN are given. In section 3, another strategy for the design of 
MNNS is presented and applied to realize, and 2-bit digital 
multiplier.  

IV. COMPLEXITY REDUCTION USING MODULAR NEURAL 
NETWORKS 

In the following subsections, we investigate the usage of 
MNNs in some binary problems. Here, all MNNs are 
feedforward type, and learned by using backpropagation 
algorithm. In comparison with non-MNNs, we take into 
account the number of neurons and weights in both models as 
well as the number of computations during the test phase. 

A) A simple implementation of XOR problem  
There are two topologies to realize XOR function whose 

truth Table is shown in Table 3 using neural nets.  The first 
uses fully connected neural nets with three neurons, two of 
which are in the hidden layer, and the other is in the output 
layer. There is no direct connections between the input and 
output layer as shown in Fig.1. In this case, the neural net is 
trained to classify all of these four patterns at the same time.  

TABLE III  
TRUTH TABLE OF XOR FUNCTION 

x y O/P 
0 
0 
1 
1 

0 
1 
0 
1 

0 
1 
1 
0 

The second approach was presented by Minsky and Papert 
which was realized using two neurons as shown in Fig. 2. The 
first representing logic AND and the other logic OR. The 
value of +1.5 for the threshold of the hidden neuron insures 
that it will be turned on only when both input units are on. The 
value of +0.5 for the output neuron insures that it will turn on 
only when it receives a net positive input greater than +0.5. 
The weight of -2 from the hidden neuron to the output one 
insures that the output neuron will not come on when both 
input neurons are on [63]. Using MNNs, we may consider the 
problem of classifying these four patterns as two individual 
problems. This can be done at two steps: 
1- We deal with each bit alone. 
2- Consider the second bit Y, Divide  the four patterns 

into two groups. 
The first group consists of the first two patterns which realize 
a buffer, while the second group which contains the other two 
patterns represents an inverter as shown in Table 4. The first 
bit (X) may be used to select the function. 
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TABLE IV 
RESULTS OF DIVIDING XOR PATTERNS 

X Y O/P New Function 
0 
0 

0 
1 

0 
1 Buffer (Y) 

1 
1 

0 
1 

1 
0 Inverter ( Y ) 

So, we may use two neural nets, one to realize the buffer, 
and the other to represent the inverter. Each one of them may 
be implemented by using only one neuron. When realizing 
these two neurons, we implement the weights, and perform 
only one summing operation. The first input X acts as a 
detector to select the proper weights as shown in Fig.3. In a 
special case, for XOR function, there is no need to the buffer 
and the neural net may be represented by using only one 
weight corresponding to the inverter as shown in Fig.4. As a 
result of using cooperative modular neural nets, XOR function 
is realized by using only one neuron. A comparison between 
the new model and the two previous approaches is given in 
Table 5. It is clear that the number of computations and the 
hardware requirements for the new model is less than that of 
the other models. 

TABLE V 
 A COMPARISON BETWEEN DIFFERENT MODELS USED TO IMPLEMENT XOR 

FUNCTION 

Type of 
Comparison 

First model 
(three neurons) 

Second model 
(two neurons) 

New model 
(one neuron)

No. of 
computations O(15) O(12) O(3) 

Hardware 
requirements 

3 neurons, 
9 weights 

2 neurons, 
7 weights 

1 neuron, 
2 weights, 
2 switches, 
1 inverter 

B) Implementation of logic Function using MNN 
Realization of logic functions in one bit level (X,Y) 

generates 16 functions which are (AND, OR, NAND, NOR, 
XOR, XNOR, X , Y , X, Y, 0, 1, X Y, X Y , X +Y, X+ Y ). 
So, in order to control the selection for each one of these 
functions, we must have another 4 bits at the input, thereby the 
total input is 6 bits as shown in Table 6. 

TABLE VI 
 TRUTH TABLE OF LOGIC FUNCTION (ONE BIT LEVEL) WITH THEIR CONTROL 

SELECTION 

Function C1 C2 C3 C4 X Y O/p
0 0 0 0 0 0 0 
0 0 0 0 0 1 0 
0 0 0 0 1 0 0 

 

AND 

0 0 0 0 1 1 1 
- - - - - - - - 

1 1 1 1 0 0 1 
1 1 1 1 0 1 0 
1 1 1 1 1 0 1 

X+ Y  

1 1 1 1 1 1 1 

 
Non-MNNs can classify these 64 patterns using a network of 
three layers. The hidden layer contains 8 neurons, while the 
output needs only one neuron and a total number of 65 
weights are required. These patterns can be divided into two 
groups. Each group has an input of 5 bits, while the MSB is 0 
with the first group and 1 with the second. The first group 
requires 4 neurons and 29 weights in the hidden layer, while 
the second needs 3 neurons and 22 weights. As a result of this, 
we may implement only 4 summing operations in the hidden 
layer (in spite of 8 neurons in case of non-MNNs) where as the 
MSB is used to select which group of weights must be 
connected to the neurons in the hidden layer. A similar 
procedure is done between hidden and output layer. Fig. 5 
shows the structure of the first neuron in the hidden layer. A 
comparison between MNN and non-MNNs used to implement 
logic functions is shown in Table 7. 
 

