
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

657

Abstract—Fine-grained data replication over the Internet allows

duplication of frequently accessed data objects, as opposed to entire
sites, to certain locations so as to improve the performance of large-
scale content distribution systems. In a distributed system, agents
representing their sites try to maximize their own benefit since they
are driven by different goals such as to minimize their
communication costs, latency, etc. In this paper, we will use game
theoretical techniques and in particular auctions to identify a bidding
mechanism that encapsulates the selfishness of the agents, while
having a controlling hand over them. In essence, the proposed game
theory based mechanism is the study of what happens when
independent agents act selfishly and how to control them to
maximize the overall performance. A bidding mechanism asks how
one can design systems so that agents’ selfish behavior results in the
desired system-wide goals. Experimental results reveal that this
mechanism provides excellent solution quality, while maintaining
fast execution time. The comparisons are recorded against some well
known techniques such as greedy, branch and bound, game
theoretical auctions and genetic algorithms.

Keywords—Data replication, auctions, static allocation, pricing.

I. INTRODUCTION
N the Internet a magnitude of heterogeneous entities (e.g.
providers and commercial services) offer, use, and even

compete with each other for resources. The Internet is
emerging as a new platform for distributed computing and
brings with it problems never seen before. New solutions
should take into account the various new concepts derived
from multi-agent systems in which the agents cannot be
assumed to act in accordance to the deployed algorithm. In a
heterogeneous system such as the Internet entitles act
selfishly. This is obvious since they are driven by different
goals such as to minimize their communication costs, latency,
etc. Thus, one cannot assume that agents would follow the
protocol or the algorithm, though they respond to incentives
(e.g. payments received for compensation).

In this paper, we will use game theoretical techniques and
in particular auctions to identify a bidding mechanism that
encapsulates the selfishness of the agents, while having a
controlling hand over them. This work is inspired from the
work reported in [11] and [14]. In essence, game theory is the

S. U. Khan is with the Department of Electrical and Computer

Engineering, North Dakota State University, Fargo, ND 58102, USA (phone:
701-231-7615; fax: 701-231-8677; e-mail: samee.khan@ ndsu.edu).

C. Ardil is with the National Academy of Aviation, Baku, Azerbaijan, (e-
mail: cemalardil@gmail.com).

study of what happens when independent agents act selfishly.
A bidding mechanism asks how one can design systems so
that agents’ selfish behavior results in the desired system-wide
goals.

In this paper, we will apply the derived mechanism to the
fine grained data replication problem (DRP) over the Internet.
This problem strongly conforms to the selfish agents’ notion
and has a wide range of applications. Replication is widely
used to improve the performance of large-scale content
distribution systems such as the CDNs [13]. Replicating the
data over geographically dispersed locations reduces access
latency, network traffic, and in turn adds reliability,
robustness and fault-tolerance to the system. Discussions in
[4], [5], [8], [9], and [12] reveal that client(s) experience
reduced access latencies provided that data is replicated within
their close proximity. However, this is applicable in cases
when only read accesses are considered. If updates of the
contents are also under focus, then the locations of the replicas
have to be: 1) in close proximity to the client(s), and 2) in
close proximity to the primary (assuming a broadcast update
model) copy. For fault-tolerant and highly dependable
systems, replication is essential, as demonstrated in a real
world example of OceanStore [13]. Therefore, efficient and
effective replication schemas strongly depend on how many
replicas to be placed in the system, and more importantly
where. Needless to say that our work differs form the existing
techniques in the usage of game theoretical techniques. To the
best of the authors’ knowledge this is the very first work that
addresses the problem using such techniques.

The remainder of this paper is organized as follows. Section
II formulates the DRP. Section III concentrates on modeling
the resource allocation mechanism for the DRP. The
experimental results and concluding remarks are provided in
Sections IV and V, respectively.

