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Abstract—To analyze the behavior of Petri nets, the accessibility 

graph and Model Checking are widely used. However, if the 
analyzed Petri net is unbounded then the accessibility graph becomes 
infinite and Model Checking can not be used even for small Petri 
nets. ECATNets [2] are a category of algebraic Petri nets. The main 
feature of ECATNets is their sound and complete semantics based on 
rewriting logic [8] and its language Maude [9]. ECATNets analysis 
may be done by using techniques of accessibility analysis and Model 
Checking defined in Maude. But, these two techniques supported by 
Maude do not work also with infinite-states systems. As a category 
of Petri nets, ECATNets can be unbounded and so infinite systems. 
In order to know if we can apply accessibility analysis and Model 
Checking of Maude to an ECATNet, we propose in this paper an 
algorithm allowing the detection if the ECATNet is bounded or not. 
Moreover, we propose a rewriting logic based tool implementing this 
algorithm. We show that the development of this tool using the 
Maude system is facilitated thanks to the reflectivity of the rewriting 
logic. Indeed, the self-interpretation of this logic allows us both the 
modelling of an ECATNet and acting on it. 
 

Keywords—ECATNets, Rewriting Logic, Maude, Finite-state 
Systems, Infinite-state Systems, Boundness Property Checking.  

I. INTRODUCTION 
HE development of provably error-free concurrent 
systems is still a challenge of system engineering. 
Modeling and analysis of concurrent systems by means of 

Petri nets is one of the well known approaches using formal 
methods. Two of well known analysis techniques of Petri nets 
are dynamic analysis and Model Checking. These two 
methods are largely used in the verification of different 
category of Petri nets. However, if the analyzed Petri net is 
unbounded then the reachability graph becomes infinite and 
Model Checking can not be used, even for small Petri nets. 
 ECATNets [2] are a category of algebraic Petri nets (APNs) 
based on a safe combination of algebraic abstract types and 
high level Petri nets. The semantic of ECATNets is defined in 
terms of rewriting logic [8], allowing us to built models by 
formal reasoning. As Petri nets, ECATNets provide a quickly 
understood formalism due to their simple construction and 
graphical depiction. Moreover, ECATNets have a strong 
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theory and development tools based on powerful logic with 
sound and complete semantic. The integration of ECATNets 
in rewriting logic is very promising in terms of specification 
and verification of their properties. Rewriting logic provides 
to ECATNets a simple, intuitive, and practical textual version 
to analyze systems, without loosing the formal semantic. 
ECATNets analysis may be done by using techniques of 
accessibility analysis and Model Checking defined in Maude 
[3]. However, these two techniques supported by Maude do 
not work with infinite-states system. As a category of Petri 
nets, ECATNets can be unbounded and so infinite system. 
Consequently, study of boundeness property is important in 
our sense to decide the applicability of accessibility analysis 
and Model Checking for ECATNets. 
 The study of boundness property for different category of 
Petri nets is a known problem in the literature. Such studies 
aim in general to construct a coverability graph for Petri nets. 
Among these: The Pr/T-net reachability analysis tool PROD 
[12] implements several methods for efficient reachability 
analysis, PAPETRI [1] constructs reachability and 
coverability graphs for place/transition nets, colored nets, and 
algebraic Petri nets, CPN/AMI [5], DESIGN/CPN [10], and 
INA (Integrated Net Analyzer) [11] computes the coverability 
graph (for Place/Transition Nets (P/T) and colored Petri nets 
(CPN) with time and priorities) using the algorithm of KARP 
and MILLER. In the case where the net is bounded, the 
coverability graph corresponds to the usual reachability graph. 
In [4], FINKEL considers reachability graphs and coverability 
graphs as special cases of a more general structure, so-called 

-state graphs. Among all these state graphs, there exists a 
unique one which is minimal with respect to the number of 
nodes.  
 In our case, we will restrict ourselves to study boundeness 
property for ECATNets. We do not have as an objective in 
this paper the construction of the coverabilty graph but only 
we decide through a proposed algorithm if an ECATNet is 
bounded or not. 
 In this paper, we propose an algorithm and its rewriting 
logic based tool to check boundness property for ECATNets. 
First, we study unbounded places in ECATNets by giving 
some propositions and their proofs. Then, we extract 
conditions of unboundness of ECATNets. The algorithm 
computes the accessibility graph (finite) and checks at the 
same time the conditions of unbounded places in an 
ECATNet. If one of the unboundeness conditions is true, the 
algorithm stops computing and returns that the ECATNet is 
not bounded. Otherwise, if the algorithm finishes the 
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construction of accessibility graph, then it returns that the 
ECATNet is bounded. After that, we present a tool based 
Maude that implements this algorithm. Such tool allows us to 
know the applicability of the accessibility analysis and the 
Model Checking of Maude for the ECATNets. The 
development of this tool is not very complicated thanks to the 
reflectivity of Maude language. Indeed, the self-interpretation 
of this logic allows us both the modelling of an ECATNet and 
acting on it. 

 The remainder of this paper is organized as follows: the 
section 2 is a general presentation of the ECATNets and their 
description in rewriting logic. Some proprieties about 
ECATNets including a study of unbounded places case are 
presented in section 3. Section 4 contains our proposed 
algorithm which detects if an ECATNet is bounded or not. In 
section 5, we introduce briefly the concept of the meta-
computation in Maude. In section 6, we describe our 
algorithm’s implementation in Maude system. In section 7, we 
give an example of an ECATNet and its description in Maude 
meta-level representation. Section 8 contains the application 
of the tool on the example. Finally, the section 9 concludes the 
paper. 

