
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:6, No:5, 2012

657

 

 

  
Abstract—Fine-grained data replication over the Internet allows 

duplication of frequently accessed data objects, as opposed to entire 
sites, to certain locations so as to improve the performance of large-
scale content distribution systems. In a distributed system, agents 
representing their sites try to maximize their own benefit since they 
are driven by different goals such as to minimize their 
communication costs, latency, etc. In this paper, we will use game 
theoretical techniques and in particular auctions to identify a bidding 
mechanism that encapsulates the selfishness of the agents, while 
having a controlling hand over them. In essence, the proposed game 
theory based mechanism is the study of what happens when 
independent agents act selfishly and how to control them to 
maximize the overall performance. A bidding mechanism asks how 
one can design systems so that agents’ selfish behavior results in the 
desired system-wide goals. Experimental results reveal that this 
mechanism provides excellent solution quality, while maintaining 
fast execution time. The comparisons are recorded against some well 
known techniques such as greedy, branch and bound, game 
theoretical auctions and genetic algorithms. 
 

Keywords—Data replication, auctions, static allocation, pricing. 

I. INTRODUCTION 
N the Internet a magnitude of heterogeneous entities (e.g. 
providers and commercial services) offer, use, and even 

compete with each other for resources. The Internet is 
emerging as a new platform for distributed computing and 
brings with it problems never seen before. New solutions 
should take into account the various new concepts derived 
from multi-agent systems in which the agents cannot be 
assumed to act in accordance to the deployed algorithm.  In a 
heterogeneous system such as the Internet entitles act 
selfishly. This is obvious since they are driven by different 
goals such as to minimize their communication costs, latency, 
etc. Thus, one cannot assume that agents would follow the 
protocol or the algorithm, though they respond to incentives 
(e.g. payments received for compensation). 

In this paper, we will use game theoretical techniques and 
in particular auctions to identify a bidding mechanism that 
encapsulates the selfishness of the agents, while having a 
controlling hand over them. This work is inspired from the 
work reported in [11] and [14]. In essence, game theory is the 
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study of what happens when independent agents act selfishly. 
A bidding mechanism asks how one can design systems so 
that agents’ selfish behavior results in the desired system-wide 
goals. 

In this paper, we will apply the derived mechanism to the 
fine grained data replication problem (DRP) over the Internet. 
This problem strongly conforms to the selfish agents’ notion 
and has a wide range of applications. Replication is widely 
used to improve the performance of large-scale content 
distribution systems such as the CDNs [13]. Replicating the 
data over geographically dispersed locations reduces access 
latency, network traffic, and in turn adds reliability, 
robustness and fault-tolerance to the system. Discussions in 
[4], [5], [8], [9], and [12] reveal that client(s) experience 
reduced access latencies provided that data is replicated within 
their close proximity. However, this is applicable in cases 
when only read accesses are considered. If updates of the 
contents are also under focus, then the locations of the replicas 
have to be: 1) in close proximity to the client(s), and 2) in 
close proximity to the primary (assuming a broadcast update 
model) copy. For fault-tolerant and highly dependable 
systems, replication is essential, as demonstrated in a real 
world example of OceanStore [13]. Therefore, efficient and 
effective replication schemas strongly depend on how many 
replicas to be placed in the system, and more importantly 
where. Needless to say that our work differs form the existing 
techniques in the usage of game theoretical techniques. To the 
best of the authors’ knowledge this is the very first work that 
addresses the problem using such techniques. 

The remainder of this paper is organized as follows. Section 
II formulates the DRP. Section III concentrates on modeling 
the resource allocation mechanism for the DRP. The 
experimental results and concluding remarks are provided in 
Sections IV and V, respectively. 