II. PROBLEM FORMULATION
Consider a distributed system comprising M sites, with each

site having its own processing power, memory (primary
storage) and media (secondary storage). Let Si and si be the
name and the total storage capacity (in simple data units e.g.
blocks), respectively, of site i where 1 ≤ i ≤ M. The M sites of
the system are connected by a communication network. A link
between two sites Si and Sj (if it exists) has a positive integer
c(i,j) associated with it, giving the communication cost for
transferring a data unit between sites Si and Sj. If the two sites

A Fast Replica Placement Methodology for
Large-scale Distributed Computing Systems

Samee Ullah Khan and Cemal Ardil

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

658

are not directly connected by a communication link then the
above cost is given by the sum of the costs of all the links in a
chosen path from site Si to the site Sj. Without the loss of
generality we assume that c(i,j) = c(j,i). This is a common
assumption (e.g. see [5], [9], and [10]). Let there be N objects,
each identifiable by a unique name Ok and size in simple data
unites ok where 1 ≤ k ≤ N. Let rk

i and wk
i be the total number

of reads and writes, respectively, initiated from Si for Ok.
Our replication policy assumes the existence of one primary

copy for each object in the network. Let Pk, be the site which
holds the primary copy of Ok, i.e., the only copy in the
network that cannot be de-allocated, hence referred to as
primary site of the k-th object. Each primary site Pk, contains
information about the whole replication scheme Rk of Ok. This
can be done by maintaining a list of the sites where the k-th
object is replicated at, called from now on the replicators of
Ok. Moreover, every site Si stores a two-field record for each
object. The first field is its primary site Pk and the second the
nearest neighborhood site NNk

i of site Si which holds a replica
of object k. In other words, NNk

i is the site for which the reads
from Si for Ok, if served there, would incur the minimum
possible communication cost. It is possible that NNk

i = Si, if Si
is a replicator or the primary site of Ok. Another possibility is
that NNk

i = Pk, if the primary site is the closest one holding a
replica of Ok. When a site Si reads an object, it does so by
addressing the request to the corresponding NNk

i. For the
updates we assume that every site can update every object.
Updates of an object Ok are performed by sending the updated
version to its primary site Pk, which afterwards broadcasts it to
every site in its replication scheme Rk.

For the DRP under consideration, we are interested in
minimizing the total Object Transfer Cost (OTC) due to object
movement, since the communication cost of control messages
has minor impact to the overall performance of the system.
There are two components affecting OTC. The first
component of OTC is due to the read requests. Let Rk

i denote
the total OTC, due to Sis’ reading requests for object Ok,
addressed to the nearest site NNk

i. This cost is given by the
following equation:

 ,i i i
k k k kR r o c i NN⎛ ⎞

⎜ ⎟
⎝ ⎠

= , (1)

where NNk
i = {Site j | j∈Rk ^ min c(i,j)}. The second

component of OTC is the cost arising due to the writes. Let
Wk

i be the total OTC, due to Sis’ writing requests for object
Ok, addressed to the primary site Pk. This cost is given by the
following equation:

 () ()
,

, ,i i i
k k k k k

j R j ik
W w o c i P c NN j

∀ ∈ ≠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

= + ∑ . (2)

Here, we made the indirect assumption that in order to
perform a write we need to ship the whole updated version of
the object. This of course is not always the case, as we can
move only the updated parts of it (modeling such policies can
also be done using our framework). The cumulative OTC,
denoted as Coverall, due to reads and writes is given by:

 1 1
M N i i

overall k ki kC R W⎛ ⎞
⎜ ⎟= = ⎝ ⎠

= +∑ ∑ . (3)

Let Xik = 1 if Si holds a replica of object Ok, and 0
otherwise. Xiks define an M×N replication matrix, named X,
with boolean elements. Equation 3 is now refined to:

() (){ }
() () ()1

1 1

1 min , | 1

, ,

i
ik k k jk

Mi x
k k k ik k k kx

M N
i k

X r o c i j X

w o c i P X w o c i P
X

=

⎡ ⎤⎡
⎢ ⎥⎢⎣⎢ ⎥= = ⎢ ⎥⎤

⎥⎢ ⎥⎦⎣ ⎦

− =

+ +
=

∑
∑ ∑ (4)

Sites which are not the replicators of object Ok create OTC
equal to the communication cost of their reads from the
nearest replicator, plus that of sending their writes to the
primary site of Ok . Sites belonging to the replication scheme
of Ok, are associated with the cost of sending/receiving all the
updated versions of it. Using the above formulation, the DRP
can be defined as:

“Find the assignment of 0,1 values in the X matrix that
minimizes Coverall, subject to the storage capacity constraint:

 1 (1)N
ik ik kX o s i M= ≤ ∀ ≤ ≤∑ ,

and subject to the primary copies policy:
1 (1)P kk

X k N= ∀ ≤ ≤ .”

