
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:3, 2011

303

 Abstract—In this paper a new fast simplification method is
presented. Such method realizes Karnough map with large number of
variables. In order to accelerate the operation of the proposed
method, a new approach for fast detection of group of ones is
presented. Such approach implemented in the frequency domain. The
search operation relies on performing cross correlation in the
frequency domain rather than time one. It is proved mathematically
and practically that the number of computation steps required for the
presented method is less than that needed by conventional cross
correlation. Simulation results using MATLAB confirm the
theoretical computations. Furthermore, a powerful solution for
realization of complex functions is given. The simplified functions
are implemented by using a new desigen for neural networks. Neural
networks are used because they are fault tolerance and as a result they
can recognize signals even with noise or distortion. This is very
useful for logic functions used in data and computer communications.
Moreover, the implemented functions are realized with minimum
amount of components. This is done by using modular neural nets
(MNNs) that divide the input space into several homogenous regions.
Such approach is applied to implement XOR function, 16 logic
functions on one bit level, and 2-bit digital multiplier. Compared to
previous non- modular designs, a clear reduction in the order of
computations and hardware requirements is achieved.

Keywords—Boolean Functions, Simplification, Karnough Map,
Implementation of Logic Functions, Modular Neural Networks

I. INTRODUCTION

INIMIZATION of the Boolean expression is very
important. The purpose of simplification of Boolean
functions is to reduce the number of gates in a logic

circuit. By simplifying the logic function, the original number
of digital components (gates) required to implement digital
circuits can be reduced. Less number of logic gates means less
power consumption, sometimes the circuit works faster and
also when number of gates is reduced, cost also comes down.
Therefore, by reducing the number of gates, the chip size and
the cost will be reduced and the computing speed will be
increased [1-35]. There are many ways to simplify a logic
design, such as algebraic simplification, Karnough maps,
Tabulation Method and Diagrammatic technique using 'Venn-
like diagram'.

H. M. El-Bakry is assistant professor with Dept. of Information Systems -
Faculty of Computer Science and Information Systems – Mansoura University
– Egypt. (phone: +2-050-2349340, fax: +2-050-2221442, e-mail:
helbakry20@yahoo.com).

Karnough map has the advantage that it is simple to realize
and easy to implement. The Karnough map technique was
proposed by M. Karnaugh [9]. Later Quine and McCluskey
reported tabular algorithmic techniques for the optimal
Boolean function minimization [10,11]. Almost all techniques
have been embedded into many computer aided design
packages and in all the logic design university textbooks [1-
37]. K-map is a graphical representation of a truth table using
Gray code order. It is suitable for elimination by grouping
redundant terms in a Boolean expression. By optimizing the
algorithm it is possible to simplify entirely a given Boolean
expression. Unfortunately almost all the techniques along with
the Espresso technique [14] do not always guarantee optimal
solutions.

The main objective of this paper is to solve the problem of
minimizing Boolean functions with large number of variables.
This is done by performing the simplification process in the
frequency domain rather than time domain. The proposed
method can be implemented by using parallel processors. As a
result, fast computing and simplification can be achieved.

II. FAST TERM DETECTION BY USING CROSS CORRELATION IN

THE FREQUENCY DOMAIN

Finding a group of ones in the input two dimensional
matrix is a searching problem. Each position in the input
matrix is tested for the presence or absence of group of ones.
At each position in the input matrix, each sub-matrix is
multiplied by a window of ones, which has the same size as
the sub-matrix. When the final output is maximum, this means
that the sub-matrix under test contains ones and vice versa.
Thus, we may conclude that this searching problem is a cross
correlation between the matrix under test and the window of
ones. Here, a fast algorithm for detecting groups of ones based
on two dimensional cross correlations that take place between
the tested matrix and the sliding window is described. Such
window is represented by a group of ones. The convolution
theorem in mathematical analysis says that a convolution of f
with h is identical to the result of the following steps: let F and
H be the results of the Fourier transformation of f and h in the
frequency domain. Multiply F and H in the frequency domain
point by point and then transform this product into spatial
domain via the inverse Fourier transform [56]. As a result,
these cross correlations can be represented by a product in the
frequency domain. Thus, by using cross correlation in the

Integrating Fast Karnough Map and Modular Neural
Networks for Simplification and Realization of

Complex Boolean Functions
Hazem M. El-Bakry

M

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:3, 2011

304

frequency domain a speed up in an order of magnitude can be
achieved during the searching process [36-54].

