
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:8, 2007

359

Abstract—To analyze the behavior of Petri nets, the accessibility

graph and Model Checking are widely used. However, if the
analyzed Petri net is unbounded then the accessibility graph becomes
infinite and Model Checking can not be used even for small Petri
nets. ECATNets [2] are a category of algebraic Petri nets. The main
feature of ECATNets is their sound and complete semantics based on
rewriting logic [8] and its language Maude [9]. ECATNets analysis
may be done by using techniques of accessibility analysis and Model
Checking defined in Maude. But, these two techniques supported by
Maude do not work also with infinite-states systems. As a category
of Petri nets, ECATNets can be unbounded and so infinite systems.
In order to know if we can apply accessibility analysis and Model
Checking of Maude to an ECATNet, we propose in this paper an
algorithm allowing the detection if the ECATNet is bounded or not.
Moreover, we propose a rewriting logic based tool implementing this
algorithm. We show that the development of this tool using the
Maude system is facilitated thanks to the reflectivity of the rewriting
logic. Indeed, the self-interpretation of this logic allows us both the
modelling of an ECATNet and acting on it.

Keywords—ECATNets, Rewriting Logic, Maude, Finite-state
Systems, Infinite-state Systems, Boundness Property Checking.

I. INTRODUCTION
HE development of provably error-free concurrent
systems is still a challenge of system engineering.
Modeling and analysis of concurrent systems by means of

Petri nets is one of the well known approaches using formal
methods. Two of well known analysis techniques of Petri nets
are dynamic analysis and Model Checking. These two
methods are largely used in the verification of different
category of Petri nets. However, if the analyzed Petri net is
unbounded then the reachability graph becomes infinite and
Model Checking can not be used, even for small Petri nets.
 ECATNets [2] are a category of algebraic Petri nets (APNs)
based on a safe combination of algebraic abstract types and
high level Petri nets. The semantic of ECATNets is defined in
terms of rewriting logic [8], allowing us to built models by
formal reasoning. As Petri nets, ECATNets provide a quickly
understood formalism due to their simple construction and
graphical depiction. Moreover, ECATNets have a strong

Noura Boudiaf is with University of Constantine, Algeria. (e-mail:
boudiafn@yahoo.com).
Allaoua Chaoui is with University of Constantine, Algeria (e-mail:
a_chaoui2001@yahoo.com).

theory and development tools based on powerful logic with
sound and complete semantic. The integration of ECATNets
in rewriting logic is very promising in terms of specification
and verification of their properties. Rewriting logic provides
to ECATNets a simple, intuitive, and practical textual version
to analyze systems, without loosing the formal semantic.
ECATNets analysis may be done by using techniques of
accessibility analysis and Model Checking defined in Maude
[3]. However, these two techniques supported by Maude do
not work with infinite-states system. As a category of Petri
nets, ECATNets can be unbounded and so infinite system.
Consequently, study of boundeness property is important in
our sense to decide the applicability of accessibility analysis
and Model Checking for ECATNets.
 The study of boundness property for different category of
Petri nets is a known problem in the literature. Such studies
aim in general to construct a coverability graph for Petri nets.
Among these: The Pr/T-net reachability analysis tool PROD
[12] implements several methods for efficient reachability
analysis, PAPETRI [1] constructs reachability and
coverability graphs for place/transition nets, colored nets, and
algebraic Petri nets, CPN/AMI [5], DESIGN/CPN [10], and
INA (Integrated Net Analyzer) [11] computes the coverability
graph (for Place/Transition Nets (P/T) and colored Petri nets
(CPN) with time and priorities) using the algorithm of KARP
and MILLER. In the case where the net is bounded, the
coverability graph corresponds to the usual reachability graph.
In [4], FINKEL considers reachability graphs and coverability
graphs as special cases of a more general structure, so-called

-state graphs. Among all these state graphs, there exists a
unique one which is minimal with respect to the number of
nodes.
 In our case, we will restrict ourselves to study boundeness
property for ECATNets. We do not have as an objective in
this paper the construction of the coverabilty graph but only
we decide through a proposed algorithm if an ECATNet is
bounded or not.
 In this paper, we propose an algorithm and its rewriting
logic based tool to check boundness property for ECATNets.
First, we study unbounded places in ECATNets by giving
some propositions and their proofs. Then, we extract
conditions of unboundness of ECATNets. The algorithm
computes the accessibility graph (finite) and checks at the
same time the conditions of unbounded places in an
ECATNet. If one of the unboundeness conditions is true, the
algorithm stops computing and returns that the ECATNet is
not bounded. Otherwise, if the algorithm finishes the

On Analysis of Boundness Property for
ECATNets by Using Rewriting Logic

Noura Boudiaf, and Allaoua Chaoui

T

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:8, 2007

360

construction of accessibility graph, then it returns that the
ECATNet is bounded. After that, we present a tool based
Maude that implements this algorithm. Such tool allows us to
know the applicability of the accessibility analysis and the
Model Checking of Maude for the ECATNets. The
development of this tool is not very complicated thanks to the
reflectivity of Maude language. Indeed, the self-interpretation
of this logic allows us both the modelling of an ECATNet and
acting on it.

 The remainder of this paper is organized as follows: the
section 2 is a general presentation of the ECATNets and their
description in rewriting logic. Some proprieties about
ECATNets including a study of unbounded places case are
presented in section 3. Section 4 contains our proposed
algorithm which detects if an ECATNet is bounded or not. In
section 5, we introduce briefly the concept of the meta-
computation in Maude. In section 6, we describe our
algorithm’s implementation in Maude system. In section 7, we
give an example of an ECATNet and its description in Maude
meta-level representation. Section 8 contains the application
of the tool on the example. Finally, the section 9 concludes the
paper.