In the generalized case, the DRP is NP-complete [9].

III. OUR PROPOSED PROCEDURE
We follow the same pattern as discussed in Section II.
The Basics: The distributed system described in Section III

is considered, where each site is represented by an agent, i.e.,
the mechanism contains M agents. In the context of the DRP,
an agent holds two key elements of data a) the available site
capacity aci, and b) the cost to replicate (RCk

i = Rk
i+Wk

i) an
object k to the agent’s site i..

Intuitively, if agents know the available site capacities of
other agents, that gives them no advantage whatsoever.
However, if they come about to know their replication cost
then they can modify their valuations and alter the algorithmic
output. It is to be noted that an agent can only calculate the
replication cost via the frequencies of reads and writes.
Everything else such as the network topology, latency on
communication lines, and even the site capacities can be
public knowledge. Therefore, DRP[π] is the only natural
choice. A rigorous proof on the validity of DRP[π] is
presented in [7].

Communications: The agents in the mechanism are
assumed to be selfish and therefore, they project a bid bi to the
mechanism. In reality the amount of communications made
are immense. This fact was not realized in [3], where the
authors assume superfluous assumptions on the
implementation. In the later text we will reveal how to cope
with this dilemma.

Components: The mechanism has two components 1) the
algorithmic output x(·), and 2) the payment mapping function
p(·).

Algorithmic output: In the context of the DRP, the
algorithm accepts bids from all the agents, and outputs the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

659

maximum beneficial bid, i.e., the bid that incurs the minimum
replication cost overall (Equation 3). We will give a detailed
description of the algorithm in the subsequent text.

Monetary cost: When an object is allocated (for replication)
to an agent i, the agent becomes responsible to entertain (read
and write) requests to that object. For example, assume object
k is replicated to agent i. Then the amount of traffic that the
agent has to entertain due to the replication of object k is
exactly equivalent to the replication cost, i.e., ci = RCk

i. This
fact is easily deducible from Equation 4.

Payments: To offset ci, the mechanism makes a payment
pi(b) to agent i. This payment is equivalent to the cost it incurs
to replicate the object, i.e., pi(b) = ci. The readers would
immediately note that in such a payment agent i can never get
a profit greater than 0. This is exactly what we want. In a
selfish environment, it is possible that the agents bid higher
than the true value, the mechanism creates an illusion to
negate that. By compensating the agents with the exact
amount of what the cost occurs, it leaves no room for the
agents to overbid or underbid (in the later text we will
rigorously prove the above argument). Therefore, the
voluntary characteristic of the mechanism now becomes a
strongly voluntary and we quote the following definition.

Definition 1: A mechanism is characterized as a strongly
voluntary participation mechanism if for every agent i, ui(ti,(b-

i,ti)) = 0 [14].
We want to emphasis that each agent’s incentive is to

replicate objects so that queries can be answered locally, for
the sake of users that access the agent’s site. If the replicas are
made available elsewhere, the agent may lose the users, as
they might divert their accesses to other sites.

Bids: Each agent i reports a bid that is the direct
representation of the true data that it holds. Therefore, a bid bi
is equivalent to 1/RCk

i. That is, the lower the replication cost
the higher is the bid and the higher are the chances for the bid
bi to win.

In essence, the mechanism m(x(b),p(b)), takes in the vector
of bids b from all the agents, and selects the highest bid. The
highest bidder is allocated the object k which is added to its
allocation set xi. The mechanism then pays the bidder pi. This
payment is equivalent to the cost incurred due to entertain
requests from object k by users. The pseudo-code of the
mechanism is given in Fig. 1.