 In the detection phase, a sub-matrix X of size mxz (sliding
window) is extracted from the tested large input matrix, which
has a size PxT. Let W be the group of ones matrix which has
dimensions of mxz. The output can be calculated as follows:

∑
=

∑
=

=
m

1j
k)k)X(j,(j,

1k
Wh

z
 (1)

Eq. 1 represents the output for a particular sub-matrix X. It can
be computed for the whole matrix Ψ as follows:

∑
−=

∑
−=

++=
m/2

m/2j

z/2

z/2k
k)vj,(uΨ k)(j,Wv)h(u, (2)

Eq.(2) represents a cross correlation operation. Given any two
functions f and g, their cross correlation can be obtained by
[56]:

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∑
∞

∞−=
∑
∞

∞−=
++

=⊗

m z
)ym,z)f(xg(m,

y)f(x,y)g(x,

z
 (3)

Therefore, Eq.(2) can be written as follows [36-54]:

ΨWh ⊗= (4)

here h is the output when the sliding window is located at
position (u,v) in the input matrix Ψ and (u,v)∈[P-m+1,T-
n+1].

Now, the above cross correlation can be expressed in terms of
the Fourier Transform:

() ()()W*FF1FΨW Ψ •−=⊗ (5)

(*) means the conjugate of the FFT for the group of ones
matrix. Hence, by evaluating this cross correlation, a speed up
ratio can be obtained comparable to conventional cross
correlation.

The complexity of cross correlation in the frequency domain
can be analyzed as follows:

1. For a tested matrix of NxN elements, the 2D-FFT requires a
number equal to N2log2N2 of complex computation steps. The
same number of complex computation steps required for
computing the 2D-FFT for the group of ones matrix can be
done off line.
2. The inverse 2D-FFT is computed. So, (1+1) forward
transforms have to be computed. Therefore, for an matrix
under test, the total number of the 2D-FFT to compute is
2N2log2N2.
3. The input matrix and the group of ones matrix should be
multiplied in the frequency domain. Therefore, a number of
complex computation steps equal to qN2 should be added.
4. The number of computation steps required by the fast cross
correlatioon is complex and must be converted into a real
version. It is known that the two dimensional Fast Fourier

Transform requires (N2/2)log2N2 complex multiplications and
N2log2N2 complex additions [59]. Every complex
multiplication is realized by six real floating point operations
and every complex addition is implemented by two real
floating point operations. So, the total number of computation
steps required to obtain the 2D-FFT of an NxN matrix is:

ρ=6((N2/2)log2N2) + 2(N2log2N2) (6)

which may be simplified to:

ρ=5N2log2N2 (7)

Performing complex dot product in the frequency domain also
requires 6qN2 real operations.
5. In order to perform cross correlation in the frequency
domain, the group of ones matrix must have the same size as
the input matrix. Assume that the input object has a size of
(nxn) dimensions. So, the search process will be done over
sub-matrixes of (nxn) dimensions and the group of ones
matrix will have the same size. Therefore, a number of zeros =
(N2-n2) must be added to the group of ones matrix. This
requires a total real number of computation steps = q(N2-n2)
for all neurons. Moreover, after computing the 2D-FFT for the
group of ones matrix, the conjugate of this matrix must be
obtained. So, a real number of computation steps =qN2 should
be added in order to obtain the conjugate of the group of ones
matrix for all neurons. Also, a number of real computation
steps equal to N is required to create butterflies complex
numbers (e-jk(2Πn/N)), where 0<K<L. These (N/2) complex
numbers are multiplied by the elements of the input matrix or
by previous complex numbers during the computation of the
2D-FFT. To create a complex number requires two real
floating point operations. So, the total number of computation
steps required for the fast cross correlation becomes:

σ=(10N2log2N2) +6N2+(N2-n2)+N2 +N (8)

which can be reformulated as:

σ=(10N2log2N2) + (8N2-n2) +N (9)

6. Using a sliding window of size nxn for the same matrix of
NxN elements, (2n2-1)(N-n+1)2 computation steps are required
when using traditional cross correlation for the searching
process. The theoretical speed up factor η can be evaluated as
follows:

 N)2n-2(8N)2N2log2(10N
 2 1)n-1)(N-2(2nη
++

+= (10)