II. PROBLEM FORMULATION 
Consider a distributed system comprising M sites, with each 

site having its own processing power, memory (primary 
storage) and media (secondary storage). Let Si and si be the 
name and the total storage capacity (in simple data units e.g. 
blocks), respectively, of site i where 1 ≤ i ≤ M. The M sites of 
the system are connected by a communication network. A link 
between two sites Si and Sj (if it exists) has a positive integer 
c(i,j) associated with it, giving the communication cost for 
transferring a data unit between sites Si and Sj. If the two sites 
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are not directly connected by a communication link then the 
above cost is given by the sum of the costs of all the links in a 
chosen path from site Si to the site Sj. Without the loss of 
generality we assume that c(i,j) = c(j,i). This is a common 
assumption (e.g. see [5], [9], and [10]). Let there be N objects, 
each identifiable by a unique name Ok and size in simple data 
unites ok where 1 ≤ k ≤ N. Let rk

i and wk
i be the total number 

of reads and writes, respectively, initiated from Si for Ok. 
Our replication policy assumes the existence of one primary 

copy for each object in the network. Let Pk, be the site which 
holds the primary copy of Ok, i.e., the only copy in the 
network that cannot be de-allocated, hence referred to as 
primary site of the k-th object. Each primary site Pk, contains 
information about the whole replication scheme Rk of Ok. This 
can be done by maintaining a list of the sites where the k-th 
object is replicated at, called from now on the replicators of 
Ok. Moreover, every site Si stores a two-field record for each 
object. The first field is its primary site Pk and the second the 
nearest neighborhood site NNk

i of site Si which holds a replica 
of object k. In other words, NNk

i is the site for which the reads 
from Si for Ok, if served there, would incur the minimum 
possible communication cost. It is possible that NNk

i = Si, if Si 
is a replicator or the primary site of Ok. Another possibility is 
that NNk

i = Pk, if the primary site is the closest one holding a 
replica of Ok. When a site Si reads an object, it does so by 
addressing the request to the corresponding NNk

i. For the 
updates we assume that every site can update every object. 
Updates of an object Ok are performed by sending the updated 
version to its primary site Pk, which afterwards broadcasts it to 
every site in its replication scheme Rk.  

For the DRP under consideration, we are interested in 
minimizing the total Object Transfer Cost (OTC) due to object 
movement, since the communication cost of control messages 
has minor impact to the overall performance of the system. 
There are two components affecting OTC. The first 
component of OTC is due to the read requests. Let Rk

i denote 
the total OTC, due to Sis’ reading requests for object Ok, 
addressed to the nearest site NNk

i. This cost is given by the 
following equation:  

 ,i i i
k k k kR r o c i NN⎛ ⎞

⎜ ⎟
⎝ ⎠

= ,            (1) 

where NNk
i = {Site j | j∈Rk ^ min c(i,j)}. The second 

component of OTC is the cost arising due to the writes. Let 
Wk

i be the total OTC, due to Sis’ writing requests for object 
Ok, addressed to the primary site Pk. This cost is given by the 
following equation:  

 ( ) ( )
,

, ,i i i
k k k k k

j R j ik
W w o c i P c NN j

∀ ∈ ≠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

= + ∑ .      (2) 

Here, we made the indirect assumption that in order to 
perform a write we need to ship the whole updated version of 
the object. This of course is not always the case, as we can 
move only the updated parts of it (modeling such policies can 
also be done using our framework). The cumulative OTC, 
denoted as Coverall, due to reads and writes is given by:  

 1 1
M N i i

overall k ki kC R W⎛ ⎞
⎜ ⎟= = ⎝ ⎠

= +∑ ∑ .         (3) 

Let Xik = 1 if Si holds a replica of object Ok, and 0 
otherwise. Xiks define an M×N replication matrix, named X, 
with boolean elements. Equation 3 is now refined to: 

( ) ( ){ }
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=

∑
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Sites which are not the replicators of object Ok create OTC 
equal to the communication cost of their reads from the 
nearest replicator, plus that of sending their writes to the 
primary site of Ok . Sites belonging to the replication scheme 
of Ok, are associated with the cost of sending/receiving all the 
updated versions of it. Using the above formulation, the DRP 
can be defined as:  

“Find the assignment of 0,1 values in the X matrix that 
minimizes Coverall, subject to the storage capacity constraint:  

   1 (1 )N
ik ik kX o s i M= ≤ ∀ ≤ ≤∑ ,  

and subject to the primary copies policy: 
1   (1 )P kk

X k N= ∀ ≤ ≤ .” 

In the generalized case, the DRP is NP-complete [9]. 

III. OUR PROPOSED PROCEDURE 
We follow the same pattern as discussed in Section II. 
The Basics: The distributed system described in Section III 

is considered, where each site is represented by an agent, i.e., 
the mechanism contains M agents. In the context of the DRP, 
an agent holds two key elements of data a) the available site 
capacity aci, and b) the cost to replicate (RCk

i = Rk
i+Wk

i) an 
object k to the agent’s site i.. 