Description of Algorithm: We maintain a list Li at each
server. This list contains all the objects that can be replicated
by agent i onto site Si. We can obtain this list by examining
the two constraints of the DRP. List Li would contain all the
objects that have their size less then the total available space
aci. Moreover, if site Si is the primary host of some object k’,
then k’ should not be in Li. We also maintain a list LS
containing all sites that can replicate an object, i.e., Si∈LS if

Li≠NULL. The algorithm works iteratively. In each step the
mechanism asks all the agents to send their preferences (first
PARFOR loop). Each agent i recursively calculates the true
data of every object in list Li. Each agent then reports the
dominant true data (line 09) to the mechanism. The
mechanism receives all the corresponding entries, and then
chooses the globally dominant true data. This is broadcasted
to all the agents, so that they can update their nearest neighbor
table NNk

i, which is shown in Line 20 (NNi
OMAX). The object is

replicated and the payment is made to the agent. The
mechanism progresses forward till there are no more agents
interested in acquiring any data for replication.

Now, we present some results that strengthen our claim on
the optimality of the derived bidding mechanism. We begin by
making the following observations.

Assume that the mechanism m = (x(b),p(b)) is truthful and
each payment pi(b-i,bi) and allocation xi(b-i,bi) is twice
differentiable with respect to bi, for all the values of b-i. We
fix some agent i and derive a formula for pi, allocation xi, and
profit to be the functions of just agent i’s bid bi. Since agent
i’s profit is always maximized by bidding truthfully (Lemma
1), the derivative is zero and the second derivative is non-
positive at ti. Since this holds no matter what the value of ti is,
we can integrate to obtain an expression for pi. We state: pi(bi)
= pi(0)+bixi(bi)-∫0bixi(u)du. This is now the basis of our
extended theoretical results. Literature survey revealed the
following two important characteristics of a frugal payment
mechanism. We state them below.

Definition 2: With the other agents’ bid b-i fixed, consider
xi(b-i,bi) as a single variable function of bi. We call this the
allocation curve or the allocation profile of agent i. We say
the output function x is decreasing if each of the associated
allocation curves is decreasing, i.e., xi(b-i,bi) is a decreasing
function of bi, for all i and b-i.

Based on Definition 2, we can state the following.
Theorem 1: A mechanism is truthful if its output function

x(b) is decreasing.
Proof: We prove this for the DRP mechanism. For

simplicity we fix all bids b-i, and focus on xi(b-i,bi) as a single
variable function of bi, i.e., the allocation xi would only
change if bi is altered. We now consider two bids bi and bi’
such that bi’ > bi. In terms of the true data ti, this conforms to
RCk

i’ > RCk
i. Let xi and xi’ be the allocations made to the

agent i when it bids bi and bi’, respectively. For a given
allocation, the total replication cost associated can be
represented as Ci=∑k∈xiRCk

i. The proof of the theorem reduces
to proving that xi’ < xi, i.e., the allocation computed by the
algorithmic output is decreasing in bi. The proof is simple by
contradiction. Assume that that xi’ ≥ xi. This implies that 1/(Ci-
RCk

i) < 1/(Ci’-RCk
i) ≤ 1/(Ci-RCk

i’). This means that there must
be an agent -i who has a bid that

The Mechanism (FA)

Initialize:
01 LS, Li, Tk

i, M, MT
02 WHILE LS ≠ NULL DO
03 OMAX = NULL; MT = NULL; Pi = NULL;

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

660

04 PARFOR each Si∈LS DO
05 FOR each Ok∈Li DO
06 Tk

i = compute (ti); /*compute the valuation corresponding to the desired object*/
07 ENDFOR
08 ti = argmaxk(Tk

i);
09 SEND ti to M; RECEIVE at M ti in MT;
10 ENDPARFOR
11 OMAX = argmaxk(MT); /*Choose the global dominate valuation*/
12 Pi = 1/OMAX; /*Calculate the payment*/
13 BROADCAST OMAX;
14 SEND Pi to Si; /*Send payments to the agent who is allocate the object OMAX*/
15 Replicate OOMAX;
16 aci=aci - ok; /*Update capacity*/
17 Li = Li - Ok; /*Update the list*/
18 IF Li = NULL THEN SEND info to M to update LS = LS - Si; /*Update mechanism players*/
19 PARFOR each Si∈LS DO
20 Update NNi