The theoretical speed up ratio Eq. 10 with different sizes of
the input matrix and different in size group of ones matrixes is
listed in Table 1. Practical speed up ratio for manipulating
matrixes of different sizes and different in size group of ones
matrixes is listed in Table 2 using 2.7 GHz processor and
MATLAB ver 5.3. An interesting property with FNNs is that
the number of computation steps does not depend on either the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:3, 2011

305

TABLE I

 THE THEORETICAL SPEED UP RATIO FOR KARNOUGH MAPS WITH DIFFERENT SIZES

Matrix size Speed up ratio (n=20) Speed up ratio (n=25) Speed up ratio (n=30)

100x100 3.73 5.13 6.45
200x200 4.07 6.02 8.18
300x300 4.06 6.13 8.51
400x400 4.01 6.11 8.56
500x500 3.95 6.05 8.53
600x600 3.90 5.98 8.47
700x700 3.84 5.92 8.39
800x800 3.80 5.86 8.32
900x900 3.75 5.80 8.25

1000x1000 3.71 5.74 8.19
1100x1100 3.67 5.69 8.12
1200x1200 3.64 5.65 8.06
1300x1300 3.61 5.60 8.01
1400x1400 3.59 5.56 7.95
1500x1500 3.56 5.53 7.90
1600x1600 3.54 5.49 7.86
1700x1700 3.51 5.46 7.81
1800x1800 3.49 5.43 7.77
1900x1900 3.47 5.40 7.73
2000x2000 3.45 5.37 7.69

TABLE II
 PRACTICAL SPEED UP RATIO FOR KARNOUGH MAPS WITH DIFFERENT SIZES USING MATLAB VER 5.3

Matrix size Speed up ratio (n=20) Speed up ratio (n=25) Speed up ratio (n=30)

100x100 5.34 8.08 11.97
200x200 4.02 7.13 10.54
300x300 3.49 6.59 9.99
400x400 2.89 6.18 9.31
500x500 2.67 5.95 9.96
600x600 2.49 5.82 9.38
700x700 2.38 5.71 8.99
800x800 2.29 5.59 8.78
900x900 2.33 5.78 8.98

1000x1000 2.19 5.63 8.76
1100x1100 2.25 5.60 8.64
1200x1200 2.22 5.57 8.56
1300x1300 2.18 5.54 8.50
1400x1400 2.15 5.50 8.45
1500x1500 2.11 5.46 8.40
1600x1600 2.08 5.42 8.36
1700x1700 2.05 5.39 8.32
1800x1800 2.02 5.36 8.28
1900x1900 1.99 5.32 8.24
2000x2000 1.96 5.29 8.21

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:3, 2011

306

size of the input sub-matrix or the size of the group of ones
matrix (n). The effect of (n) on the number of computation
steps is very small and can be ignored. This is in contrast to
conventional cross correlation in which the number of
computation steps is increased with the size of both the input
sub-matrix and the group of ones matrix (n).

III. IMPLEMENTATION OF SIMPLIFIED FUNCTIONS BY USING
MNNS

Here, a powerful solution for realization of complex
functions is given. The simplified functions are implemented
by using a new desigen for neural networks. Neural networks
are used because they are fault tolerance. Therefore, they can
recognize signals even with noise or distortion. This is very
useful for logic functions used in data and computer
communications. The implemented functions are realized with
minimum amount of components. MNNs present a new trend
in neural network architecture design. Motivated by the
highly-modular biological network, artificial neural net
designers aim to build architectures which are more scalable
and less subjected to interference than the traditional non-
modular neural nets [57]. There are now a wide variety of
MNN designs for classification. Non-modular classifiers tend
to introduce high internal interference because of the strong
coupling among their hidden layer weights [58]. As a result of
this, slow learning or over fitting can be done during the
learning process. Sometime, the network could not be learned
for complex tasks. Such tasks tend to introduce a wide range
of overlap which, in turn, causes a wide range of deviations
from efficient learning in the different regions of input space
[60]. Usually there are regions in the class feature space which
show high overlap due to the resemblance of two or more
input patterns (classes). At the same time, there are other
regions which show little or even no overlap, due to the
uniqueness of the classes therein. High coupling among
hidden nodes will then, result in over and under learning at
different regions [64]. Enlarging the network, increasing the
number and quality of training samples, and techniques for
avoiding local minina, will not stretch the learning capabilities
of the NN classifier beyond a certain limit as long as hidden
nodes are tightly coupled, and hence cross talking during
learning [58]. A MNN classifier attempts to reduce the effect
of these problems via a divide and conquer approach. It,
generally, decomposes the large size / high complexity task
into several sub-tasks, each one is handled by a simple, fast,
and efficient module. Then, sub-solutions are integrated via a
multi-module decision-making strategy. Hence, MNN
classifiers, generally, proved to be more efficient than non-
modular alternatives [62]. However, MNNs can not offer a
real alternative to non-modular networks unless the MNNs
designer balances the simplicity of subtasks and the efficiency
of the multi module decision-making strategy. In other words,
the task decomposition algorithm should produce sub tasks as
they can be, but meanwhile modules have to be able to give
the multi module decision making strategy enough
information to take accurate global decision [60,61].