Intuitively, if agents know the available site capacities of 
other agents, that gives them no advantage whatsoever. 
However, if they come about to know their replication cost 
then they can modify their valuations and alter the algorithmic 
output. It is to be noted that an agent can only calculate the 
replication cost via the frequencies of reads and writes. 
Everything else such as the network topology, latency on 
communication lines, and even the site capacities can be 
public knowledge. Therefore, DRP[π] is the only natural 
choice. A rigorous proof on the validity of DRP[π] is 
presented in [7]. 

Communications: The agents in the mechanism are 
assumed to be selfish and therefore, they project a bid bi to the 
mechanism. In reality the amount of communications made 
are immense. This fact was not realized in [3], where the 
authors assume superfluous assumptions on the 
implementation. In the later text we will reveal how to cope 
with this dilemma.  

Components: The mechanism has two components 1) the 
algorithmic output x(·), and 2) the payment mapping function 
p(·).  

Algorithmic output: In the context of the DRP, the 
algorithm accepts bids from all the agents, and outputs the 
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maximum beneficial bid, i.e., the bid that incurs the minimum 
replication cost overall (Equation 3). We will give a detailed 
description of the algorithm in the subsequent text. 

Monetary cost: When an object is allocated (for replication) 
to an agent i, the agent becomes responsible to entertain (read 
and write) requests to that object. For example, assume object 
k is replicated to agent i. Then the amount of traffic that the 
agent has to entertain due to the replication of object k is 
exactly equivalent to the replication cost, i.e., ci = RCk

i. This 
fact is easily deducible from Equation 4.  

Payments: To offset ci, the mechanism makes a payment 
pi(b) to agent i. This payment is equivalent to the cost it incurs 
to replicate the object, i.e., pi(b) = ci. The readers would 
immediately note that in such a payment agent i can never get 
a profit greater than 0. This is exactly what we want. In a 
selfish environment, it is possible that the agents bid higher 
than the true value, the mechanism creates an illusion to 
negate that. By compensating the agents with the exact 
amount of what the cost occurs, it leaves no room for the 
agents to overbid or underbid (in the later text we will 
rigorously prove the above argument). Therefore, the 
voluntary characteristic of the mechanism now becomes a 
strongly voluntary and we quote the following definition.  

Definition 1: A mechanism is characterized as a strongly 
voluntary participation mechanism if for every agent i, ui(ti,(b-

i,ti)) = 0 [14]. 
We want to emphasis that each agent’s incentive is to 

replicate objects so that queries can be answered locally, for 
the sake of users that access the agent’s site. If the replicas are 
made available elsewhere, the agent may lose the users, as 
they might divert their accesses to other sites. 

Bids: Each agent i reports a bid that is the direct 
representation of the true data that it holds. Therefore, a bid bi 
is equivalent to 1/RCk

i. That is, the lower the replication cost 
the higher is the bid and the higher are the chances for the bid 
bi to win. 

In essence, the mechanism m(x(b),p(b)), takes in the vector 
of bids b from all the agents, and selects the highest bid. The 
highest bidder is allocated the object k which is added to its 
allocation set xi. The mechanism then pays the bidder pi. This 
payment is equivalent to the cost incurred due to entertain 
requests from object k by users. The pseudo-code of the 
mechanism is given in Fig. 1.  

Description of Algorithm: We maintain a list Li at each 
server. This list contains all the objects that can be replicated 
by agent i onto site Si. We can obtain this list by examining 
the two constraints of the DRP. List Li would contain all the 
objects that have their size less then the total available space 
aci. Moreover, if site Si is the primary host of some object k’, 
then k’ should not be in Li. We also maintain a list LS 
containing all sites that can replicate an object, i.e., Si∈LS if 

Li≠NULL. The algorithm works iteratively. In each step the 
mechanism asks all the agents to send their preferences (first 
PARFOR loop). Each agent i recursively calculates the true 
data of every object in list Li. Each agent then reports the 
dominant true data (line 09) to the mechanism. The 
mechanism receives all the corresponding entries, and then 
chooses the globally dominant true data. This is broadcasted 
to all the agents, so that they can update their nearest neighbor 
table NNk

i, which is shown in Line 20 (NNi
OMAX). The object is 

replicated and the payment is made to the agent. The 
mechanism progresses forward till there are no more agents 
interested in acquiring any data for replication.   