II. ECATNETS 
ECATNets [2] are a kind of net/data model combining the 

strengths of Petri nets with those of abstract data types. Places 
are marked with multi-sets of algebraic terms. Input arcs of 
each transition t, i.e. (p, t), are labeled by two inscriptions 
IC(p, t) (Input Conditions) and DT(p, t) (Destroyed Tokens), 
output arcs of each transition t, i.e. (t, p'), are labeled by CT(t, 
p') (Created Tokens), and finally each transition t is labeled by 
TC(t) (Transition Conditions) (see figure 1). IC(p, t) specifies 
the enabling condition of the transition t, DT(p, t) specifies the 
tokens (a multi-set) which have to be removed from p when t 
is fired, CT(t, p') specifies the tokens which have to be added 
to p' when t is fired. Finally, TC(t) represents a boolean term 
which specifies an additional enabling condition for the 
transition t. The current ECATNets’ state is given by the 
union of terms having the following form (p, M(p)). As an 
example, the distributed state s of a net having one transition t 
and one input place p marked by the multi-set a ⊕  b ⊕  c, and 
an empty output place p', is given by the following multi-set : 
s = (p, a ⊕  b ⊕  c). 

 
 
 
 
 

 

A transition t is enabled when various conditions are 
simultaneously true. The first condition is that every IC(p, t) 
for each input place p is enabled. The second condition is that 
TC(t) is true. Finally, the addition of CT(t, p') to each output 
place p' must not result in p' exceeding its capacity when this 
capacity is finite. When t is fired, DT(p, t) is removed 
(positive case) from the input place p and simultaneously 
CT(t, p') is added to the output place p'. Let’s note that in the 

non-positive case, we remove the common elements between 
DT(p, t) and M(p). Transition firing and its conditions are 
formally expressed by rewrite rules. A rewrite rule is a 
structure of the form ''t: u → v if boolexp''; where u and v are 
respectively the left and the righthand sides of the rule, t is the 
transition associated with this rule and boolexp is a Boolean 
term. Precisely u and v are multi-sets of pairs of the form (p, 
[m]⊕), where p is a place of the net, [m]⊕ a multi-set of 
algebraic terms, and the multi-set union on these terms, when 
the terms are considered as singletons. The multi-set union on 
the pairs (p, [m]⊕) will be denoted by ⊗. [x]⊗ denotes the 
equivalence class of x, w.r.t. the ACI (Associativity, 
Commutativity, Identity = φM) axioms for ⊗. An ECATNet 
state is itself represented by a multi-set of such pairs where a 
place p is found at least once if it’s not empty. Now, we recall 
the forms of the rewrite rules (i.e., the meta-rules) to associate 
with the transitions of a given ECATNet. 

IC(p,t) is of the form [m]⊕ 

Case 1. [IC(p, t)]⊕ =  [DT(p, t)]⊕ 
The form of the rule is then given by:  
t : (p, [IC(p, t)]⊕) → (p', [CT(t, p')]⊕)  
where t is the involved transition, p its input place, and p' its 
output place. 
Case 2. [IC(p, t)]⊕ ∩ [DT(p, t)]⊕  = φM  
This situation corresponds to checking that IC(p, t) is included 
in M(p) and, in the positive case, removing DT(p, t) from 
M(p). In the case where DT(p, t) is not included in M(p), we 
have to remove the elements which are common to these two 
multi-sets. The form of the rule is given by: 
t : (p, [IC(p, t)]⊕) ⊗ (p, [DT(p, t)]⊕ ∩ [M(p)]⊕) → (p, [IC(p, 
t)]⊕) ⊗  (p', [CT(t, p')]⊕) 
Case 3. [IC(p, t)]⊕ ∩ [DT(p, t)]⊕ ≠ φM  
This situation corresponds to the most general case. It may 
however be solved in an elegant way by remarking that it 
could be brought to the two already treated cases. This is 
achieved by replacing the transition falling into this case by 
two transitions which, when fired concurrently, give the same 
global effect as our transition. In reality, this replacement 
shows how ECATNets allow specifying a given situation at 
two levels of abstraction. The forms of the axioms associated 
with the extensions are, w.r.t. the explanation already given, 
evident and thus not commented. 

IC(p, t) is of the form ~[m]⊕ 
The form of the rule is given by: 
t : (p, [DT(p, t)]⊕  ∩ [M(p)]⊕) → (p', [CT(t, p')]⊕) 
if ([IC(p, t)]⊕ \ ([IC(p, t)]⊕  ∩ [M(p)]⊕)) = φM  →  [false] 
IC(p, t) = empty 
The form of the rule is given by: 
t: (p,[DT(p, t)]⊕  ∩[M(p)]⊕) → (p',[CT(t, p')]⊕) if [M(p)]⊕ → 
φM 
When the place capacity C(p) is finite, the conditional part of 
the rewrite rule will include the following component: 

[CT(p, t)]⊕ ⊕ [M(p)]⊕ ∩[C(p)]⊕ → [CT(p, t)]⊕ ⊕ [M(p)]⊕  
(Cap) 

Fig. 1  A generic ECATNet 

P' P 
IC(p, t) 

 
DT(p, t) 

TC (t) 
CT(t, p’) 
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In the case where there is a transition condition TC(t), the 
conditional part of our rewrite rule must contain the following 
component:  TC(t) → [true]. 

III. STUDY OF UNBOUNDED PLACES 

 The development of an algorithm that detects cases of 
unbounded places in an ECATNet is a delicate problem. It is 
about an unbounded place when the number of algebraic 
terms in this place increases infinitely. The study of case of an 
unbounded place comes back to study the monotony property. 
In an ECATNet, this property depends strongly on 
assignments of algebraic term variables that label arcs joining 
places and transitions. We separate three cases of ECATNets : 
simple ECATNet (without conditions of transitions and 
ECATNet's places with infinite capacity), ECATNet with 
conditions of transitions and places with infinite capacity, 
ECATNet without conditions of transitions and places with 
infinite capacity, and of course the general case. In the case of 
an ECATNet with places with infinite capacity, the property 
of the monotony is respected. In the case of the places with 
finite capacity, the monotony may be respected or not. We 
focus in our study on the case when IC(p, t) is of the form 
[m]⊕ and we exclude from the two other cases (IC(p, t) is of 
the form ~[m]⊕, and IC(p, t) = empty). 