OMAX /*Update the nearest neighbor list*/
21 ENDPARFOR /*Get ready for the next round*/
22 ENDWHILE

Fig. 1 Frugal Auction (FA) Mechanism

supersedes bi’. But that is not possible as we began with the
assumption that all other bids are fixed so there can be no
other agent -i. If i = -i, then that is also not possible since we
assumed that bi’ > bi. ■

The result in Theorem 1 is extended as:
Theorem 2: A decreasing output function admits a truthful

payment scheme satisfying voluntary participation if and only
if ∫

∞ − ∞<
0

),(duubx ii for all i, b-i. In this case we can take the

payments to be:

∫
∞ −−− +=
0

),(),(),(duubxbbxbbbp iiiiiiiii .

Proof: The first term bixi(b-i,bi) compensates the cost
incurred by agent i to host the allocation xi. The second term

∫
∞ −
0

),(duubx ii represents the expected profit of agent i. If agent

i bids its true value ti, then its profit is
= ui(ti,(b-i,ti))

= (,) (,) (,)i
i i i i i i i i i i

t
t x b t x b x dx t x b t

∞− − −+ −∫

= (,)i
i i

t
x b x dx

∞ −∫

If agent i bids its true value, then the expected profit is
greater than in the case it bids other values. We explain this as
follows: If agent i bids higher (bi’>ti), then the expected profit
is

= ui(ti,(b-i,bi’))

=
'

' (, ') (,) (, ')
i

i i i i i i i i i i

b
b x b b x b x dx t x b b

∞− − −+ −∫

=
'

(') (, ') (,)
i

i i i i i i i

b
b t x b b x b x dx

∞− −− + ∫ .

Because '
(,)i

i i

b
x b x dx

∞ −
< ∞∫ and bi’ > ti, we can

express the profit when agent i bids the true value as follows:
'

'
(,) (,)

i

i i
b i i i i

t b
x b x dx x b x dx

∞− −+∫ ∫ .

This is because xi is decreasing in bi and bi’ > ti, we have
the following equation:

'
(') (, ') (,)

i

i

bi i i i i i i

t
b t x b b x b x dx− −− < ∫ .

From this relation, it can be seen that the profit with
overbidding is lower then the profit with bidding the true data.
Similar arguments can be used for underbidding. ■

 EXPERIMENTAL RESULTS
We performed experiments on a 440MHz Ultra 10 machine

with 512MB memory. The experimental evaluations were
targeted to benchmark the placement policies. The resource
allocation mechanism was implemented using IBM Pthreads.

To establish diversity in our experimental setups, the
network connectively was changed considerably. In this
paper, we only present the results that were obtained using a
maximum of 500 sites (nodes). We used existing topology
generator toolkits and also self generated networks. In all the
topologies the distance of the link between nodes was
equivalent to the communication cost. Table I summarizes the
various techniques used to gather forty-five various topologies
for networks with 100 nodes.

To evaluate the chosen replication placement techniques on
realistic traffic patterns, we used the access logs collected at

TABLE I
PARAMETER INTERVAL VARIANCE CHARACTERIZATION FOR TOPOLOGIES WITH 100 NODES

Topology Mathematical Representation Parameter Interval Variance

SGRG
(12 topologies)

Randomized layout with node degree (d*) and Euclidian distance (d)
between nodes as parameters.

d={5,10,15,20},
d*={10,15,20}.

IV.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

661

GT-ITM PR [4]
(5 topologies)

Randomized layout with edges added between the randomly located
vertices with a probability (p).

p={0.4,0.5,0.6,0.7,0.8}.

GT-ITM W [4]
(9 topologies)

P(u,v)=αe-d/(βL) α={0.1,0.15,0.2,0.25}, β={0.2,0.3,0.4}.

SGFCGUD
(5 topologies)

Fully connected graph with uniform link distances (d). d1=[1,10],d2=[1,20],d3=[1,50], d4=[10,20], d5=[20,50].

SGFCGRD
(5 topologies)

Fully connected graph with random link distances (d). d1=[1,10],d2=[1,20],d3=[1,50], d4=[10,20], d5=[20,50].