Now, we present some results that strengthen our claim on 
the optimality of the derived bidding mechanism. We begin by 
making the following observations.  

Assume that the mechanism m = (x(b),p(b)) is truthful and 
each payment pi(b-i,bi) and allocation xi(b-i,bi) is twice 
differentiable with respect to bi, for all the values of b-i. We 
fix some agent i and derive a formula for pi, allocation xi, and 
profit to be the functions of just agent i’s bid bi. Since agent 
i’s profit is always maximized by bidding truthfully (Lemma 
1), the derivative is zero and the second derivative is non-
positive at ti. Since this holds no matter what the value of ti is, 
we can integrate to obtain an expression for pi. We state: pi(bi) 
= pi(0)+bixi(bi)-∫0bixi(u)du. This is now the basis of our 
extended theoretical results. Literature survey revealed the 
following two important characteristics of a frugal payment 
mechanism. We state them below. 

Definition 2: With the other agents’ bid b-i fixed, consider 
xi(b-i,bi) as a single variable function of bi. We call this the 
allocation curve or the allocation profile of agent i. We say 
the output function x is decreasing if each of the associated 
allocation curves is decreasing, i.e., xi(b-i,bi) is a decreasing 
function of bi, for all i and b-i. 

Based on Definition 2, we can state the following. 
Theorem 1: A mechanism is truthful if its output function 

x(b) is decreasing. 
Proof:  We prove this for the DRP mechanism. For 

simplicity we fix all bids b-i, and focus on xi(b-i,bi) as a single 
variable function of bi, i.e., the allocation xi would only 
change if bi is altered. We now consider two bids bi and bi’ 
such that bi’ > bi. In terms of the true data ti, this conforms to 
RCk

i’ > RCk
i.  Let xi and xi’ be the allocations made to the 

agent i when it bids bi and bi’, respectively. For a given 
allocation, the total replication cost associated can be 
represented as Ci=∑k∈xiRCk

i. The proof of the theorem reduces 
to proving that xi’ < xi, i.e., the allocation computed by the 
algorithmic output is decreasing in bi. The proof is simple by 
contradiction. Assume that that xi’ ≥ xi. This implies that 1/(Ci-
RCk

i) < 1/(Ci’-RCk
i) ≤ 1/(Ci-RCk

i’). This means that there must 
be an agent -i who has a bid that 

The Mechanism (FA) 
 
Initialize: 
01 LS, Li, Tk

i, M, MT 
02 WHILE LS ≠ NULL DO 
03     OMAX = NULL; MT = NULL; Pi = NULL; 
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04            PARFOR each Si∈LS DO 
05                           FOR each Ok∈Li DO 
06                                     Tk

i = compute (ti);  /*compute the valuation corresponding to the desired object*/ 
07                           ENDFOR 
08                    ti = argmaxk(Tk

i);  
09                    SEND ti to M; RECEIVE at M ti in MT; 
10             ENDPARFOR 
11   OMAX = argmaxk(MT);    /*Choose the global dominate valuation*/ 
12   Pi = 1/OMAX;               /*Calculate the payment*/ 
13   BROADCAST OMAX;  
14   SEND Pi to Si;         /*Send payments to the agent who is allocate the object OMAX*/ 
15   Replicate OOMAX;  
16   aci=aci - ok;                           /*Update capacity*/ 
17   Li = Li - Ok;                    /*Update the list*/ 
18   IF Li = NULL THEN SEND info to M to update LS = LS - Si;        /*Update mechanism players*/ 
19           PARFOR each Si∈LS DO  
20                  Update NNi

OMAX                   /*Update the nearest neighbor list*/ 
21           ENDPARFOR                  /*Get ready for the next round*/ 
22 ENDWHILE 
 

Fig. 1 Frugal Auction (FA) Mechanism 
 

supersedes bi’. But that is not possible as we began with the 
assumption that all other bids are fixed so there can be no 
other agent -i. If i = -i, then that is also not possible since we 
assumed that bi’ > bi.                                                            ■ 

The result in Theorem 1 is extended as: 
Theorem 2: A decreasing output function admits a truthful 

payment scheme satisfying voluntary participation if and only 
if ∫

∞ − ∞<
0

),( duubx ii  for all i, b-i. In this case we can take the 

payments to be: 

∫
∞ −−− +=
0

),(),(),( duubxbbxbbbp iiiiiiiii . 