A.  ECATNet's Places with Infinite Capacity  
We give in following some propositions and their proofs. 

We focus in these propositions on the ECATNet of the first 
case ([IC(p, t)]⊕ = [DT(p, t)]⊕). We obtained the same result 
for the two other cases ([IC(p, t)]⊕ ∩ [DT(p, t)]⊕  = φM and 
[IC(p, t)] ∩ [DT(p, t)] ≠ φM). 

B. Absence of Transitions Conditions 

Proposition 1.  Let M , 'M  two markings and S  a sequence 
of transitions,  if  ⎯→⎯SM   and  'MM ⊆    then  ⎯→⎯SM '  
 
Proof 1. We make call to the proof by recurrence. For 

tS = (one transition), if t  is enabled at M , then we have : 
Pp ∈∀    )(),( pMtpIC ⊆    or   )(),( pMtpDT ⊆      
Pp ∈∀    if   )(')( pMpM ⊆    then  

)('),( pMtpIC ⊆    or  )('),( pMtpDT ⊆  

Consequently, t  is enabled at 'M . Let’s assume that this 
property is verified for kttS ..1=   and we prove that it is for 

11.. += kk tttS . We have: 

1
.. 11

+⎯⎯→⎯⎯⎯ →⎯ +
k

t
k

tt MMM kk  

By supposition, 'MM ⊆     then   k
tt MM k '' ..1⎯⎯ →⎯    

Now, is 1+kt  enabled at '
kM  ? 

We have  k
ttt MMMM k⎯→⎯⎯→⎯⎯→⎯ ...21

21  
Pp ∈∀  ),()),(\)(()( 111 tpCTtpDTpMpM ⊗=   (1) 

If   )(),( 1 pMtpIC ⊆  and )(),( 1 pMtpDT ⊆  

Such that \ and ⊗ are subtraction and union of multi-sets. 
While )(),( 1 pMtpDT ⊆  then, without risks in multi-sets, we 
can write :  

),(\)),()(()( 111 tpDTtpCTpMpM ⊗=          (2) 
 

),(\)),()(()( 111 −−− ⊗= kkkk tpDTtpCTpMpM     (3) 
then  : 

),(\),(
)),(\)),()(()(

11

222

−−

−−−

⊗
⊗=

kk

kkkk

tpDTtpCT
tpDTtpCTpMpM

 (4) 

 
we can write : 

)),(),((\)),(
),()((()(

121

22

−−−

−−

⊗⊗
⊗=

kkk

kkk

tpDTtpDTtpCT
tpCTpMpM

       (5) 

consequently, we can write : 

)),((\)),(()((()(
1l1

l

k

l

k

l
k tpDTtpCTpMpM

==
⊗⊗⊗= (6) 

moreover, we have also : 

)),((\)),(()((()(
1l1

''
l

k

l

k

l
k tpDTtpCTpMpM

==
⊗⊗⊗=  (7) 

if  )()( ' pMpM kk ⊆   then  

)),(()()),(()(
1

'

1
l

k

l
l

k

l
tpCTpMtpCTpM

==
⊗⊗⊆⊗⊗   (8) 

and then  

)),((\)),(()(

)),((\))),(()(

11

'

11

l

k

l
l

k

l

l

k

l
l

k

l

tpDTtpCTpM

tpDTtpCTpM

==

==

⊗⊗⊗⊆

⊗⊗⊗
      (9) 

because 

)),(()(),(
11

l

k

l
l

k

l
tpCTpMtpDT

==
⊗⊗⊆⊗        (10) 

that is to say )()( ' pMpM kk ⊆ , if 1+kt   is enabled at kM  

then it is enabled at '
kM . If  ⎯⎯ →⎯ +11.. kttM  and 'MM ⊆  then 

⎯⎯ →⎯ +11..' kttM . It means that the property of monotony is 
verified. 
 
Proposition 2. If 1MM s⎯→⎯  and  1MM ⊆  then p place, 
such that )()( 1 pMpM ⊂  is an unbounded place. 

Proof 2. We have in this case : 

k
ss MMM ⎯→⎯⎯→⎯ ...1  When k  offers toward the infinite 

with 1MM ⊆  21 MM ⊆   and   kk MM ⊆−1  
For Pp ∈   if )()( 1 pMpM ⊂  then  

φ≠∃ )( pm    )()()(1 pMpmpM ⊕=            (11) 
(m is non-empty multi-set). On the other hand   

)),((\))),(()((()(
11

12 l

k

l
l

k

l
tpDTtpCTpMpM

==
⊗⊗⊗= (12) 

consequently,  
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)),((\

))),(()()((()(

1

1
2

l

k

l

l

k

l

tpDT

tpCTpMpmpM

=

=

⊗

⊗⊗⊗=
       (13) 

 
without risk, we write 

)),((\))),((

)((()()(

11

2

l

k

l
l

k

l
tpDTtpCT

pMpmpM

==
⊗⊗⊗

⊗=
              (14) 

this means that  
)()()( 12 pMpmpM ⊗=                       (15) 

or    
)()()()(2 pMpmpmpM ⊗⊗=                  (16) 

we have 
)()()( pmpmpm ⊗⊂                           (17) 

and then  
)()()( 21 pMpMpM ⊂⊂                       (18) 

 
by recurrence, we will have 

)(...)()()( 21 pMpMpMpM k⊂⊂⊂⊂            (19) 
or 

)()(...)()( pMpmpmpM
timesk

k ⊗⊗⊗=
444 3444 21

                (20) 

That is to say, that if k  offers toward the infinite, then the 
number of the algebraic terms in place p  increases toward the 
infinite. 
 