II. ECATNETS
ECATNets [2] are a kind of net/data model combining the

strengths of Petri nets with those of abstract data types. Places
are marked with multi-sets of algebraic terms. Input arcs of
each transition t, i.e. (p, t), are labeled by two inscriptions
IC(p, t) (Input Conditions) and DT(p, t) (Destroyed Tokens),
output arcs of each transition t, i.e. (t, p'), are labeled by CT(t,
p') (Created Tokens), and finally each transition t is labeled by
TC(t) (Transition Conditions) (see figure 1). IC(p, t) specifies
the enabling condition of the transition t, DT(p, t) specifies the
tokens (a multi-set) which have to be removed from p when t
is fired, CT(t, p') specifies the tokens which have to be added
to p' when t is fired. Finally, TC(t) represents a boolean term
which specifies an additional enabling condition for the
transition t. The current ECATNets’ state is given by the
union of terms having the following form (p, M(p)). As an
example, the distributed state s of a net having one transition t
and one input place p marked by the multi-set a ⊕ b ⊕ c, and
an empty output place p', is given by the following multi-set :
s = (p, a ⊕ b ⊕ c).

A transition t is enabled when various conditions are
simultaneously true. The first condition is that every IC(p, t)
for each input place p is enabled. The second condition is that
TC(t) is true. Finally, the addition of CT(t, p') to each output
place p' must not result in p' exceeding its capacity when this
capacity is finite. When t is fired, DT(p, t) is removed
(positive case) from the input place p and simultaneously
CT(t, p') is added to the output place p'. Let’s note that in the

non-positive case, we remove the common elements between
DT(p, t) and M(p). Transition firing and its conditions are
formally expressed by rewrite rules. A rewrite rule is a
structure of the form ''t: u → v if boolexp''; where u and v are
respectively the left and the righthand sides of the rule, t is the
transition associated with this rule and boolexp is a Boolean
term. Precisely u and v are multi-sets of pairs of the form (p,
[m]⊕), where p is a place of the net, [m]⊕ a multi-set of
algebraic terms, and the multi-set union on these terms, when
the terms are considered as singletons. The multi-set union on
the pairs (p, [m]⊕) will be denoted by ⊗. [x]⊗ denotes the
equivalence class of x, w.r.t. the ACI (Associativity,
Commutativity, Identity = φM) axioms for ⊗. An ECATNet
state is itself represented by a multi-set of such pairs where a
place p is found at least once if it’s not empty. Now, we recall
the forms of the rewrite rules (i.e., the meta-rules) to associate
with the transitions of a given ECATNet.

IC(p,t) is of the form [m]⊕

Case 1. [IC(p, t)]⊕ = [DT(p, t)]⊕
The form of the rule is then given by:
t : (p, [IC(p, t)]⊕) → (p', [CT(t, p')]⊕)
where t is the involved transition, p its input place, and p' its
output place.
Case 2. [IC(p, t)]⊕ ∩ [DT(p, t)]⊕ = φM
This situation corresponds to checking that IC(p, t) is included
in M(p) and, in the positive case, removing DT(p, t) from
M(p). In the case where DT(p, t) is not included in M(p), we
have to remove the elements which are common to these two
multi-sets. The form of the rule is given by:
t : (p, [IC(p, t)]⊕) ⊗ (p, [DT(p, t)]⊕ ∩ [M(p)]⊕) → (p, [IC(p,
t)]⊕) ⊗ (p', [CT(t, p')]⊕)
Case 3. [IC(p, t)]⊕ ∩ [DT(p, t)]⊕ ≠ φM
This situation corresponds to the most general case. It may
however be solved in an elegant way by remarking that it
could be brought to the two already treated cases. This is
achieved by replacing the transition falling into this case by
two transitions which, when fired concurrently, give the same
global effect as our transition. In reality, this replacement
shows how ECATNets allow specifying a given situation at
two levels of abstraction. The forms of the axioms associated
with the extensions are, w.r.t. the explanation already given,
evident and thus not commented.

IC(p, t) is of the form ~[m]⊕
The form of the rule is given by:
t : (p, [DT(p, t)]⊕ ∩ [M(p)]⊕) → (p', [CT(t, p')]⊕)
if ([IC(p, t)]⊕ \ ([IC(p, t)]⊕ ∩ [M(p)]⊕)) = φM → [false]
IC(p, t) = empty
The form of the rule is given by:
t: (p,[DT(p, t)]⊕ ∩[M(p)]⊕) → (p',[CT(t, p')]⊕) if [M(p)]⊕ →
φM
When the place capacity C(p) is finite, the conditional part of
the rewrite rule will include the following component:

[CT(p, t)]⊕ ⊕ [M(p)]⊕ ∩[C(p)]⊕ → [CT(p, t)]⊕ ⊕ [M(p)]⊕
(Cap)

Fig. 1 A generic ECATNet

P' P
IC(p, t)

DT(p, t)

TC (t)
CT(t, p’)

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:8, 2007

361

In the case where there is a transition condition TC(t), the
conditional part of our rewrite rule must contain the following
component: TC(t) → [true].

III. STUDY OF UNBOUNDED PLACES

 The development of an algorithm that detects cases of
unbounded places in an ECATNet is a delicate problem. It is
about an unbounded place when the number of algebraic
terms in this place increases infinitely. The study of case of an
unbounded place comes back to study the monotony property.
In an ECATNet, this property depends strongly on
assignments of algebraic term variables that label arcs joining
places and transitions. We separate three cases of ECATNets :
simple ECATNet (without conditions of transitions and
ECATNet's places with infinite capacity), ECATNet with
conditions of transitions and places with infinite capacity,
ECATNet without conditions of transitions and places with
infinite capacity, and of course the general case. In the case of
an ECATNet with places with infinite capacity, the property
of the monotony is respected. In the case of the places with
finite capacity, the monotony may be respected or not. We
focus in our study on the case when IC(p, t) is of the form
[m]⊕ and we exclude from the two other cases (IC(p, t) is of
the form ~[m]⊕, and IC(p, t) = empty).