Proof: The first term bixi(b-i,bi) compensates the cost 
incurred by agent i to host the allocation xi. The second term 

∫
∞ −
0

),( duubx ii  represents the expected profit of agent i. If agent 

i bids its true value ti, then its profit is  
= ui(ti,(b-i,ti)) 

= ( , ) ( , ) ( , )i
i i i i i i i i i i

t
t x b t x b x dx t x b t

∞− − −+ −∫  

= ( , )i
i i

t
x b x dx

∞ −∫  

If agent i bids its true value, then the expected profit is 
greater than in the case it bids other values. We explain this as 
follows: If agent i bids higher (bi’>ti), then the expected profit 
is 

= ui(ti,(b-i,bi’)) 

= 
'

' ( , ') ( , ) ( , ')
i

i i i i i i i i i i

b
b x b b x b x dx t x b b

∞− − −+ −∫  

= 
'

( ' ) ( , ') ( , )
i

i i i i i i i

b
b t x b b x b x dx

∞− −− + ∫ . 

Because '
( , )i

i i

b
x b x dx

∞ −
< ∞∫  and bi’ > ti, we can 

express the profit when agent i bids the true value as follows: 
'

'
( , ) ( , )

i

i i
b i i i i

t b
x b x dx x b x dx

∞− −+∫ ∫ .  

This is because xi is decreasing in bi and bi’ > ti, we have 
the following equation: 

'
( ' ) ( , ') ( , )

i

i

bi i i i i i i

t
b t x b b x b x dx− −− < ∫ .  

From this relation, it can be seen that the profit with 
overbidding is lower then the profit with bidding the true data. 
Similar arguments can be used for underbidding.         ■ 

 EXPERIMENTAL RESULTS 
We performed experiments on a 440MHz Ultra 10 machine 

with 512MB memory. The experimental evaluations were 
targeted to benchmark the placement policies. The resource 
allocation mechanism was implemented using IBM Pthreads.  

To establish diversity in our experimental setups, the 
network connectively was changed considerably. In this 
paper, we only present the results that were obtained using a 
maximum of 500 sites (nodes). We used existing topology 
generator toolkits and also self generated networks. In all the 
topologies the distance of the link between nodes was 
equivalent to the communication cost. Table I summarizes the 
various techniques used to gather forty-five various topologies 
for networks with 100 nodes.  

To evaluate the chosen replication placement techniques on 
realistic traffic patterns, we used the access logs collected at 

TABLE  I 
PARAMETER INTERVAL VARIANCE CHARACTERIZATION FOR TOPOLOGIES WITH 100 NODES 

 
Topology Mathematical Representation Parameter Interval Variance 

SGRG  
(12 topologies) 

Randomized layout with node degree (d*) and Euclidian distance (d) 
between nodes as parameters. 

d={5,10,15,20},  
d*={10,15,20}. 

IV.
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GT-ITM PR [4] 
(5 topologies) 

Randomized layout with edges added between the randomly located 
vertices with a probability (p). 

p={0.4,0.5,0.6,0.7,0.8}. 

GT-ITM W [4] 
(9 topologies) 

P(u,v)=αe-d/(βL) α={0.1,0.15,0.2,0.25},  β={0.2,0.3,0.4}. 

SGFCGUD  
(5 topologies) 

Fully connected graph with uniform link distances (d). d1=[1,10],d2=[1,20],d3=[1,50], d4=[10,20], d5=[20,50]. 

SGFCGRD  
(5 topologies) 

Fully connected graph with random link distances (d). d1=[1,10],d2=[1,20],d3=[1,50], d4=[10,20], d5=[20,50]. 