Interpretation 2. For one transition t, we have : 

tp •∈∀  ),(\)()(' tpDTpMpM =             (21) 
if  )(),( pMtpIC ⊆  

•∈∀ tp    ),()()(' tpCTpMpM ⊗=          (22) 

For •∈ tp   )()( ' pMpM ⊆  then  

),()()( ' tpCTpMpM ⊗=                  (23) 
It is achieved some either circumstances. 

tp •∈   )()( ' pMpM ⊆    

then   ),(\)()( ' tpDTpMpM ⊆  
It is possible, only in two cases : 
• φ=),( tpDT , we sensitize without withdrawing 
• input place is always output place ),(),( tpCTtpDT ⊆  
We add more algebraic terms than we have just withdrawn. 

C.  Presence of Transitions Conditions  
 The presence of a condition for a transition does not make 
any problems with regard to the preservation of monotony. A 
transition condition is true if the values which make it true are 
inside the input places of the transition of this condition. By 
increasing the multi-sets of terms in these places, these values 
always exist and the condition is always true. That wants to 
say, if a transition is enabled since a marking M , it is always a 
since 'M  such that 'MM ⊆ . 

D. ECATNet's Places with Finite Capacity 
We distinguish two cases. We discuss them in the 

following propositions: 
 
Proposition 3. If 21 MM S⎯→⎯  and 21 MM ⊆  and for every 
finite place p, )()( 21 pMpM = , then every infinite place p' 
such )'()'( 21 pMpM =  is an unbounded place. 
 
Proof 3.  For simplicity, we only take into consideration 

tS = (one transition). Let’s consider that FPIPP ∪=  ( IP  : 
Places with infinite capacities, FP : Places with finite 
capacities) 
if t  is enabled at 1M , then we have : 

Pp ∈∀  )(),( 1 pMtpIC ⊆ and )(),( 1 pMtpDT ⊆      
Pp ∈∀    if   )()( 21 pMpM ⊆     

then    )(),( 2 pMtpIC ⊆    and  )(),( 2 pMtpDT ⊆   
on the other hand, )()(: 21 pMpMFPp ⊆∈∀ if t doesn’t 
change the marking in finite places because if t deletes tokens 
from a finite place, t put the same tokens in this place or t is 
just independent from this place. Then t is also enabled at 

2M .   
),()),(\)(()( 12 tpCTtpDTpMpM ⊗=            (24) 

because  
),()),(\)(()( 11 tpCTtpDTpMpM ⊗⊆          (25) 

then ),(\),( tpDTtpCT is a positive multi-set. In this case, we 
can write: 

)),(\),(()()( 12 tpDTtpCTpMpM ⊗=          (26) 
because 

)()(: 21 pMpMFPp =∈∀                   (27) 
we conclude that 

φ=∈∀ ),(\),(: tpDTtpCTFPp            (28) 
we can continue in this way and we get  

)),(\),(()()( 23 tpDTtpCTpMpM ⊗=        (29) 

)),(\),((
))),(\),(()(()( 13

tpDTtpCT
tpDTtpCTpMpM

⊗
⊗=

      (30) 

)),(\),(()()(
2

1
13 tpDTtpCTpMpM

i=
⊗=         (31) 

t is always enabled at 3M .  By recurrence we get : 

)),(\),(()()(
1

1 tpDTtpCTpMpM
k

i
k

=
⊗=        (32) 

we put 
 )(),(\),( pmtpDTtpCT =                      (33) 

and 

))(()()(
1

1 pmpMpM
k

i
k

=
⊗=                       (34) 

we can say ⎯→⎯ *
1

tM  
for a place IPp ∈  with )()( 21 pMpM ⊂ , φ≠)( pm . So, if k  
goes toward the infinite, then the number of the algebraic 
terms in place p  increases toward the infinite.  
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Proposition 4. if 'MM S⎯→⎯  and 'MM ⊆  and the first 
transition in S  in not enabled since 'M . If it exists S’ such 
that ''' ' MM S⎯→⎯   'S  stops when S  become enabled. If we 
have the following case : 

'''''' ' MMMM SSS ⎯→⎯⎯→⎯⎯→⎯  and if '''' MM ⊆    and  
)()('' pMpM ⊆   for each place p with bounded capacity 

yielding S  disabled at 'M , then every infinite place p' such 
)'(''')'(' pMpM ⊂  is an unbounded place. 

 
Interpretation 4. The only reason that makes the first 
transition of S disabled is the problem of the overtaking of 
certain places capacities. S' makes lower the algebraic terms in 
places suffering of overflow. For it, S becomes again enabled, 
then we get '''M . Then, we get the infinity in certain places 
with infinite capacities. 

IV. AN ALGORITHM TO DETECT UNBOUNDED PLACES FOR 
ECATNETS 

In this section, we present our algorithm for checking if a 
given ECATNet is bounded or not. The basic idea of the 
algorithm consists in computing the accessibility graph (finite) 
of the ECATNet and checking at the same time the conditions 
of unbounded places. If one of the unboundeness conditions is 
true, the algorithm stops computing and returns that ECATNet 
is not bounded. Otherwise, if the algorithm finishes the 
accessibility graph, then it returns that the ECATNet is 
bounded. 

First, we define some functions that will be used in the 
framework of our algorithm: 
SubMarking(m, m') : returns true if m is included in m'. 
StSubMarking(m, m') : returns true if m is a sub-marking of 
m' and m ≠ m' (m is strictly sub-marking of m'). 
ReachableMarking(m, l) : returns a result marking of firing 
rewriting rule l at m. If ReachableMarking(m, l) = mt, then the 
rule l is not enabled at m. 
GetSubMarkingConcerningPlace(m, p) : gives a marking 
that is sub-marking of m concerning the place p. 
 