A. ECATNet's Places with Infinite Capacity
We give in following some propositions and their proofs.

We focus in these propositions on the ECATNet of the first
case ([IC(p, t)]⊕ = [DT(p, t)]⊕). We obtained the same result
for the two other cases ([IC(p, t)]⊕ ∩ [DT(p, t)]⊕ = φM and
[IC(p, t)] ∩ [DT(p, t)] ≠ φM).

B. Absence of Transitions Conditions

Proposition 1. Let M , 'M two markings and S a sequence
of transitions, if ⎯→⎯SM and 'MM ⊆ then ⎯→⎯SM '

Proof 1. We make call to the proof by recurrence. For

tS = (one transition), if t is enabled at M , then we have :
Pp ∈∀)(),(pMtpIC ⊆ or)(),(pMtpDT ⊆
Pp ∈∀ if)(')(pMpM ⊆ then

)('),(pMtpIC ⊆ or)('),(pMtpDT ⊆

Consequently, t is enabled at 'M . Let’s assume that this
property is verified for kttS ..1= and we prove that it is for

11.. += kk tttS . We have:

1
.. 11

+⎯⎯→⎯⎯⎯ →⎯ +
k

t
k

tt MMM kk

By supposition, 'MM ⊆ then k
tt MM k '' ..1⎯⎯ →⎯

Now, is 1+kt enabled at '
kM ?

We have k
ttt MMMM k⎯→⎯⎯→⎯⎯→⎯ ...21

21
Pp ∈∀),()),(\)(()(111 tpCTtpDTpMpM ⊗= (1)

If)(),(1 pMtpIC ⊆ and)(),(1 pMtpDT ⊆

Such that \ and ⊗ are subtraction and union of multi-sets.
While)(),(1 pMtpDT ⊆ then, without risks in multi-sets, we
can write :

),(\)),()(()(111 tpDTtpCTpMpM ⊗= (2)

),(\)),()(()(111 −−− ⊗= kkkk tpDTtpCTpMpM (3)
then :

),(\),(
)),(\)),()(()(

11

222

−−

−−−

⊗
⊗=

kk

kkkk

tpDTtpCT
tpDTtpCTpMpM

 (4)

we can write :

)),(),((\)),(
),()((()(

121

22

−−−

−−

⊗⊗
⊗=

kkk

kkk

tpDTtpDTtpCT
tpCTpMpM

 (5)

consequently, we can write :

)),((\)),(()((()(
1l1

l

k

l

k

l
k tpDTtpCTpMpM

==
⊗⊗⊗= (6)

moreover, we have also :

)),((\)),(()((()(
1l1

''
l

k

l

k

l
k tpDTtpCTpMpM

==
⊗⊗⊗= (7)

if)()(' pMpM kk ⊆ then

)),(()()),(()(
1

'

1
l

k

l
l

k

l
tpCTpMtpCTpM

==
⊗⊗⊆⊗⊗ (8)

and then

)),((\)),(()(

)),((\))),(()(

11

'

11

l

k

l
l

k

l

l

k

l
l

k

l

tpDTtpCTpM

tpDTtpCTpM

==

==

⊗⊗⊗⊆

⊗⊗⊗
 (9)

because

)),(()(),(
11

l

k

l
l

k

l
tpCTpMtpDT

==
⊗⊗⊆⊗ (10)

that is to say)()(' pMpM kk ⊆ , if 1+kt is enabled at kM

then it is enabled at '
kM . If ⎯⎯ →⎯ +11.. kttM and 'MM ⊆ then

⎯⎯ →⎯ +11..' kttM . It means that the property of monotony is
verified.

Proposition 2. If 1MM s⎯→⎯ and 1MM ⊆ then p place,
such that)()(1 pMpM ⊂ is an unbounded place.

Proof 2. We have in this case :

k
ss MMM ⎯→⎯⎯→⎯ ...1 When k offers toward the infinite

with 1MM ⊆ 21 MM ⊆ and kk MM ⊆−1
For Pp ∈ if)()(1 pMpM ⊂ then

φ≠∃)(pm)()()(1 pMpmpM ⊕= (11)
(m is non-empty multi-set). On the other hand

)),((\))),(()((()(
11

12 l

k

l
l

k

l
tpDTtpCTpMpM

==
⊗⊗⊗= (12)

consequently,

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:8, 2007

362

)),((\

))),(()()((()(

1

1
2

l

k

l

l

k

l

tpDT

tpCTpMpmpM

=

=

⊗

⊗⊗⊗=
 (13)

without risk, we write

)),((\))),((

)((()()(

11

2

l

k

l
l

k

l
tpDTtpCT

pMpmpM

==
⊗⊗⊗

⊗=
 (14)

this means that
)()()(12 pMpmpM ⊗= (15)

or
)()()()(2 pMpmpmpM ⊗⊗= (16)

we have
)()()(pmpmpm ⊗⊂ (17)

and then
)()()(21 pMpMpM ⊂⊂ (18)

by recurrence, we will have

)(...)()()(21 pMpMpMpM k⊂⊂⊂⊂ (19)
or

)()(...)()(pMpmpmpM
timesk

k ⊗⊗⊗=
444 3444 21

 (20)

That is to say, that if k offers toward the infinite, then the
number of the algebraic terms in place p increases toward the
infinite.

Interpretation 2. For one transition t, we have :

tp •∈∀),(\)()(' tpDTpMpM = (21)
if)(),(pMtpIC ⊆

•∈∀ tp),()()(' tpCTpMpM ⊗= (22)

For •∈ tp)()(' pMpM ⊆ then

),()()(' tpCTpMpM ⊗= (23)
It is achieved some either circumstances.

tp •∈)()(' pMpM ⊆

then),(\)()(' tpDTpMpM ⊆
It is possible, only in two cases :
• φ=),(tpDT , we sensitize without withdrawing
• input place is always output place),(),(tpCTtpDT ⊆
We add more algebraic terms than we have just withdrawn.