In previous papers [52-54], it has been shown that this model
can be applied to realize non-binary data. In this paper, it is
proven that MNNs can solve some problems with a little
amount of requirements than non-MNNs. In section 2, XOR
function, and 16 logic functions on one bit level are simply
implemented using MNN. Comparisons with conventional
MNN are given. In section 3, another strategy for the design of
MNNS is presented and applied to realize, and 2-bit digital
multiplier.

IV. COMPLEXITY REDUCTION USING MODULAR NEURAL
NETWORKS

In the following subsections, we investigate the usage of
MNNs in some binary problems. Here, all MNNs are
feedforward type, and learned by using backpropagation
algorithm. In comparison with non-MNNs, we take into
account the number of neurons and weights in both models as
well as the number of computations during the test phase.

A) A simple implementation of XOR problem
There are two topologies to realize XOR function whose

truth Table is shown in Table 3 using neural nets. The first
uses fully connected neural nets with three neurons, two of
which are in the hidden layer, and the other is in the output
layer. There is no direct connections between the input and
output layer as shown in Fig.1. In this case, the neural net is
trained to classify all of these four patterns at the same time.

TABLE III
TRUTH TABLE OF XOR FUNCTION

x y O/P
0
0
1
1

0
1
0
1

0
1
1
0

The second approach was presented by Minsky and Papert
which was realized using two neurons as shown in Fig. 2. The
first representing logic AND and the other logic OR. The
value of +1.5 for the threshold of the hidden neuron insures
that it will be turned on only when both input units are on. The
value of +0.5 for the output neuron insures that it will turn on
only when it receives a net positive input greater than +0.5.
The weight of -2 from the hidden neuron to the output one
insures that the output neuron will not come on when both
input neurons are on [63]. Using MNNs, we may consider the
problem of classifying these four patterns as two individual
problems. This can be done at two steps:
1- We deal with each bit alone.
2- Consider the second bit Y, Divide the four patterns

into two groups.
The first group consists of the first two patterns which realize
a buffer, while the second group which contains the other two
patterns represents an inverter as shown in Table 4. The first
bit (X) may be used to select the function.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:3, 2011

307

TABLE IV
RESULTS OF DIVIDING XOR PATTERNS

X Y O/P New Function
0
0

0
1

0
1 Buffer (Y)

1
1

0
1

1
0 Inverter (Y)

So, we may use two neural nets, one to realize the buffer,
and the other to represent the inverter. Each one of them may
be implemented by using only one neuron. When realizing
these two neurons, we implement the weights, and perform
only one summing operation. The first input X acts as a
detector to select the proper weights as shown in Fig.3. In a
special case, for XOR function, there is no need to the buffer
and the neural net may be represented by using only one
weight corresponding to the inverter as shown in Fig.4. As a
result of using cooperative modular neural nets, XOR function
is realized by using only one neuron. A comparison between
the new model and the two previous approaches is given in
Table 5. It is clear that the number of computations and the
hardware requirements for the new model is less than that of
the other models.

TABLE V
 A COMPARISON BETWEEN DIFFERENT MODELS USED TO IMPLEMENT XOR

FUNCTION

Type of
Comparison

First model
(three neurons)

Second model
(two neurons)

New model
(one neuron)

No. of
computations O(15) O(12) O(3)

Hardware
requirements

3 neurons,
9 weights

2 neurons,
7 weights

1 neuron,
2 weights,
2 switches,
1 inverter

B) Implementation of logic Function using MNN
Realization of logic functions in one bit level (X,Y)

generates 16 functions which are (AND, OR, NAND, NOR,
XOR, XNOR, X , Y , X, Y, 0, 1, X Y, X Y , X +Y, X+ Y).
So, in order to control the selection for each one of these
functions, we must have another 4 bits at the input, thereby the
total input is 6 bits as shown in Table 6.