In the following algorithm, we consider (C1) and (C2) the 
conditions of the presence of unbounded places in an 
ECATNet. (C1) is the condition that we find it after  if and 
(C2) is the condition we find it after the or. 
 
Algorithm Boundeness Property Decision for ECATNets 
Input : N : ECATNet without inhibitor arcs, P: set of places 
of N, P = FP∪IP, FP : set of finite places, IP : set of infinite 
places, FP∩IP = φ, L : set of transitions (rewriting rules) of N, 
m0 : the initial marking. 
Output : Decision if an ECATNet is bounded or not  
Method : var Decision : (Bounded, UnBounded) := Bounded; 
1. The root is labeled by the initial marking m0 
2. A marking m doesn’t have a successor if and only if: 
-for each rewriting rule l, ReachableMarking(m, l) = φ 
-it exists on the path of m0 to m another marking  m' = m 
3. if the two conditions are not verified, let m'' be the marking  such 

m ⎯→⎯l m'' then 

for (every rule l, where ReachableMarking(m, l) ≠ φ) & (Decision = 
Bounded) do 
         
if   ( ∃ m' : marking on the path of m0 until  m & m' is a sub-marking 
of ReachableMarking(m, l)  
& ∀ p ∈FP:   
GetSubMarkingConcerningPlace(ReachableMarking(m, l), p)= 
                           GetSubMarkingConcerningPlace(m',p) )    (C1) 
 
or  
 
(∃ m' : marking on the path of m0 until  m & m'  
             is strictly sub-marking of ReachableMarking(m, l) 
&  ( ∃li  (i =I, 2)∈ L &  l1≠l2 on the path from m' until  m  such that  
    &   ∃m1, m2  two markings on the path  from  m' until m   

    &    m' ⎯→⎯ Sll1 m1 and m1 ⎯→⎯ '2Sl  m2  

           and m2 ⎯→⎯ Sll1  ReachableMarking(m, l) 
    &  SubMarking(m',  m1) = true 
    &  ReachableMarking(m1, l1) = φ 
    & ∀ p ∈ FP: GetSubMarkingConcerningPlace(m2, p)  
        is sub-marking of GetSubMarkingConcerningPlace(m’, p)  (C2) 
 
then  Decision := UnBounded; 
 
else  m'' = ReachableMarking(m, l); 
 
return (Decision); 

V. META-LEVEL COMPUTATION IN MAUDE  
Maude provides a platform getting easy implementation of 

ECATNets’ tool. Meta-level description is one of services 
provided by Maude. This service permits describing a module 
in meta-level. This module becomes an input to another 
module. We will use meta-level representation in Maude to 
describe an ECATNet and act on it. The syntax of meta-level 
representation is different from ordinary representation in 
Maude. Term and module in the meta-level are called meta-
term and meta-module respectively. Meta-term is considered 
as term of a generic type called Term. A Meta-module is 
considered as a term of generic type called Module. To 
manipulate a module in meta-level representation, Maude 
provides a module called META-LEVEL. This module 
encapsulates some services called descent functions. A 
descent function performs reduction and rewriting of meta-
term, according to the equations and rules in the 
corresponding meta-module, at the meta-level. 

 
Function metaApply. metaApply is the process of applying a 
rule of a system module to a term: 
sort ResultTriple ResultTriple? . 
subsort ResultTriple < ResultTriple? . 
op {_,_,_} : Term Type Substitution –> ResultTriple [ctor] . 
op failure : –> ResultTriple? [ctor] . 
op metaApply : Module Term Qid Substitution Nat –> 
ResultTriple? . 

The first four parameters are representations in meta-level 
of a module, a term in a module, some rules label in the 
module and a set of assignments (possibly empty) defining a 
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partial substitution for variables being in this rule. The last 
parameter is a natural number. Given a natural N as a fifth 
parameter, metaApply function returns the (N+1)th result of 
application of every substitution. In our application, we don’t 
need any substitution, than we take the empty substitution 
none. In this case, we take 0 as last parameter. For more 
details about the two last parameters see [3]. This function 
returns a triple formed by result term, type of this term and 
substitution, otherwise metaApply returns 'failure'. 
 
Function getTerm. We apply getTerm function on 
metaApply to extract only the resulting term: 
op getTerm : ResultTriple –> Term . 

VI. IMPLEMENTATION OF THE ALGORITHM IN MAUDE 
In the framework of this work, we used as platform Maude 

in its version 2.0.1 under Windows-XP. The development of 
this application is not very complicated thanks to the meta-
computation concept in Maude. Many details are adjusted by 
the ECATNets description in Maude. For instance, a transition 
can have a condition that will be integrated in the rule. The 
call of metaApply function allows to evaluate the condition 
and to free our application to deal with this detail. Let’s 
consider textual version of ECATNets in Maude. First, we 
present a generic module that describes basic operations for 
ECATNet: 
fmod GENERIC-ECATNET is 
  sorts Place Marking GenericTerm . 
  op mt : -> Marking . 
  op <_;_> : Place GenericTerm -> Marking . 
  op _._ : Marking Marking -> Marking [assoc comm id: mt] . 
endfm 

 
As illustrated in this code, mt is the empty marking 

implementing φM. Respecting some syntactical constraints in 
Maude language, we define the operation "<_;_>" which 
permits the construction of elementary marking. The two 
underlines indicate the positions of the operation's parameters. 
The first parameter of this operation is a place and the second 
one is an algebraic term (marking) in this place. 

A. Reachability Graph Representation.  
 A triple < T ; L ; T’ >  means that the rewriting of T (T for 
Term) is T’ by using the rule L. This is equivalent to say that 
the firing of the transition represented by the rule L at the 
marking represented by T gives the marking represented by 
T’. The accessibility graph will be represented by a list of this 
kind of triples. 
 