C. Presence of Transitions Conditions
 The presence of a condition for a transition does not make
any problems with regard to the preservation of monotony. A
transition condition is true if the values which make it true are
inside the input places of the transition of this condition. By
increasing the multi-sets of terms in these places, these values
always exist and the condition is always true. That wants to
say, if a transition is enabled since a marking M , it is always a
since 'M such that 'MM ⊆ .

D. ECATNet's Places with Finite Capacity
We distinguish two cases. We discuss them in the

following propositions:

Proposition 3. If 21 MM S⎯→⎯ and 21 MM ⊆ and for every
finite place p,)()(21 pMpM = , then every infinite place p'
such)'()'(21 pMpM = is an unbounded place.

Proof 3. For simplicity, we only take into consideration

tS = (one transition). Let’s consider that FPIPP ∪= (IP :
Places with infinite capacities, FP : Places with finite
capacities)
if t is enabled at 1M , then we have :

Pp ∈∀)(),(1 pMtpIC ⊆ and)(),(1 pMtpDT ⊆
Pp ∈∀ if)()(21 pMpM ⊆

then)(),(2 pMtpIC ⊆ and)(),(2 pMtpDT ⊆
on the other hand,)()(: 21 pMpMFPp ⊆∈∀ if t doesn’t
change the marking in finite places because if t deletes tokens
from a finite place, t put the same tokens in this place or t is
just independent from this place. Then t is also enabled at

2M .
),()),(\)(()(12 tpCTtpDTpMpM ⊗= (24)

because
),()),(\)(()(11 tpCTtpDTpMpM ⊗⊆ (25)

then),(\),(tpDTtpCT is a positive multi-set. In this case, we
can write:

)),(\),(()()(12 tpDTtpCTpMpM ⊗= (26)
because

)()(: 21 pMpMFPp =∈∀ (27)
we conclude that

φ=∈∀),(\),(: tpDTtpCTFPp (28)
we can continue in this way and we get

)),(\),(()()(23 tpDTtpCTpMpM ⊗= (29)

)),(\),((
))),(\),(()(()(13

tpDTtpCT
tpDTtpCTpMpM

⊗
⊗=

 (30)

)),(\),(()()(
2

1
13 tpDTtpCTpMpM

i=
⊗= (31)

t is always enabled at 3M . By recurrence we get :

)),(\),(()()(
1

1 tpDTtpCTpMpM
k

i
k

=
⊗= (32)

we put
)(),(\),(pmtpDTtpCT = (33)

and

))(()()(
1

1 pmpMpM
k

i
k

=
⊗= (34)

we can say ⎯→⎯ *
1

tM
for a place IPp ∈ with)()(21 pMpM ⊂ , φ≠)(pm . So, if k
goes toward the infinite, then the number of the algebraic
terms in place p increases toward the infinite.

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:8, 2007

363

Proposition 4. if 'MM S⎯→⎯ and 'MM ⊆ and the first
transition in S in not enabled since 'M . If it exists S’ such
that ''' ' MM S⎯→⎯ 'S stops when S become enabled. If we
have the following case :

'''''' ' MMMM SSS ⎯→⎯⎯→⎯⎯→⎯ and if '''' MM ⊆ and
)()('' pMpM ⊆ for each place p with bounded capacity

yielding S disabled at 'M , then every infinite place p' such
)'(''')'(' pMpM ⊂ is an unbounded place.

Interpretation 4. The only reason that makes the first
transition of S disabled is the problem of the overtaking of
certain places capacities. S' makes lower the algebraic terms in
places suffering of overflow. For it, S becomes again enabled,
then we get '''M . Then, we get the infinity in certain places
with infinite capacities.

IV. AN ALGORITHM TO DETECT UNBOUNDED PLACES FOR
ECATNETS

In this section, we present our algorithm for checking if a
given ECATNet is bounded or not. The basic idea of the
algorithm consists in computing the accessibility graph (finite)
of the ECATNet and checking at the same time the conditions
of unbounded places. If one of the unboundeness conditions is
true, the algorithm stops computing and returns that ECATNet
is not bounded. Otherwise, if the algorithm finishes the
accessibility graph, then it returns that the ECATNet is
bounded.

First, we define some functions that will be used in the
framework of our algorithm:
SubMarking(m, m') : returns true if m is included in m'.
StSubMarking(m, m') : returns true if m is a sub-marking of
m' and m ≠ m' (m is strictly sub-marking of m').
ReachableMarking(m, l) : returns a result marking of firing
rewriting rule l at m. If ReachableMarking(m, l) = mt, then the
rule l is not enabled at m.
GetSubMarkingConcerningPlace(m, p) : gives a marking
that is sub-marking of m concerning the place p.

In the following algorithm, we consider (C1) and (C2) the
conditions of the presence of unbounded places in an
ECATNet. (C1) is the condition that we find it after if and
(C2) is the condition we find it after the or.

Algorithm Boundeness Property Decision for ECATNets
Input : N : ECATNet without inhibitor arcs, P: set of places
of N, P = FP∪IP, FP : set of finite places, IP : set of infinite
places, FP∩IP = φ, L : set of transitions (rewriting rules) of N,
m0 : the initial marking.
Output : Decision if an ECATNet is bounded or not
Method : var Decision : (Bounded, UnBounded) := Bounded;
1. The root is labeled by the initial marking m0
2. A marking m doesn’t have a successor if and only if:
-for each rewriting rule l, ReachableMarking(m, l) = φ
-it exists on the path of m0 to m another marking m' = m
3. if the two conditions are not verified, let m'' be the marking such

m ⎯→⎯l m'' then

for (every rule l, where ReachableMarking(m, l) ≠ φ) & (Decision =
Bounded) do

if (∃ m' : marking on the path of m0 until m & m' is a sub-marking
of ReachableMarking(m, l)
& ∀ p ∈FP:
GetSubMarkingConcerningPlace(ReachableMarking(m, l), p)=
 GetSubMarkingConcerningPlace(m',p)) (C1)

or

(∃ m' : marking on the path of m0 until m & m'
 is strictly sub-marking of ReachableMarking(m, l)
& (∃li (i =I, 2)∈ L & l1≠l2 on the path from m' until m such that
 & ∃m1, m2 two markings on the path from m' until m