SGRGLND
(9 topologies)

Random layout with link distance having a lognormal distribution [9]. μ={8.455,9.345,9.564},
σ={1.278,1.305,1.378}.

Capacity of Sites

O
TC

 S
av

es

Performance
N=2000, M=500, U=5%

9% 12% 15% 18% 21% 24% 27% 30% 33% 36% 39% 42%
45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

Legend
Greedy
GRA
Aε-Star
DA
EA
FA

Reads

O
TC

 S
av

es

Performance
N=2000, M=500, C=45%

20% 22% 24% 26% 28% 30% 32% 34% 36% 38% 40%
36%

42%

48%

54%

60%

66%

72%

78%

84%

90%

Legend
Greedy
GRA
Aε-Star
DA
EA
FA

Fig. 2 OTC savings versus capacity Fig. 3 OTC savings versus reads

Updates

O
TC

 S
av

es

Performance
N=2000, M=500, C=60%

40% 42% 44% 46% 48% 50% 52% 54% 56% 58% 60%
16%

24%

32%

40%

48%

56%

64%

72%

80%

Legend
Greedy
GRA
Aε-Star
DA
EA
FA

Execution Time Analysis
7%

68%

21%

3%

Replica
Placement

Shortest Paths

Miscellaneous

Data Gathering

the Soccer World Cup 1998 website [1]. Each experimental
setup was evaluated thirteen times, i.e., only the Friday (24
hours) logs from May 1, 1998 to July 24, 1998. Thus, each
experimental setup in fact represents an average of the 585
(13×45) data set points. To process the logs, we wrote a script
that returned: only those objects which were present in all the
logs (2000 in our case), the total number of requests from a
particular client for an object, the average and the variance of

the object size. From this log we chose the top five hundred
clients (maximum experimental setup). A random mapping
was then performed of the clients to the nodes of the
topologies. Note that this mapping is not 1-1, rather 1-M. This
gave us enough skewed workload to mimic real world
scenarios. It is also worthwhile to mention that the total
amount of requests entertained for each problem instance was
in the range of 1-2 million. The primary replicas’ original site

TABLE II

RUNNING TIME IN SECONDS [C=45%, U=15%]

Problem Size Greedy GRA Aε-Star DA EA FA
M=300, N=1350 190.01 242.12 247.66 87.92 164.15 93.26

Fig. 4 OTC savings versus updates Fig. 5: Execution time components.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

662

M=300, N=1400 206.26 326.82 279.45 95.64 178.90 97.98
M=300, N=1450 236.61 379.01 310.12 115.19 185.15 113.65
M=300, N=1500 258.45 409.17 333.03 127.10 191.24 124.73
M=300, N=1550 275.63 469.38 368.89 143.94 197.93 147.16
M=300, N=2000 298.12 475.02 387.94 158.45 204.29 159.12
M=400, N=1350 321.60 492.10 353.08 176.51 218.15 176.90
M=400, N=1400 348.53 536.96 368.03 187.26 223.56 195.41
M=400, N=1450 366.38 541.12 396.96 192.41 221.10 214.55
M=400, N=1500 376.85 559.74 412.17 208.92 245.47 218.73
M=400, N=1550 389.71 605.63 415.55 215.24 269.31 223.92
M=400, N=2000 391.55 659.39 447.97 224.18 274.24 235.17
M=500, N=1350 402.20 660.86 460.44 246.43 284.63 259.56
M=500, N=1400 478.10 689.44 511.69 257.96 301.72 266.42
M=500, N=1450 485.34 705.07 582.71 269.45 315.13 272.68
M=500, N=1500 511.06 736.43 628.23 278.15 324.26 291.83
M=500, N=1550 525.33 753.50 645.26 289.64 331.57 304.47
M=500, N=2000 539.15 776.99 735.36 312.68 345.94 317.60

was mimicked by choosing random locations. The capacities
of the sites C% were generated randomly with range from
Total Primary Object Sizes/2 to 1.5×Total Primary Object
Sizes. The variance in the object size collected from the access
logs helped to instill enough diversity to benchmark object
updates. The updates were randomly pushed onto different
sites, and the total system update load was measured in terms
of the percentage update requests U% compared that to the
initial network with no updates.