TABLE VI
 TRUTH TABLE OF LOGIC FUNCTION (ONE BIT LEVEL) WITH THEIR CONTROL

SELECTION

Function C1 C2 C3 C4 X Y O/p
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0

AND

0 0 0 0 1 1 1
- - - - - - - -

1 1 1 1 0 0 1
1 1 1 1 0 1 0
1 1 1 1 1 0 1

X+ Y

1 1 1 1 1 1 1

Non-MNNs can classify these 64 patterns using a network of
three layers. The hidden layer contains 8 neurons, while the
output needs only one neuron and a total number of 65
weights are required. These patterns can be divided into two
groups. Each group has an input of 5 bits, while the MSB is 0
with the first group and 1 with the second. The first group
requires 4 neurons and 29 weights in the hidden layer, while
the second needs 3 neurons and 22 weights. As a result of this,
we may implement only 4 summing operations in the hidden
layer (in spite of 8 neurons in case of non-MNNs) where as the
MSB is used to select which group of weights must be
connected to the neurons in the hidden layer. A similar
procedure is done between hidden and output layer. Fig. 5
shows the structure of the first neuron in the hidden layer. A
comparison between MNN and non-MNNs used to implement
logic functions is shown in Table 7.

TABLE VII
 A COMPARISON BETWEEN MNNS AND NON MNNS USED TO IMPLEMENT 16

LOGIC FUNCTIONS
Type of

Comparison
Realization
using non

MNNs

Realization using
MNNs

No. of
computations O(121) O(54)

Hardware
requirements

9 neurons,
65 weights

5 neurons, 51
weights, 10

switches, 1 inverter

V. IMPLEMENTATION OF 2-BITS DIGITAL MULTIPLIER USING
MNNS

In the previous section, to simplify the problem, we make
division in input, here is an example for division in output.
According to the truth table shown in Table 8, instead of
treating the problem as mapping 4 bits in input to 4 bits in
output, we may deal with each bit in output alone. Non MNNs
can realize the 2-bits multiplier with a network of three layers
and a total number of 31 weights. The hidden layer contains 3
neurons, while the output one has 4 neurons. Using MNN we
may simplify the problem as:

CAW = (11)

)DCB+ABC)((AD=

)DABC()CBAD(=BCADX

+++

+++⊗=
 (12)

)D+CBABD()CABD(Y ++=+= (13)
ABCDZ = (14)

Equations 1, 2, 3 can be implemented using only one neuron.
The third term in Equation 3 can be implemented using the
output from Bit Z with a negative (inhibitory) weight. This
eliminates the need to use two neurons to represent A and D .
Equation 2 resembles an XOR, but we must first obtain AD
and BC. AD can be implemented using only one neuron.
Another neuron is used to realize BC and at the same time
oring (AD, BC) as well as anding the result with (ABCD) as
shown in Fig. 6 . A comparison between MNN and non-

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:3, 2011

308

MNNs used to implement 2bits digital multiplier is listed in
Table IX.

VI. CONCLUSION
A fast simplification method has been presented. Karnough

map with large number of variables has been realized. The
presented idea depends on fast detection of group of ones in
the visualized map. This has been done by performing cross
correlation in the frequency domain rather than time one. It is
proved mathematically and practically that the number of
computation steps required for the presented method is less
than that needed by conventional cross correlation. Simulation
results using MATLAB confirm the theoretical computations.
Furthermore, it can be implemented by using parallel
processors. In addition, a new model for realizing complex
function has been presented. Such model realies on MNNs
neural nets for classifying patterns that appeared expensive to
be solved by using conventional models of neural nets. This
approach has been introduced to realize different types of
logic functions. Moreover, it can be applied to manipulate
non-binary data. Compared to non MNNS, realization of
problems using MNNs resulted in reduction of the number of
computations, neurons and weights.