 & m' ⎯→⎯ Sll1 m1 and m1 ⎯→⎯ '2Sl m2

 and m2 ⎯→⎯ Sll1 ReachableMarking(m, l)
 & SubMarking(m', m1) = true
 & ReachableMarking(m1, l1) = φ
 & ∀ p ∈ FP: GetSubMarkingConcerningPlace(m2, p)
 is sub-marking of GetSubMarkingConcerningPlace(m’, p) (C2)

then Decision := UnBounded;

else m'' = ReachableMarking(m, l);

return (Decision);

V. META-LEVEL COMPUTATION IN MAUDE
Maude provides a platform getting easy implementation of

ECATNets’ tool. Meta-level description is one of services
provided by Maude. This service permits describing a module
in meta-level. This module becomes an input to another
module. We will use meta-level representation in Maude to
describe an ECATNet and act on it. The syntax of meta-level
representation is different from ordinary representation in
Maude. Term and module in the meta-level are called meta-
term and meta-module respectively. Meta-term is considered
as term of a generic type called Term. A Meta-module is
considered as a term of generic type called Module. To
manipulate a module in meta-level representation, Maude
provides a module called META-LEVEL. This module
encapsulates some services called descent functions. A
descent function performs reduction and rewriting of meta-
term, according to the equations and rules in the
corresponding meta-module, at the meta-level.

Function metaApply. metaApply is the process of applying a
rule of a system module to a term:
sort ResultTriple ResultTriple? .
subsort ResultTriple < ResultTriple? .
op {_,_,_} : Term Type Substitution –> ResultTriple [ctor] .
op failure : –> ResultTriple? [ctor] .
op metaApply : Module Term Qid Substitution Nat –>
ResultTriple? .

The first four parameters are representations in meta-level
of a module, a term in a module, some rules label in the
module and a set of assignments (possibly empty) defining a

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:8, 2007

364

partial substitution for variables being in this rule. The last
parameter is a natural number. Given a natural N as a fifth
parameter, metaApply function returns the (N+1)th result of
application of every substitution. In our application, we don’t
need any substitution, than we take the empty substitution
none. In this case, we take 0 as last parameter. For more
details about the two last parameters see [3]. This function
returns a triple formed by result term, type of this term and
substitution, otherwise metaApply returns 'failure'.

Function getTerm. We apply getTerm function on
metaApply to extract only the resulting term:
op getTerm : ResultTriple –> Term .

VI. IMPLEMENTATION OF THE ALGORITHM IN MAUDE
In the framework of this work, we used as platform Maude

in its version 2.0.1 under Windows-XP. The development of
this application is not very complicated thanks to the meta-
computation concept in Maude. Many details are adjusted by
the ECATNets description in Maude. For instance, a transition
can have a condition that will be integrated in the rule. The
call of metaApply function allows to evaluate the condition
and to free our application to deal with this detail. Let’s
consider textual version of ECATNets in Maude. First, we
present a generic module that describes basic operations for
ECATNet:
fmod GENERIC-ECATNET is
 sorts Place Marking GenericTerm .
 op mt : -> Marking .
 op <_;_> : Place GenericTerm -> Marking .
 op _._ : Marking Marking -> Marking [assoc comm id: mt] .
endfm

As illustrated in this code, mt is the empty marking

implementing φM. Respecting some syntactical constraints in
Maude language, we define the operation "<_;_>" which
permits the construction of elementary marking. The two
underlines indicate the positions of the operation's parameters.
The first parameter of this operation is a place and the second
one is an algebraic term (marking) in this place.

A. Reachability Graph Representation.
 A triple < T ; L ; T’ > means that the rewriting of T (T for
Term) is T’ by using the rule L. This is equivalent to say that
the firing of the transition represented by the rule L at the
marking represented by T gives the marking represented by
T’. The accessibility graph will be represented by a list of this
kind of triples.

B. Application’s Functions
 Many functions are developed in functional programming
paradigm to implement the above algorithm. In this section,
we describe in detail how we realized some of these functions.
We present also some basic sorts.
 We define a sort BoundnessData containing two constants
Bounded and UnBounded. An element of the sort Decision is

a couple of an element ListOfTriple (accessibility graph under
construction) and an element of sort BoundnessData. The
operation 1st which is applied on a pair of sort Decision
returns the first element of this pair that is of sort
ListOfTriple.

sorts BoundnessData Decision .
ops Bounded UnBounded : -> BoundnessData .
op _;_ : ListOfTriple BoundnessData -> Decision .
op 1st : Decision -> ListOfTriple .
eq 1st((LT ; Bd)) = LT .
op 2nd : Decision -> BoundnessData .
eq 2nd((LT ; Bd)) = Bd .

 The function ReachableMarking(M, T, L) returns a
successor marking of the whole T by applying L, otherwise,
the function returns the empty marking mt. M is a module
representing ECATNet system:
op ReachableMarking : Module Term Qid -> Term .
eq ReachableMarking(M, T, L) =
if metaApply(M, T, L, none, 0) =/= failure
 then if getTerm(metaApply(M, T, L, none, 0)) == 'mt.Marking
 then 'mt.Marking
 else getTerm(metaApply(M, T, L, none, 0))) fi
 else mt fi .

 The function AccessibleMark(M, T, L), with T a term to
compute its successor by firing rule L, this function returns, in
success case, a triple of the form < T ; L ; RT > such that RT
is the successor marking of T after firing L:
op AccessibleMark : Module Term Qid -> Triple .
eq AccessibleMark(M, T, L) = MediumAccessibleMark(M, T,
GetAllSubTerms(T), L) .