SGRGLND  
(9 topologies) 

Random layout with link distance having a lognormal distribution [9]. μ={8.455,9.345,9.564}, 
σ={1.278,1.305,1.378}. 
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the Soccer World Cup 1998 website [1]. Each experimental 
setup was evaluated thirteen times, i.e., only the Friday (24 
hours) logs from May 1, 1998 to July 24, 1998. Thus, each 
experimental setup in fact represents an average of the 585 
(13×45) data set points. To process the logs, we wrote a script 
that returned: only those objects which were present in all the 
logs (2000 in our case), the total number of requests from a 
particular client for an object, the average and the variance of 

the object size. From this log we chose the top five hundred 
clients (maximum experimental setup). A random mapping 
was then performed of the clients to the nodes of the 
topologies. Note that this mapping is not 1-1, rather 1-M. This 
gave us enough skewed workload to mimic real world 
scenarios. It is also worthwhile to mention that the total 
amount of requests entertained for each problem instance was 
in the range of 1-2 million. The primary replicas’ original site 

 
TABLE  II 

RUNNING TIME IN SECONDS [C=45%, U=15%] 
 

Problem Size Greedy GRA Aε-Star DA EA FA 
M=300, N=1350 190.01 242.12 247.66 87.92 164.15 93.26 

Fig. 4 OTC savings versus updates Fig. 5: Execution time components. 
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M=300, N=1400 206.26 326.82 279.45 95.64 178.90 97.98 
M=300, N=1450 236.61 379.01 310.12 115.19 185.15 113.65 
M=300, N=1500 258.45 409.17 333.03 127.10 191.24 124.73 
M=300, N=1550 275.63 469.38 368.89 143.94 197.93 147.16 
M=300, N=2000 298.12 475.02 387.94 158.45 204.29 159.12 
M=400, N=1350 321.60 492.10 353.08 176.51 218.15 176.90 
M=400, N=1400 348.53 536.96 368.03 187.26 223.56 195.41 
M=400, N=1450 366.38 541.12 396.96 192.41 221.10 214.55 
M=400, N=1500 376.85 559.74 412.17 208.92 245.47 218.73 
M=400, N=1550 389.71 605.63 415.55 215.24 269.31 223.92 
M=400, N=2000 391.55 659.39 447.97 224.18 274.24 235.17 
M=500, N=1350 402.20 660.86 460.44 246.43 284.63 259.56 
M=500, N=1400 478.10 689.44 511.69 257.96 301.72 266.42 
M=500, N=1450 485.34 705.07 582.71 269.45 315.13 272.68 
M=500, N=1500 511.06 736.43 628.23 278.15 324.26 291.83 
M=500, N=1550 525.33 753.50 645.26 289.64 331.57 304.47 
M=500, N=2000 539.15 776.99 735.36 312.68 345.94 317.60 

 
was mimicked by choosing random locations. The capacities 
of the sites C% were generated randomly with range from 
Total Primary Object Sizes/2 to 1.5×Total Primary Object 
Sizes. The variance in the object size collected from the access 
logs helped to instill enough diversity to benchmark object 
updates. The updates were randomly pushed onto different 
sites, and the total system update load was measured in terms 
of the percentage update requests U% compared that to the 
initial network with no updates.  

For comparison, we selected five various types of replica 
placement techniques. To provide a fair comparison, the 
assumptions and system parameters were kept the same in all 
the approaches. The techniques studied include efficient 
branch-and-bound based technique (Aε-Star [5]). For fine-
grained replication, the algorithms proposed in [6], [8], [9], 
and [12] are the only ones that address the problem domain 
similar to ours. We select from [12] the greedy approach 
(Greedy) for comparison because it is shown to be the best 
compared with 4 other approaches (including the proposed 
technique in [8]); thus, we indirectly compare with 4 
additional approaches as well. Algorithms reported in [6] 
(Dutch (DA) and English auctions (EA)) and [9] (Genetic 
based algorithm (GRA)) are also among the chosen techniques 
for comparisons. Due to space limitations we will only give a 
brief overview of the comparative techniques. Details for a 
specific technique can be obtained from the referenced papers. 

The solution quality is measured in terms of network 
communication cost (OTC percentage) that is saved under the 
replication scheme found by the algorithms, compared to the 
initial one, i.e., when only primary copies exists.  