B. Application’s Functions  
 Many functions are developed in functional programming 
paradigm to implement the above algorithm. In this section, 
we describe in detail how we realized some of these functions. 
We present also some basic sorts.  
 We define a sort BoundnessData containing two constants 
Bounded and UnBounded. An element of the sort Decision is 

a couple of an element ListOfTriple (accessibility graph under 
construction) and an element of sort BoundnessData. The 
operation 1st which is applied on a pair of sort Decision 
returns the first element of this pair that is of sort 
ListOfTriple. 
 
sorts BoundnessData Decision . 
ops Bounded UnBounded : -> BoundnessData . 
op _;_ : ListOfTriple BoundnessData -> Decision . 
op 1st : Decision -> ListOfTriple . 
eq 1st((LT ; Bd)) = LT . 
op 2nd : Decision -> BoundnessData . 
eq 2nd((LT ; Bd)) = Bd . 
 
 The function ReachableMarking(M, T, L) returns a 
successor marking of the whole T by applying L, otherwise, 
the function returns the empty marking mt. M is a module 
representing ECATNet system: 
op ReachableMarking : Module Term Qid -> Term . 
eq ReachableMarking(M, T, L) =  
if metaApply(M, T, L, none, 0) =/= failure  
 then if getTerm(metaApply(M, T, L, none, 0)) == 'mt.Marking 
          then 'mt.Marking      
          else  getTerm(metaApply(M, T, L, none, 0)))    fi 
 else mt   fi . 
 
 The function AccessibleMark(M, T, L), with T a term to 
compute its successor by firing rule L, this function returns, in 
success case, a triple of the form < T ; L ; RT > such that RT 
is the successor marking of T after firing L: 
op AccessibleMark : Module Term Qid -> Triple . 
eq AccessibleMark(M, T, L) = MediumAccessibleMark(M, T, 
GetAllSubTerms(T), L) . 
 
 This function calls the function MediumAccessibleMark(M, 
T, GetAllSubTerms(T), L). The function GetAllSubTerms(T) 
returns a stack of all sub-terms of T. This is necessary because 
metaApply(M, T, L, none, 0) gives a result term if and only if 
the whole term  T matches exactly the left hand side of a rule 
L. For a super term of T and which is different from it, this 
function doesn’t give a result term. In this case, we proceed to 
the decomposition of the term by extracting all its sub-terms 
components. Then, we apply to each sub-term top(S) the 
ReachableMarking(M, top(S), L) function for rule L. The sub-
term component that is a left part of this rule is subtracted 
from its super-term. The result RT of the subtraction is added 
to the result term of ReachableMarking(M, top(S), L).  
 
op MediumAccessibleMark : Module Term Stack Qid -> Triple . 
eq MediumAccessibleMark(M, T, S, L) =  
if S == emptystack 
then errorltt 
else  if ReachableMarking(M, top(S), L) == mt                           
        then  MediumAccessibleMark(M, T, pop(S), L) 
        else  if StackCompareEqTerms(T, top(S)) == true 
                   
then if  
CapacityCheckingInPlaces(ReachableMarking(M, T, L)) == true  
       then < T ; L ; ReachableMarking(M, T, L) >  
       else MediumAccessibleMark(M, T, pop(S), L)  
       fi 
else if  
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CapacityCheckingInPlaces(TermAddition(TermSubstractionExt(T, 
top(S)),  ReachableMarking(M, top(S), L))) == true   
 
      then < T ; L ; TermAddition(TermSubstractionExt(T, top(S)), 
                             ReachableMarking(M, top(S), L)) >  
 
       else MediumAccessibleMark(M, T, pop(S), L) 
     fi   fi   fi   fi . 
 
 The main function of our application is Decidability-
Decision(M, T0). This function is an interface with the user: 
op Decidability-Decision : Module Term -> BoundnessData . 
eq Decidability-Decision(M, T0) = 2nd(AllAccessibleMark(M, T0, 
T0, emptystack, emptystack, GetRulesName(M), T0, emptyt, IPs, 
FPs, GetRulesName(M))) . 
 

Decidability-Decision(M, T0) calls and initializes 
parameters of AllAccessibleMark(M, T0, S, S1, S', LS, APath, 
LT, IP, FP, LS1) function. Let’s note that FP is the set of 
places with finite capacity and S is a stack containing terms 
markings to be treated. When we obtain successors markings 
of top(S), we put it first in S1. If S becomes empty, we pass to 
deal with markings in S1 and so we put the content of S1 in S. 
S’ is a stack containing markings that are dealt with. This is 
important in order to avoid looking for successors marking for 
those that are already treated. LS is a list containing initially 
all labels of module’s rules and LS1 is a list always containing 
all labels of module’s rules (GetRulesName(M)). APath is a 
stack of term lists, when each term list is a path. The first term 
of this list (path) is the initial marking and the last one is a 
marking waiting to compute its accessible markings. LT 
contains the coverability graph created until this moment : 
 
op AllAccessibleMark : Module Term Stack Stack Stack List Stack 
ListOfTriple List List List -> Decision . 
eq AllAccessibleMark(M, T0, S, S1, S', LS, APath, LT, IP, FP, LS1) 
= 
if S == emptystack  
 then if S1 == emptystack  
          then emptyt ; Bounded 
 else AllAccessibleMark(M, T0, S1, emptystack, S', LS1, APath,  
         LT, IP, FP, LS1)  
 fi 
 else  if LS == emptyList 
          then AllAccessibleMark(M, T0, pop(S), S1, push(top(S), S'), 
                  LS1, APath, LT, IP, FP, LS1) 
          else if findTermInStack(top(S), S') == true 
                  then AllAccessibleMark(M, T0, pop(S), S1, S', LS1, 
                          APath, LT, IP, FP, LS1) 
                  else   if   AccessibleMark(M, top(S), head(LS)) ==  
                                 errorltt 
                            then AllAccessibleMark(M, T0, S, S1, S', 
                                    tail(LS), APath, LT, IP, FP, LS1) 
                            else   
        
if (SubMarkingFoundOnPath(M, T0, top(S),  
    3rd(AccessibleMark(M, top(S), head(LS))), APath, head(LS))  
     =/= nil  
   and  ConstantMarksInFPlaces(M,   
           SubMarkingFoundOnPath(M, T0, top(S),  
           3rd(AccessibleMark(M, top(S), head(LS))),  
           APath, head(LS)),  