 This function calls the function MediumAccessibleMark(M,
T, GetAllSubTerms(T), L). The function GetAllSubTerms(T)
returns a stack of all sub-terms of T. This is necessary because
metaApply(M, T, L, none, 0) gives a result term if and only if
the whole term T matches exactly the left hand side of a rule
L. For a super term of T and which is different from it, this
function doesn’t give a result term. In this case, we proceed to
the decomposition of the term by extracting all its sub-terms
components. Then, we apply to each sub-term top(S) the
ReachableMarking(M, top(S), L) function for rule L. The sub-
term component that is a left part of this rule is subtracted
from its super-term. The result RT of the subtraction is added
to the result term of ReachableMarking(M, top(S), L).

op MediumAccessibleMark : Module Term Stack Qid -> Triple .
eq MediumAccessibleMark(M, T, S, L) =
if S == emptystack
then errorltt
else if ReachableMarking(M, top(S), L) == mt
 then MediumAccessibleMark(M, T, pop(S), L)
 else if StackCompareEqTerms(T, top(S)) == true

then if
CapacityCheckingInPlaces(ReachableMarking(M, T, L)) == true
 then < T ; L ; ReachableMarking(M, T, L) >
 else MediumAccessibleMark(M, T, pop(S), L)
 fi
else if

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:8, 2007

365

CapacityCheckingInPlaces(TermAddition(TermSubstractionExt(T,
top(S)), ReachableMarking(M, top(S), L))) == true

 then < T ; L ; TermAddition(TermSubstractionExt(T, top(S)),
 ReachableMarking(M, top(S), L)) >

 else MediumAccessibleMark(M, T, pop(S), L)
 fi fi fi fi .

 The main function of our application is Decidability-
Decision(M, T0). This function is an interface with the user:
op Decidability-Decision : Module Term -> BoundnessData .
eq Decidability-Decision(M, T0) = 2nd(AllAccessibleMark(M, T0,
T0, emptystack, emptystack, GetRulesName(M), T0, emptyt, IPs,
FPs, GetRulesName(M))) .

Decidability-Decision(M, T0) calls and initializes
parameters of AllAccessibleMark(M, T0, S, S1, S', LS, APath,
LT, IP, FP, LS1) function. Let’s note that FP is the set of
places with finite capacity and S is a stack containing terms
markings to be treated. When we obtain successors markings
of top(S), we put it first in S1. If S becomes empty, we pass to
deal with markings in S1 and so we put the content of S1 in S.
S’ is a stack containing markings that are dealt with. This is
important in order to avoid looking for successors marking for
those that are already treated. LS is a list containing initially
all labels of module’s rules and LS1 is a list always containing
all labels of module’s rules (GetRulesName(M)). APath is a
stack of term lists, when each term list is a path. The first term
of this list (path) is the initial marking and the last one is a
marking waiting to compute its accessible markings. LT
contains the coverability graph created until this moment :

op AllAccessibleMark : Module Term Stack Stack Stack List Stack
ListOfTriple List List List -> Decision .
eq AllAccessibleMark(M, T0, S, S1, S', LS, APath, LT, IP, FP, LS1)
=
if S == emptystack
 then if S1 == emptystack
 then emptyt ; Bounded
 else AllAccessibleMark(M, T0, S1, emptystack, S', LS1, APath,
 LT, IP, FP, LS1)
 fi
 else if LS == emptyList
 then AllAccessibleMark(M, T0, pop(S), S1, push(top(S), S'),
 LS1, APath, LT, IP, FP, LS1)
 else if findTermInStack(top(S), S') == true
 then AllAccessibleMark(M, T0, pop(S), S1, S', LS1,
 APath, LT, IP, FP, LS1)
 else if AccessibleMark(M, top(S), head(LS)) ==
 errorltt
 then AllAccessibleMark(M, T0, S, S1, S',
 tail(LS), APath, LT, IP, FP, LS1)
 else

if (SubMarkingFoundOnPath(M, T0, top(S),
 3rd(AccessibleMark(M, top(S), head(LS))), APath, head(LS))
 =/= nil
 and ConstantMarksInFPlaces(M,
 SubMarkingFoundOnPath(M, T0, top(S),
 3rd(AccessibleMark(M, top(S), head(LS))),
 APath, head(LS)),

 3rd(AccessibleMark(M, top(S), head(LS))), FP) == true)

 or (SubMarkingFoundOnPath(M, T0, top(S),
 3rd(AccessibleMark(M, top(S), head(LS))), APath, head(LS))
 =/= nil
 and TwoMarkingsFoundRef(M, SubMarkingFoundOnPath(M,
 T0, top(S), 3rd(AccessibleMark(M, top(S),
 head(LS))), APath, head(LS)), top(S), LT, APath,
 head(LS), FP) == true)

then emptyt ; UnBounded

else ConcatListOfTriple(AccessibleMark(M, top(S), head(LS)),

1st(AllAccessibleMark(M, T0, S,
 DeleteDupInStackExt(TrListToStack(AccessibleMark(M, top(S),
head(LS)), S1)), S', tail(LS), PathSCreation(top(S),
GetRTerms(AccessibleMark(M, top(S), head(LS))), APath),
ConcatListOfTriple(AccessibleMark(M, top(S),
head(LS)), LT), IP, FP, LS1))) ;

2nd(AllAccessibleMark(M, T0, S,
DeleteDupInStackExt(TrListToStack(AccessibleMark(M, top(S),
head(LS)), S1)), S', tail(LS), PathSCreation(top(S),
GetRTerms(AccessibleMark(M, top(S), head(LS))), APath),
ConcatListOfTriple(AccessibleMark(M, top(S), head(LS)), LT),
IP, FP, LS1))
 fi fi fi fi fi .