For comparison, we selected five various types of replica
placement techniques. To provide a fair comparison, the
assumptions and system parameters were kept the same in all
the approaches. The techniques studied include efficient
branch-and-bound based technique (Aε-Star [5]). For fine-
grained replication, the algorithms proposed in [6], [8], [9],
and [12] are the only ones that address the problem domain
similar to ours. We select from [12] the greedy approach
(Greedy) for comparison because it is shown to be the best
compared with 4 other approaches (including the proposed
technique in [8]); thus, we indirectly compare with 4
additional approaches as well. Algorithms reported in [6]
(Dutch (DA) and English auctions (EA)) and [9] (Genetic
based algorithm (GRA)) are also among the chosen techniques
for comparisons. Due to space limitations we will only give a
brief overview of the comparative techniques. Details for a
specific technique can be obtained from the referenced papers.

The solution quality is measured in terms of network
communication cost (OTC percentage) that is saved under the
replication scheme found by the algorithms, compared to the
initial one, i.e., when only primary copies exists.

First, we observe the effects of system capacity increase.
An increase in the storage capacity means that a large number
of objects can be replicated. Replicating an object that is
already extensively replicated, is unlikely to result in
significant traffic savings as only a small portion of the
servers will be affected overall. Moreover, since objects are
not equally read intensive, increase in the storage capacity
would have a great impact at the beginning (initial increase in
capacity), but has little effect after a certain point, where the
most beneficial ones are already replicated. This is observable

in Fig. 2, which shows the performance of the algorithms.
GRA once again performed the worst. The gap between all
other approaches was reduced to within 7% of each other. DA
and FA showed an immediate initial increase (the point after
which further replicating objects is inefficient) in its OTC
savings, but afterward showed a near constant performance.
GRA although performed the worst, but observably gained the
most OTC savings (35%) followed by Greedy with 29%.
Further experiments with various update ratios (5%, 10%, and
20%) showed similar plot trends. It is also noteworthy (plots
not shown in this paper due to space restrictions) that the
increase in capacity from 10% to 17%, resulted in 4 times (on
average) more replicas for all the algorithms.

Next, we observe the effects of increase in the read and
update (write) frequencies. Since these two parameters are
complementary to each other, we describe them together. In
both the setups the number of sites and objects were kept
constant. Increase in the number of reads in the system would
mean that there is a need to replicate as many object as
possible (closer to the users). However, the increase in the
number of updates in the system requires the replicas be
placed as close as to the primary site as possible (to reduce the
update broadcast). This phenomenon is also interrelated with
the system capacity, as the update ratio sets an upper bound on
the possible traffic reduction through replication. Thus, if we
consider a system with unlimited capacity, the “replicate
everywhere anything” policy is strictly inadequate. The read
and update parameters indeed help in drawing a line between
good and marginal algorithms. The plots in Figs. 3 and 4 show
the results of read and update frequencies, respectively. A
clear classification can be made between the algorithms. Aε-
Star, DA, EA, Greedy and FA incorporate the increase in the
number of reads by replicating more objects and thus savings
increase up to 88%. GRA gained the least of the OTC savings
of up to 67%. To understand why there is such a gap in the
performance between the algorithms, we should recall that
GRA specifically depend on the initial population (for details
see [9]). Moreover, GRA maintains a localized network
perception. Increase in updates result in objects having
decreased local significance (unless the vicinity is in close

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

663

proximity to the primary location). On the other hand, Aε-
Star, DA, EA, Greedy and FA never tend to deviate from their
global view of the problem search space.

Lastly, we compare the termination time of the algorithms.
Before we proceed, we would like to clarify our measurement
of algorithm termination timings. The approach we took was
to see if these algorithms can be used in dynamic scenarios.
Thus, we gather and process data as if it was a dynamic
system. The average breakdown of the execution time of all
the algorithms combined is depicted in Fig. 5. There 68% of
all the algorithm termination time was taken by the repeated
calculations of the shortest paths. Data gathering and
dispersion, such as reading the access frequencies from the
processed log, etc. took 7% of the total time. Other
miscellaneous operations including I/O were recorded to carry
3% of the total execution time. From the plot it is clear that a
totally static setup would take no less that 21% of the time
depicted in Table II.