First, we observe the effects of system capacity increase. 
An increase in the storage capacity means that a large number 
of objects can be replicated. Replicating an object that is 
already extensively replicated, is unlikely to result in 
significant traffic savings as only a small portion of the 
servers will be affected overall. Moreover, since objects are 
not equally read intensive, increase in the storage capacity 
would have a great impact at the beginning (initial increase in 
capacity), but has little effect after a certain point, where the 
most beneficial ones are already replicated. This is observable 

in Fig. 2, which shows the performance of the algorithms. 
GRA once again performed the worst. The gap between all 
other approaches was reduced to within 7% of each other. DA 
and FA showed an immediate initial increase (the point after 
which further replicating objects is inefficient) in its OTC 
savings, but afterward showed a near constant performance. 
GRA although performed the worst, but observably gained the 
most OTC savings (35%) followed by Greedy with 29%. 
Further experiments with various update ratios (5%, 10%, and 
20%) showed similar plot trends. It is also noteworthy (plots 
not shown in this paper due to space restrictions) that the 
increase in capacity from 10% to 17%, resulted in 4 times (on 
average) more replicas for all the algorithms.   

Next, we observe the effects of increase in the read and 
update (write) frequencies. Since these two parameters are 
complementary to each other, we describe them together. In 
both the setups the number of sites and objects were kept 
constant. Increase in the number of reads in the system would 
mean that there is a need to replicate as many object as 
possible (closer to the users). However, the increase in the 
number of updates in the system requires the replicas be 
placed as close as to the primary site as possible (to reduce the 
update broadcast). This phenomenon is also interrelated with 
the system capacity, as the update ratio sets an upper bound on 
the possible traffic reduction through replication. Thus, if we 
consider a system with unlimited capacity, the “replicate 
everywhere anything” policy is strictly inadequate. The read 
and update parameters indeed help in drawing a line between 
good and marginal algorithms. The plots in Figs. 3 and 4 show 
the results of read and update frequencies, respectively. A 
clear classification can be made between the algorithms. Aε-
Star, DA, EA, Greedy and FA incorporate the increase in the 
number of reads by replicating more objects and thus savings 
increase up to 88%. GRA gained the least of the OTC savings 
of up to 67%. To understand why there is such a gap in the 
performance between the algorithms, we should recall that 
GRA specifically depend on the initial population (for details 
see [9]). Moreover, GRA maintains a localized network 
perception. Increase in updates result in objects having 
decreased local significance (unless the vicinity is in close 
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proximity to the primary location). On the other hand, Aε-
Star, DA, EA, Greedy and FA never tend to deviate from their 
global view of the problem search space.  

Lastly, we compare the termination time of the algorithms. 
Before we proceed, we would like to clarify our measurement 
of algorithm termination timings. The approach we took was 
to see if these algorithms can be used in dynamic scenarios. 
Thus, we gather and process data as if it was a dynamic 
system. The average breakdown of the execution time of all 
the algorithms combined is depicted in Fig. 5. There 68% of 
all the algorithm termination time was taken by the repeated 
calculations of the shortest paths. Data gathering and 
dispersion, such as reading the access frequencies from the 
processed log, etc. took 7% of the total time. Other 
miscellaneous operations including I/O were recorded to carry 
3% of the total execution time. From the plot it is clear that a 
totally static setup would take no less that 21% of the time 
depicted in Table II.   

Various problem instances were recorded with C=45% and 
U=15%. Each problem instance represents the average 
recorded time over all the 45 topologies and 13 various access 
logs. The entries in bold represent the fastest time recorded 
over the problem instance.  It is observable that FA and DA 
terminated faster than all the other techniques, followed by 
EA, Greedy, Aε-Star and GRA. If a static environment was 
considered, FA with the maximum problem instance would 
have terminated approximately in 66.69 seconds (21% of the 
algorithm termination time).  

In summary, based on the solution quality alone, the 
algorithms can be classified into four categories: 1) The very 
high performance algorithms that include EA and FA, 2) the 
high performance algorithms of Greedy and DA, 3) the 
medium-high performance Aε-Star, and finally 4) the 
mediocre performance algorithm of GRA. While considering 
the termination timings, FA and DA did extremely well, 
followed by EA, Greedy, Aε-Star, and GRA. 

 CONCLUSIONS 

This paper proposed a game theoretical resource allocation 
mechanism that effectively addressed the fine-grained data 
replication problem with selfish players. The experimental 
results which were recorded against some well know 
techniques such as branch and bound, greedy, game theoretical 
auctions, and genetic algorithms revealed that the proposed 
mechanism exhibited 5%-10% better solution quality and 
incurred fast execution time. 
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