TABLE VIII
 TRUTH TABLE OF 2-BIT DIGITAL MULTIPLIER

Input Patterns Output Patterns
D C B A Z Y X W
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 0 1 0
0 1 1 1 0 1 1 0
1 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0
1 0 1 1 0 1 1 0
1 1 0 0 0 0 0 0
1 1 0 1 0 0 1 1
1 1 1 0 0 1 1 0
1 1 1 1 1 0 0 1

TABLE IX
A COMPARISON BETWEEN MNN AND NON-MNNS USED TO IMPLEMENT 2-BITS

DIGITAL MULTIPLIER

Type of
Comparison

Realization using
non MNNs

Realization using
MNNs

No. of
computations O(55) O(35)

Hardware
requirements

7 neurons,
31 weights

5 neurons,
20 weights

REFERENCES
[1] O. Ledion Bitincka, George E. Antoniou, “PDA-based Boolean Function

Simplification: A Useful Educational Tool,” Informatika, 2004, Vol. 15,
no. 3, pp. 329-336.

[2] Ledion Bitincka, George E. Antoniou, “Pocket-PC Boolean Function
Simplification,” Journal of Electrical Engineering, vol. 56, no. 7-8,
2005, pp. 209–212.

[3] TOMASZEWSKI, S. P.—ILGAZ, I. U.—ANTONIOU, G. E. :WWW-
Based Boolean Function Simplification, International Journal of
Mathematics and Computer Science 13 No. 4 (2003), 577–583.

[4] WAKERLY, J. F. : Digital Design, Prentice-Hall, New York, 2000.
[5] NELSON, V. P.—NAGLE, H. T.—CARROLL, B. D.—IRWIN, D. :

Digital Logic Circuit Analysis and Design, Prentice-Hall, New Jersey,
1995.

[6] KATZ, R. : Contemporary Logic Design, Benjamin/Cummings Publ,
Redwood City, CA, 1994.

[7] BROWN, S.—VRANESIC, Z. : Fundamentals of Digital Logic with
VHDL, McGraw-Hill, New York, 2003.

[8] HAYES, J. P. : Digital Logic Design, New York, 1993.
[9] KARNAUGH, M.: The Map Method for Synthesis of Com-binatorial

Logic Circuits, Trans. AIEE, Communications and Electronics 72
(1953), 593-598.

[10] QUINE, W. V. : The Problem of Simplifying Truth Tables, Am. Math.
Monthly 59 No. 8 (1952), 521–531.

[11] McCLUSKEY, E. J. : Minimization of Boolean functions, Bell System
Tech. Journal 35 No. 5 (1956), 1417–1444.

[12] GAJSKI, D. D. : Principles of Digital Design, Prentice-Hall, 1997.
[13] CHIRLIAN, P. M. : Digital Circuits with Microprocessor Applications,

Matrix Publishers, Oregon, 1982.
[14] HILL, F. J,—PETERSON, G. R. : Computer Aided Logical Design with

Emphasis on VLSI, Wiley, New York, 1993.
[15] Alan B. Marcovitz, "Introduction to Logic and Computer Design

"Hardcover, 2007.
[16] Alan B. Marcovitz, "Introduction to Logic Design," (2nd Economy

Edition), Paperback, 2005.
[17] Amy E. Arntson, "Digital Design Basics," Paperback, 2005.
[18] Frank Vahid, " Digital Design," Hardcover, 2006.
[19] Janaye M. Houghton and Robert S. Houghton, "Circuit Sense for

Elementary Teachers and Students: Understanding and Building Simple
Logic Circuits," Paperback, 1994.

[20] John F. Wakerly, "Digital Design: Principles and Practices Package (4th
Edition), Hardcover, 2005.

[21] Mano, Charles Kime, "Logic and Computer Design Fundamentals"
(Third Edition), Hardcover, 2003.

[22] Morris M. Mano, Michael D. Ciletti, "Digital Design (4th Edition),
Hardcover, 2006.

[23] Morris M. Mano, "Digital Design," Hardcover, 1984.
[24] Morris M. Mano, "Computer System Architecture (3rd Edition)",

Hardcover, 1992.
[25] Nripendra N. Biswas, "Computer aided minimization procedure for

boolean functions," Proceedings of the 21st conference on Design
automation," Albuquerque, New Mexico, United States, Pages: 699 –
702, 1984.

[26] Randal E. Bryant, "Graph-Based Algorithms for Boolean Function
Manipulation", IEEE Transactions on Computers, C-35-8, pp. 677-691,
August, 1986.

[27] Robert Dueck, "Digital Design with CPLD Applications and
VHDL(Digital Design: Principles and Practices Package (2nd Edition),
Hardcover, 2004.