Various problem instances were recorded with C=45% and
U=15%. Each problem instance represents the average
recorded time over all the 45 topologies and 13 various access
logs. The entries in bold represent the fastest time recorded
over the problem instance. It is observable that FA and DA
terminated faster than all the other techniques, followed by
EA, Greedy, Aε-Star and GRA. If a static environment was
considered, FA with the maximum problem instance would
have terminated approximately in 66.69 seconds (21% of the
algorithm termination time).

In summary, based on the solution quality alone, the
algorithms can be classified into four categories: 1) The very
high performance algorithms that include EA and FA, 2) the
high performance algorithms of Greedy and DA, 3) the
medium-high performance Aε-Star, and finally 4) the
mediocre performance algorithm of GRA. While considering
the termination timings, FA and DA did extremely well,
followed by EA, Greedy, Aε-Star, and GRA.

 CONCLUSIONS

This paper proposed a game theoretical resource allocation
mechanism that effectively addressed the fine-grained data
replication problem with selfish players. The experimental
results which were recorded against some well know
techniques such as branch and bound, greedy, game theoretical
auctions, and genetic algorithms revealed that the proposed
mechanism exhibited 5%-10% better solution quality and
incurred fast execution time.

REFERENCES
[1] M. Arlitt and T. Jin, “Workload characterization of the 1998 World Cup

Web Site,” Technical Report, Hewlett Packard Lab, Palo Alto, HPL-
1999-35(R.1), 1999.

[2] K. Calvert, M. Doar, E. Zegura, “Modeling Internet Topology,” IEEE
Communications, 35(6), pp. 160-163, 1997.

[3] D. Grosu and A. Chronopoulos, “Algorithmic Mechnism Design for
Load Balancing in Distributed Systems,” IEEE Trans. Systems, Man and
Cybernatics B, 34(1), pp. 77-84, 2004.

[4] S. Jamin, C. Jin, Y. Jin, D. Riaz, Y. Shavitt and L. Zhang, “On the
Placement of Internet Instrumentation,” in IEEE INFOCOM, 2000.

[5] S. Khan and I. Ahmad, “Heuristic-based Replication Schemas for Fast
Information Retrevial over the Internet,” in 17th International
Conference on Parallel and Distributed Computing Systems, San
Francisco, U.S.A., 2004.

[6] S. Khan and I. Ahmad, “A Game Theoretical Solution for Web Content
Replication,” Technical Report, CSE-UTA, 2004.

[7] S. Khan and I. Ahmad, “A Pure Nash Equilibrium-based Game
Theoretical Method for Data Replication across Multiple Servers,” IEEE
Transactions on Knowledge and Data Engineering, accepted to appear in
2009.

[8] B. Li, M. Golin, G. Italiano and X. Deng, “On the Optimal Placement of
Web Proxies in the Internet,” in IEEE INFOCOM, 2000.

[9] T. Loukopoulos, and I. Ahmad, “Static and Adaptive Distributed Data
Replication using Genetic Algorithms,” Journal of Parallel and
Distributed Computing, 64(11), pp. 1270-1285, 2005.

[10] T. Loukopoulos, I. Ahmad, and D. Papadias, “An Overview of Data
Replication on the Internet,” in IEEE International Symposium on
Parallel Processing and Networking, pp. 31-36, 2002.

[11] N. Nisan and A. Ronen, “Algorithimic Mechanism Design,” in 31st
ACM Symposium on Theory of Computing, pp. 129-140, 1999.

[12] L. Qiu, V. Padmanabhan and G. Voelker, “On the Placement of Web
Server Replicas,” in IEEE INFOCOM, 2001.

[13] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weatherspoon, J.
Kubiatowicz, “Maintenance-free Global Storage,” IEEE Internet
Computing, 5(5), pp. 40-49, 2001.

[14] W. Vickrey, “Counterspeculation, Auctions and Competitive Sealed
Tenders,” Journal of Finance, pp. 8-37, 1961.

V.