 We compute successor marking of top(S) with each rule
head(LS) in LS. Each time LS becomes empty, we reinitialize
its content with LS1 to continue accessible markings'
computation for another marking. If S and S1 are empty, there
is no marking to compute its successors. This marks the end of
the computation. If S is empty and not S1, we put the contents
of S1 in S, this permits to compute the accessible markings
from those in S1. It is necessary the reinitialization of LS by
LS1.
 In the case when S isn’t empty (i.e, we have markings to
compute their successors), we need to verify some conditions
before computing the successors of top(S). First, we check if
LS isn’t empty and if top(S) doesn’t exist in S’. Because if LS
is empty, this means that we have already computed all
accessible markings of top(S), so we discard it to S’, and if
top(S) exists in S’, so top(S) is already treated before.
 If such conditions are checked, we can proceed to compute
accessible marking of top(S) with head(LS) rule. For that, we
call AccessibleMark(M, top(S), head(LS)). This function
insures that head(LS) rule is enabled or not at top(S) marking.
The term errorltt indicates that head(LS) is not enabled at
top(S). In this case, we discard this rule and we continue to
see if there are others rules (tail(LS)) enabled at top(S). If
head(LS) is enabled at top(S), we check if conditions of
unbounded places are valid or not. This is expressed by the
condition (T' =/= nil and ConstantMarksInFPlaces(M, T',
RT, head(LS), FP) == true). The first condition (T’ =/= nil)
implements the condition (C1) of the algorithm and the
second one implements (C2). If the conditions are true, we
stop computing reachability graph and we return UnBounded.
Let’s note that 3rd(AccessibleMark(M, top(S), head(LS)))
returns the third element in the triple (result term of firing

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:8, 2007

366

head(LS) at top(S)). TrListToStack(AccessibleMark(M,
top(S), T', head(LS), IP), S1) puts in S1 the third element in
the triple AccessibleMark(M, top(S), head(LS), IP), and
DeleteDupInStackExt eliminates any duplication in the result
stack. PathSCreation(top(S), GetRTerms(AccessibleMark(M,
top(S), head(LS), IP)), APath) puts the new created accessible
marking in its appropriate place in APath. Finally,
ConcatListOfTriple(AccessibleMark(M, top(S), head(LS)),
LT) allows adding new created triple AccessibleMark(M,
top(S), head(LS), IP) to existent coverability graph (LT).

VII. EXAMPLE
The subject of this section is the application of the proposed

tool on a simple industrial case. This example is presented in
[6] and it is described by using ECATNets formalism in [7].
We take this description with some modifications. This
example presents an infinite-state real system.

A. Example Presentation
The example is about a cell of production that manufactures

forged pieces of metal with the help of a press. This cell is
composed of a table A that serves to feed the cell by raw
pieces, of a robot of handling, a press and a table B that serves
to the storage of forged pieces. The robot includes two arms,
disposed at right angles on one same horizontal plan,
interdependent of one same axis of rotation and without
vertical mobility possibility. The figure 2 represents the spatial
disposition of elements of the cell. The robot can seize a raw
piece of the table A and to put down it in the press with the
help of the arm 1. It can also seize a forged piece of the press
and can put down it on the table of storage B with the help of
the arm 2. In short, the robot can do two movements of
rotation. The first allows it to pass from its initial position to
its secondary one. This movement permits the robot to deposit
a raw piece in the press and possibly the one of a forged piece
on the table of storage B. The second allows it to pass from its
secondary position towards its initial position and to continue
the cycle of rotation.

B. ECATNets Model of the Example
Figure 3 represents the ECATNets model of production

cell. The symbol φ is used to denote the empty multi-set in
arcs inscriptions. Please note that r denotes 'raw' and f denotes
'forge'. If the inscriptions IC(p, t) and DT(p, t) are equals, then
we only present IC(p, t) on the arc (p, t). The rewriting rules
of the system will be presented in the following section
directly in Maude.

ECATNets Places.

Ta : table A ; set, possibly empty, of raw pieces.
Tb : table B ; set, possibly empty, of raw pieces.
Ar1 : arm 1 of robot ; at most a raw piece.
Ar2 : arm 2 of robot ; at most a forge piece.
Pr : press ; at most a raw piece or a forge piece.
PosI : initial spatial position of robot ; it is marked "ok" if it is
the current position of robot.
PosS : secondary spatial position of robot ; it is marked "ok" if
it is the current position of robot.
EA : this place is added for testing if the two arms of robot are
empty.

ECATNets Transitions.
T1 : taking of a raw piece by the arm 1 of the robot.
T2 : taking of a forge piece by the arm 2 of the robot.
D1 : deposit of a raw piece in the press.
D2 : deposit of a forge piece on the table B.
TS1, TS2 : rotation of the robot from its initial position
towards its secondary position.
TI : rotation of the robot from its secondary position towards
its initial position.
F : forge of the raw piece introduced in the press.
E : deposit of a raw piece on the table A.
R : removing forge pieces from the table B.

C. Meta-level Representation of the Example in Maude
The user is not obliged to write (his/her) ECATNet in a

meta-representation. (He/she) can write it in the common
mode, and then (he/she) uses the function of Maude
upModule which allows transforming the representation of a
module to its meta-representation. The passing in the other
direction also is possible, thanks to the function downModule.
For more of clarity, we preferred to give the module
describing the previous ECATNet in its meta-representation.
In the module META-LEVEL-ROBOT-ECATNET-
SYSTEM, the META-ROBOT module is defined as a
constant of type Module and its contents are described by
means of an equation. 'GENERIC-ECATNET is the
description in meta-level of module GENERIC-ECATNET

Fig. 2 Production cell

Table B

Press

Table A

Fig. 3 ECATNet model of the cell

Ear1⊗

f
r ok φ

r ok
φ

r

f f

Ear1

ok ok

ok
ok

ok

f
f f

φ f

Ear2

ok φ

ok

Ea

r

PosI
ok
φ

r

r r
φ

T2

TI

TS1

TS2
PosS

D1

RTbD2
Ar2 F Pr

Ar1

Ta

T1

E

International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:1, No:8, 2007

367

described previously. For more simplicity, we only present
some rewriting rules describing Robot behavior.
mod META-LEVEL-ROBOT-ECATNET-SYSTEM is
....
op META-ROBOT : -> Module .
eq META-ROBOT = (mod 'META-ROBOT is
protecting ‘GENERIC-ECATNET . protecting 'INT .