[28] Thomas L. Floyd ,"Electronics Fundamentals: Circuits, Devices and
Applications" (7 th Edition), Hardcover, 2006.

[29] Thomas L. Floyd, Digital Fundamentals, Hardcover, 1994.
[30] Victor P. Nelson, H. Troy Nagle, Bill D. Carroll, and David Irwin,

"Digital Logic Circuit Analysis and Design", Paperback, 1995
[31] William Kleitz, "Digital and Microprocessor Fundamentals: Theory and

Application (4th Edition), Hardcover, 2002.
[32] Yves Crama and Peter L. Hammer, "Boolean Functions Theory,

Algorithms and Applications", January 22, 2006.
[33] http://www.asic-world.com/digital/kmaps.html, "Simplification of

Boolean Functions", 2006.
[34] Hazem M. El-Bakry, and Ahmed Atwan, "Simplification and

Implementation of Boolean Functions," International Journal of
Universal Computer Sciences, issue 1, vol. 1, 2010, pp. 19-33.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:3, 2011

309

X

Y

O/P

 B1

B2

B3

[35] Hazem M. El-bakry, Ahmed Atwan, and Nikos Mastorakis “Aِ New
Technique for Realization of Boolean Functions, " Proc. of Recent
Advances in Artificial Intelligence, Koweledge Engineering and
Databases, Cambridge, UK, February 20-22, 2010, pp. 260-270.

[36] Hazem M. El-bakry, and Nikos Mastorakis “A Fast Computerized
Method For Automatic Simplification of Boolean Functions,” Proc. of
9th WSEAS International Conference on SYSTEMS THEORY AND
SCIENTIFIC COMPUTATION (ISTASC '09), Moscow, Russia, August
26-28, 2009, pp. 99-107.

[37] Hazem M. El-bakry, “Fast Karnough Map for Simplification of
Complex Boolean Functions,” Proc. of 10th WSEAS International
Conference on Applied Computer Science (ACS'10), Japan, October 4-
6, 2010, pp. 478-483.

[38] Hazem M. El-Bakry, "An Efficient Algorithm for Pattern Detection
using Combined Classifiers and Data Fusion," Information Fusion
Journal, vol. 11, 2010, pp. 133-148..

[39] Hazem M. El-Bakry, "A Novel High Speed Neural Model for Fast
Pattern Recognition," Soft Computing Journal, vol. 14, no. 6, 2010, pp.
647-666.

[40] Hazem M. El-Bakry, "Fast Virus Detection by using High Speed Time
Delay Neural Networks," Journal of Computer Virology, vol.6, no.2,
2010, pp.115-122.

[41] Hazem M. El-Bakry, "New Fast Principal Component Analysis For
Real-Time Face Detection," MG&V Journal, vol. 18, no. 4, 2009, pp.
405-426.

[42] Hazem M. El-Bakry, "A New Neural Design for Faster Pattern
Detection Using Cross Correlation and Matrix Decomposition," Neural
World journal, 2009, vol. 19, no. 2, pp. 131-164.

[43] Hazem M. El-Bakry and M. Hamada, "A New Implementation for High
Speed Neural Networks in Frequency Space," Lecture Notes in
Computer Science, Springer, KES 2008, Part I, LNAI 5177, pp. 33-40.

[44] Hazem M. El-Bakry and Mohamed Hamada, " New Fast Decision Tree
Classifier for Identifying Protein Coding Regions," Lecture Notes in
Computer Science, Springer, ISICA 2008, LNCS 5370, 2008, pp. 489-
500.

[45] Hazem M. El-Bakry, and Nikos Mastorakis "New Fast Normalized
Neural Networks for Pattern Detection," Image and Vision Computing
Journal, vol. 25, issue 11, 2007, pp. 1767-1784.

[46] Hazem M. El-Bakry and Nikos Mastorakis, "Fast Code Detection Using
High Speed Time Delay Neural Networks," Lecture Notes in Computer
Science, Springer, vol. 4493, Part III, May 2007, pp. 764-773.

[47] Hazem M. El-Bakry, "New Fast Time Delay Neural Networks Using
Cross Correlation Performed in the Frequency Domain,"
Neurocomputing Journal, vol. 69, October 2006, pp. 2360-2363.