           3rd(AccessibleMark(M, top(S), head(LS))), FP) == true) 
 
  or (SubMarkingFoundOnPath(M, T0, top(S),  
       3rd(AccessibleMark(M, top(S), head(LS))), APath, head(LS))  
       =/= nil 
       and TwoMarkingsFoundRef(M, SubMarkingFoundOnPath(M,  
              T0, top(S), 3rd(AccessibleMark(M, top(S),  
               head(LS))), APath, head(LS)),  top(S), LT, APath, 
               head(LS), FP) == true) 
 
then emptyt ; UnBounded 
 
else ConcatListOfTriple(AccessibleMark(M, top(S), head(LS)), 
  
1st(AllAccessibleMark(M, T0, S,     
 DeleteDupInStackExt(TrListToStack(AccessibleMark(M, top(S),  
head(LS)), S1)),  S', tail(LS), PathSCreation(top(S), 
GetRTerms(AccessibleMark(M, top(S), head(LS))), APath),  
ConcatListOfTriple(AccessibleMark(M, top(S),  
head(LS)), LT),   IP, FP, LS1))) ;  
 
2nd(AllAccessibleMark(M, T0, S,     
DeleteDupInStackExt(TrListToStack(AccessibleMark(M, top(S),  
head(LS)), S1)), S', tail(LS), PathSCreation(top(S),  
GetRTerms(AccessibleMark(M, top(S), head(LS))), APath),  
ConcatListOfTriple(AccessibleMark(M, top(S), head(LS)), LT),  
IP, FP, LS1)) 
 fi   fi   fi   fi  fi . 
 
 We compute successor marking of top(S) with each rule 
head(LS) in LS. Each time LS becomes empty, we reinitialize 
its content with LS1 to continue accessible markings' 
computation for another marking. If S and S1 are empty, there 
is no marking to compute its successors. This marks the end of 
the computation. If S is empty and not S1, we put the contents 
of S1 in S, this permits to compute the accessible markings 
from those in S1. It is necessary the reinitialization of LS by 
LS1. 
 In the case when S isn’t empty (i.e, we have markings to 
compute their successors), we need to verify some conditions 
before computing the successors of top(S). First, we check if 
LS isn’t empty and if top(S) doesn’t exist in S’. Because if LS 
is empty, this means that we have already computed all 
accessible markings of top(S), so we discard it to S’, and if 
top(S) exists in S’, so top(S) is already treated before. 
 If such conditions are checked, we can proceed to compute 
accessible marking of top(S) with head(LS) rule. For that, we 
call AccessibleMark(M, top(S), head(LS)). This function 
insures that head(LS) rule is enabled or not at top(S) marking. 
The term errorltt indicates that head(LS) is not enabled at 
top(S). In this case, we discard this rule and we continue to 
see if there are others rules (tail(LS)) enabled at top(S). If 
head(LS) is enabled at top(S), we check if conditions of 
unbounded places are valid or not. This is expressed by the 
condition (T' =/= nil and ConstantMarksInFPlaces(M,  T',  
RT, head(LS), FP) == true). The first condition (T’ =/= nil) 
implements the condition (C1) of the algorithm and the 
second one implements (C2). If the conditions are true, we 
stop computing reachability graph and we return UnBounded. 
Let’s note that 3rd(AccessibleMark(M, top(S), head(LS))) 
returns the third element in the triple (result term of firing 
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head(LS) at top(S)). TrListToStack(AccessibleMark(M, 
top(S), T', head(LS), IP), S1) puts in S1 the third element in 
the triple AccessibleMark(M, top(S), head(LS), IP), and 
DeleteDupInStackExt eliminates any duplication in the result 
stack. PathSCreation(top(S), GetRTerms(AccessibleMark(M, 
top(S), head(LS), IP)), APath) puts the new created accessible 
marking in its appropriate place in APath. Finally, 
ConcatListOfTriple(AccessibleMark(M, top(S), head(LS)), 
LT) allows adding new created triple AccessibleMark(M, 
top(S), head(LS), IP) to existent coverability graph (LT).  

VII. EXAMPLE 
The subject of this section is the application of the proposed 

tool on a simple industrial case. This example is presented in 
[6] and it is described by using ECATNets formalism in [7]. 
We take this description with some modifications. This 
example presents an infinite-state real system. 

A. Example Presentation  
The example is about a cell of production that manufactures 

forged pieces of metal with the help of a press. This cell is 
composed of a table A that serves to feed the cell by raw 
pieces, of a robot of handling, a press and a table B that serves 
to the storage of forged pieces. The robot includes two arms, 
disposed at right angles on one same horizontal plan, 
interdependent of one same axis of rotation and without 
vertical mobility possibility. The figure 2 represents the spatial 
disposition of elements of the cell. The robot can seize a raw 
piece of the table A and to put down it in the press with the 
help of the arm 1. It can also seize a forged piece of the press 
and can put down it on the table of storage B with the help of 
the arm 2. In short, the robot can do two movements of 
rotation. The first allows it to pass from its initial position to 
its secondary one. This movement permits the robot to deposit 
a raw piece in the press and possibly the one of a forged piece 
on the table of storage B. The second allows it to pass from its 
secondary position towards its initial position and to continue 
the cycle of rotation. 
 