sorts 'Cointype ; 'RPosType ; 'EmptyArmType .
subsort 'Cointype < 'GenericTerm .
subsort 'RPosType < 'GenericTerm .
subsort 'EmptyArmType < 'GenericTerm .
subsort 'Place < 'Marking .

op 'ok : nil -> 'RPosType [ctor] .
op 'Ear1 : nil -> 'EmptyArmType [ctor] .
op 'Ear2 : nil -> 'EmptyArmType [ctor] .
op 'raw : nil -> 'Cointype [ctor] .
op 'forge : nil -> 'Cointype [ctor] .

op 'Ta : nil -> 'Place [ctor] . op 'Tb : nil -> 'Place [ctor] .
op 'Pr : nil -> 'Place [ctor] . op 'Ar1 : nil -> 'Place [ctor] .
op 'Ar2 : nil -> 'Place [ctor] . op 'PosI : nil -> 'Place [ctor] .
op 'PosS : nil -> 'Place [ctor] . op 'Ea : nil -> 'Place [ctor] .
none none

rl 'm:Marking => '_._['<_;_>['Ta.Place, 'raw.Cointype], 'm:Marking]
[label('E)] .

rl '_._['<_;_>['PosS.Place, 'ok.RPosType], '<_;_>['Ar2.Place,
'forge.Cointype]] => '_._['<_;_>['Tb.Place, 'forge.Cointype],
'_._['<_;_>['Ea.Place, 'Ear2.EmptyArmType], '<_;_>['PosS.Place,
'ok.RPosType]]] [label('D2)] .

rl '<_;_>['Tb.Place, 'forge.Cointype] => 'mt.Marking [label('R)] .
...
endm) . endm

VIII. APPLICATION OF THE TOOL ON THE EXAMPLE
 To apply the tool on the example, we call the main

function of the application Decidability-Decision(META-
ROBOT, '_._['<_;_>['PosI.Place, 'ok.RPosType],
'<_;_>['Ea.Place, 'Ear2.EmptyArmType]]). The example is
about an unbounded ECATNet. It’s clear that the transition ‘E
is always enabled and so ‘Ta is an unbounded place.
Consequently, the application of the tool on this example
returns Unbounded as result (figure 4).

Fig. 4 Application of the boundness property checker on the

ECATNet example

IX. CONCLUSION
In this paper, we proposed an algorithm and its Maude

based tool to check boundness property for ECATNets. Such
algorithm is motivated by the fact that analysis techniques like
reachability analysis and Model Checking of Maude cannot
deal with infinite-state model including unbounded
ECATNets. The tool aims to inform us if our ECATNet is
bounded or not. In this case, we can deduce if we can apply or
not the accessibility analysis and the Model Checking of
Maude on this ECATNet. The development of this tool is not
very complicated thanks to the reflectivity of Maude language
and the integration of the ECATNets formalism in this
language.

REFERENCES
[1] G. Berthelot, C. Johnen, and L. Petrucci. “PAPETRI : environment for

the analysis of Petri nets”. Volume 3 of Series in Discrete Mathematics
and Theoretical Computer Science (DIMACS), p. 43-55. American
Mathematical Society, 1992.

[2] M. Bettaz, M. Maouche. “How to specify Non Determinism and True
Concurrency with Algebraic Term Nets”. Volume 655 of LNCS, Spring-
Verlag, 1993, pp. 11-30.

[3] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer,
and C. Talcott. “The Maude 2.0 System”. In Proc. Rewriting Techniques
and Applications (RTA), Volume 2706 of LNCS, Spring-Verlag , 2003,
pp. 76-87.

[4] A. Finkel. “The Minimal Coverability Graph for Petri Nets”. In:
Rozenberg, G.: Volume 674 of LNCS,; Advances in Petri Nets 1993,
Springer-Verlag, 1993, pp. 210-243.

[5] C. Girault and P. Estraillier, “CPN-AMI”. MASI Lab, University Paris
VI, France.

[6] T. Lindner. "Formal Development of Reactive Systems : Case Study
Production Cell". Volume 891 of LNCS, Spring-Verlag, 1995, pp. 7-15.

[7] M. Maouche, M. Bettaz, G. Berthelot and L. Petrucci. “Du vrai
Parallélisme dans les Réseaux Algébriques et de son Application dans
les Systèmes de Production”. Conférence Francophone de Modélisation
et Simulation (MOSIM’97), Hermes, 1997, pp. 417-424.

[8] J. Meseguer. “Rewriting Logic as a Semantic Framework of
Concurrency: a Progress Report”. Seventh International Conference on
Concurrency Theory (CONCUR'96), Volume 1119 of LNCS, Springer
Verlag, 1996, pp. 331-372.

[9] J. Meseguer. “Rewriting logic and Maude: a Wide-Spectrum Semantic
Framework for Object-based Distributed Systems”. In S. Smith and C.L.
Talcott, editors, Formal Methods for Open Object-based Distributed
Systems, (FMOODS’2000), 2000, pp. 89-117.

[10] V. Pinci and L. Zand. “DESIGN/CPN”. USA, 1993.
[11] S. Roch and P.H. Strake. “INA (Integrated Net Analyzer) : Version 2.2”.

Manual, Humboldt-Universität zu Berlin Institut für Informatik,
Lehrstuhl für Automaten- und Systemtheorie, 1999.

[12] K. Varpaaniemi, J. Halme, K. Hiekkanen, and T. Pyssysalo. “PROD
reference manual”. Technical Report B13, Helsinki University of
Technology, Digital Systems Labora tory, Espoo, Finland, August 1995.