[48] Hazem M. El-Bakry, “Face detection using fast neural networks and
image decomposition,” Neurocomputing Journal, vol. 48, 2002, pp.
1039-1046.

[49] Hazem M. El-Bakry, “Human Iris Detection Using Fast Cooperative
Modular Neural Nets and Image Decomposition,” Machine Graphics &
Vision Journal (MG&V), vol. 11, no. 4, 2002, pp. 498-512.

[50] Hazem M. El-Bakry, “Automatic Human Face Recognition Using
Modular Neural Networks,” Machine Graphics & Vision Journal
(MG&V), vol. 10, no. 1, 2001, pp. 47-73.

[51] Hazem M. El-Bakry, "New Faster Normalized Neural Networks for Sub-
Matrix Detection using Cross Correlation in the Frequency Domain and
Matrix Decomposition," Applied Soft Computing journal, vol. 8, issue 2,
March 2008, pp. 1131-1149.

[52] Hazem M. El-Bakry, "Automatic Human Face Recognition Using
Modular Neural Networks," Machine Graphics & Vision Journal
(MG&V), vol. 10, no. 1, 2001, pp. 47-73.

[53] Hazem M. El-Bakry, "Human Iris Detection Using Fast Cooperative
Modular Neural Nets and Image Decomposition," Machine Graphics &
Vision Journal (MG&V), vol. 11, no. 4, 2002, pp. 498-512.

[54] Hazem M. El-Bakry "Fast Iris Detection for Personal Verification Using
Modular Neural Networks," Lecture Notes in Computer Science,
Springer, vol. 2206, October 2001, pp. 269-283.

[55] Hazem M. El-bakry, “Complexity Reduction Using Modular Neural
Networks,” Proc. of IEEE IJCNN’03, Portland, Oregon, pp. 2202-2207,
July, 20-24, 2003.

[56] R. Klette, and Zamperon, "Handbook of image processing operators, "
John Wiley & Sonsltd, 1996.

[57] J. Murre, Learning and Categorization in Modular Neural Networks,
Harvester Wheatcheaf. 1992.

[58] R. Jacobs, M. Jordan, A. Barto, Task Decomposition Through
Competition in a Modular Connectionist Architecture: The what and
where vision tasks, Neural Computation 3, pp. 79-87, 1991.

[59] J. W. Cooley, and J. W. Tukey, "An algorithm for the machine
calculation of complex Fourier series," Math. Comput. 19, 297–301,
1965.

[60] G. Auda, and M. Kamel, CMNN: Cooperative Modular Neural
Networks for Pattern Recognition, Pattern Recognition Letters, Vol. 18,
pp. 1391-1398, 1997.

[61] E. Alpaydin, , Multiple Networks for Function Learning, Int. Conf. on
Neural Networks, Vol.1 CA, USA, pp. 9-14, 1993.

[62] A. Waibel, Modular Construction of Time Delay Neural Networks for
Speach Recognition, Neural Computing 1, pp.39-46.

[63] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning
representation by error backpropagation, Parallel distributed Processing:
Explorations in the Microstructues of Cognition, Vol. 1, Cambridge,
MA:MIT Press, pp. 318-362, 1986.

[64] K. Joe, Y. Mori, S. Miyake, Construction of a large scale neural
network: Simulation of handwritten Japanese Character Recognition, on
NCUBE Concurrency 2 (2), pp. 79-107.

FIG. 1 Realization Of XOR Function Using Three Neurons

Fig. 2 Realization of XOR function using two neurons

Y

X

O/P
 0.5 2.0 1.5

1.0

1.0
1.0

1.0

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:3, 2011

310

X

Wbuffer

Winverter

ΣY Activation
Function

O/P

Wb

X

Y
Activation
Function Winverter

O/P

Σ

Wb

C1 W1g1

W1g2

Y W5g1

 W5g2

C2

Σ Activation
Function

Wb

Fig. 5 Realization of logic functions using MNNs (the first neuron in the hidden layer)

Fig. 3 Realization of XOR function using modular neural nets

Fig. 4 Implementation of XOR function using only one neuron

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:3, 2011

311

1.5 5.5

A

B

C

D

W

Z

 Y

X

1.5
1.5

4
 -6

2

-2

1.5

1.5

1.5

2
1.5

2

2
1.5

1.5

1.5

1.5

1.5

 2

Fig. 6 Realization of 2-bits digital multiplier using MNNs