 
 
 
 
 
 
 

B. ECATNets Model of the Example 
Figure 3 represents the ECATNets model of production 

cell. The symbol φ is used to denote the empty multi-set in 
arcs inscriptions. Please note that r denotes 'raw' and f denotes 
'forge'. If the inscriptions IC(p, t) and DT(p, t) are equals, then 
we only present IC(p, t) on the arc (p, t). The rewriting rules 
of the system will be presented in the following section 
directly in Maude. 
 
ECATNets Places. 

Ta : table A ; set, possibly empty, of raw pieces.  
Tb : table B ; set, possibly empty, of raw pieces. 
Ar1 : arm 1 of robot ; at most a raw piece. 
Ar2 : arm 2 of robot ; at most a forge piece. 
Pr : press ; at most a raw piece or a forge piece. 
PosI : initial spatial position of robot ; it is marked "ok" if it is 
the current position of robot. 
PosS : secondary spatial position of robot ; it is marked "ok" if 
it is the current position of robot. 
EA : this place is added for testing if the two arms of robot are 
empty. 
 
ECATNets Transitions. 
T1 : taking of a raw piece by the arm 1 of the robot. 
T2 : taking of a forge piece by the arm 2 of the robot. 
D1 : deposit of a raw piece in the press. 
D2 : deposit of a forge piece on the table B. 
TS1, TS2 : rotation of the robot from its initial position 
towards its secondary position. 
TI : rotation of the robot from its secondary position towards 
its initial position. 
F : forge of the raw piece introduced in the press. 
E : deposit of a raw piece on the table A. 
R : removing forge pieces from the table B. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C. Meta-level Representation of the Example in Maude 
The user is not obliged to write (his/her) ECATNet in a 

meta-representation. (He/she) can write it in the common 
mode, and then (he/she) uses the function of Maude 
upModule which allows transforming the representation of a 
module to its meta-representation. The passing in the other 
direction also is possible, thanks to the function downModule. 
For more of clarity, we preferred to give the module 
describing the previous ECATNet in its meta-representation. 
In the module META-LEVEL-ROBOT-ECATNET-
SYSTEM, the META-ROBOT module is defined as a 
constant of type Module and its contents are described by 
means of an equation. 'GENERIC-ECATNET is the 
description in meta-level of module GENERIC-ECATNET 

Fig. 2 Production cell 
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described previously. For more simplicity, we only present 
some rewriting rules describing Robot behavior. 
mod META-LEVEL-ROBOT-ECATNET-SYSTEM is 
.... 
op META-ROBOT : -> Module . 
eq META-ROBOT = (mod 'META-ROBOT is 
protecting ‘GENERIC-ECATNET .  protecting 'INT . 
 
sorts 'Cointype ; 'RPosType ; 'EmptyArmType  .    
subsort 'Cointype < 'GenericTerm . 
subsort 'RPosType < 'GenericTerm .   
subsort 'EmptyArmType < 'GenericTerm .   
subsort 'Place < 'Marking . 
 
op 'ok : nil -> 'RPosType [ctor] .   
op 'Ear1 : nil -> 'EmptyArmType [ctor] .   
op 'Ear2 : nil -> 'EmptyArmType [ctor] . 
op 'raw : nil -> 'Cointype [ctor] .   
op 'forge : nil -> 'Cointype [ctor] . 
 
op 'Ta : nil -> 'Place [ctor] . op 'Tb : nil -> 'Place [ctor] .  
op 'Pr : nil -> 'Place [ctor] . op 'Ar1 : nil -> 'Place [ctor] . 
op 'Ar2 : nil -> 'Place [ctor] . op 'PosI : nil -> 'Place [ctor] .  
op 'PosS : nil -> 'Place [ctor] . op 'Ea : nil -> 'Place [ctor] . 
none none 
 
rl 'm:Marking => '_._['<_;_>['Ta.Place, 'raw.Cointype], 'm:Marking] 
[label('E)]  . 
 
rl '_._['<_;_>['PosS.Place, 'ok.RPosType], '<_;_>['Ar2.Place, 
'forge.Cointype]] => '_._['<_;_>['Tb.Place, 'forge.Cointype], 
'_._['<_;_>['Ea.Place, 'Ear2.EmptyArmType], '<_;_>['PosS.Place, 
'ok.RPosType]]] [label('D2)]  . 
 
rl '<_;_>['Tb.Place, 'forge.Cointype] => 'mt.Marking [label('R)]  .  
... 
endm) .   endm 

VIII. APPLICATION OF THE TOOL ON THE EXAMPLE 
 To apply the tool on the example, we call the main 

function of the application Decidability-Decision(META-
ROBOT, '_._['<_;_>['PosI.Place, 'ok.RPosType], 
'<_;_>['Ea.Place, 'Ear2.EmptyArmType]]). The example is 
about an unbounded ECATNet. It’s clear that the transition ‘E 
is always enabled and so ‘Ta is an unbounded place. 
Consequently, the application of the tool on this example 
returns Unbounded as result (figure 4). 

 
Fig. 4 Application of the boundness property checker on the 

ECATNet example 

IX. CONCLUSION 
In this paper, we proposed an algorithm and its Maude 

based tool to check boundness property for ECATNets. Such 
algorithm is motivated by the fact that analysis techniques like 
reachability analysis and Model Checking of Maude cannot 
deal with infinite-state model including unbounded 
ECATNets. The tool aims to inform us if our ECATNet is 
bounded or not. In this case, we can deduce if we can apply or 
not the accessibility analysis and the Model Checking of 
Maude on this ECATNet. The development of this tool is not 
very complicated thanks to the reflectivity of Maude language 
and the integration of the ECATNets formalism in this 
language. 
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