TABLE VII 
 A COMPARISON BETWEEN MNNS AND NON MNNS USED TO IMPLEMENT 16 

LOGIC FUNCTIONS 
Type of 

Comparison 
Realization 
using non 

MNNs 

Realization using 
MNNs 

No. of 
computations O(121) O(54) 

Hardware 
requirements 

9 neurons, 
65 weights 

5 neurons, 51 
weights, 10 

switches, 1 inverter

V. IMPLEMENTATION OF 2-BITS DIGITAL MULTIPLIER USING 
MNNS 

In the previous section, to simplify the problem, we make 
division in input, here is an example for division in output. 
According to the truth table shown in Table 8, instead of 
treating the problem as mapping 4 bits in input to 4 bits in 
output, we may deal with each bit in output alone. Non MNNs 
can realize the 2-bits multiplier with a network of three layers 
and a total number of 31 weights. The hidden layer contains 3 
neurons, while the output one has 4 neurons. Using MNN we 
may simplify the problem as: 
 

CAW =                                  (11) 

)DCB+ABC)((AD=

)DABC()CBAD(=BCADX

+++

+++⊗=
         (12) 

    )D+CBABD()CABD(Y ++=+=       (13) 
ABCDZ =                              (14) 

Equations 1, 2, 3 can be implemented using only one neuron. 
The third term in Equation 3 can be implemented using the 
output from Bit Z with a negative (inhibitory) weight. This 
eliminates the need to use two neurons to represent A and D . 
Equation 2 resembles an XOR, but we must first obtain AD 
and BC. AD can be implemented using only one neuron. 
Another neuron is used to realize BC and at the same time 
oring (AD, BC) as well as  anding the result with ( ABCD ) as 
shown in Fig. 6 . A comparison between MNN and non-
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MNNs used to implement 2bits digital multiplier is listed in 
Table IX. 

VI. CONCLUSION 
A fast simplification method has been presented. Karnough 

map with large number of variables has been realized. The 
presented idea depends on fast detection of group of ones in 
the visualized map. This has been done by  performing cross 
correlation in the frequency domain rather than time one. It is 
proved mathematically and practically that the number of 
computation steps required for the presented method is less 
than that needed by conventional cross correlation. Simulation 
results using MATLAB confirm the theoretical computations. 
Furthermore, it can be implemented by using parallel 
processors. In addition, a new model for realizing complex 
function has been presented. Such model realies on MNNs 
neural nets for classifying patterns that appeared expensive to 
be solved by using conventional models of neural nets. This 
approach has been introduced to realize different types of 
logic functions. Moreover, it can be applied to manipulate 
non-binary data. Compared to non MNNS, realization of 
problems using MNNs resulted in reduction of the number of 
computations, neurons and weights.  

 

TABLE  VIII 
 TRUTH TABLE OF 2-BIT DIGITAL MULTIPLIER 

Input Patterns Output Patterns 
D C B A Z Y X W 
0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 1 1 0 0 0 0 
0 1 0 0 0 0 0 0 
0 1 0 1 0 0 0 1 
0 1 1 0 0 0 1 0 
0 1 1 1 0 1 1 0 
1 0 0 0 0 0 0 0 
1 0 0 1 0 0 1 0 
1 0 1 0 0 1 0 0 
1 0 1 1 0 1 1 0 
1 1 0 0 0 0 0 0 
1 1 0 1 0 0 1 1 
1 1 1 0 0 1 1 0 
1 1 1 1 1 0 0 1 

 

TABLE IX  
A COMPARISON BETWEEN MNN AND NON-MNNS USED TO IMPLEMENT 2-BITS 

DIGITAL MULTIPLIER 

Type of 
Comparison 

Realization using 
non MNNs 

Realization using 
MNNs 

No. of 
computations O(55) O(35) 

Hardware 
requirements 

7 neurons, 
31 weights 

5 neurons, 
20 weights 
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FIG. 1 Realization Of XOR Function Using Three Neurons 

 

 
 
 
 

Fig. 2 Realization of XOR function using two neurons 
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Fig. 5 Realization of logic functions using MNNs (the first neuron in the hidden layer) 

 
 
 
 
 
 
 
 
 
 

Fig. 3 Realization of XOR function using modular neural nets 
 

 
 
 
 
 
 
 

Fig. 4 Implementation of XOR function using only one neuron 
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Fig. 6 Realization of 2-bits digital multiplier using MNNs 


