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Abstract—Hypersonic flows around spatial vehicles during their 

reentry phase in planetary atmospheres are characterized by intense 
aerothermal phenomena. The aim of this work is to analyze high 
temperature flows around an axisymmetric blunt body taking into 
account chemical and vibrational non-equilibrium for air mixture 
species. For this purpose, a finite volume methodology is employed 
to determine the supersonic flow parameters around the axisymmetric 
blunt body, especially at the stagnation point and along the wall of 
spacecraft for several altitudes. This allows the capture shock wave 
before a blunt body placed in supersonic free stream. The numerical 
technique uses the Flux Vector Splitting method of Van Leer. Here, 
adequate time stepping parameter, along with CFL coefficient and 
mesh size level are selected to ensure numerical convergence, sought 
with an order of ૚૙ିૡ. 

 
Keywords—Chemical kinetic, dissociation, finite volumes, 

frozen, hypersonic flow, non-equilibrium, Reactive flow, supersonic 
flow ,  vibration. 

I. INTRODUCTION 
HIS article presents a calculation of a reactive flow 
around an axisymmetric blunt body, hemisphere-cylinder.  

Experiments for the hypersonic shock tunnel remain a 
valuable source of information on the physicochemical 
phenomena which occur in the flow of air surrounding the 
model.  Numerical simulations came to supplement the 
theoretical and experimental studies thanks to the appearance 
of powerful calculators and with the development of powerful 
mathematical tools.  In the present work, we implemented a 
numerical technique to simulate the hypersonic flow around 
an axisymmetric blunt body.  The gas considered is the air in a 
standard state composed of 21% of O2 and 79% of N2.  In this 
case, the infinite conditions of the flow are those of the 
atmosphere at a given altitude.  In addition, it is necessary to 
take into account the air non-equilibrium state at the exit of a 
nozzle to compare with experiment data Haoui [3].  

Upstream the body, an intense detached shock wave occurs 
resulting in a very large temperature raise located at the nose 
of the body just after the shock. In this case the air starts to 
dissociated and transforms gas composed of five species, O2, 
N2, NO, O and N. There are several models treating the 
chemical kinetics that differ according to the number of 
chemical reactions taken into account.  
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A realistic study must consider all the probable chemical 
reactions occurring in the flow.  Here, the model with 
seventeen chemical reactions is selected, allowing for all 
possible reactions between chemical species constituting the 
mixture [3]. 

Speeds of the reactions employed are those of Arrhenius 
law.  This is in addition to the expression of Landau Teller [5] 
for non-equilibrium of vibration.  Time characteristic of 
vibration is given by Blackman model [6].  Time characteristic 
of translation and rotation of molecules are very short 
comparing to time characteristic transition of the flow, whilst, 
the return to equilibrium state for these modes is very fast.  
Note that equilibrium of translation and rotation is carried out 
in any point of the flow and at any moment.  By considering 
the range of temperatures in which the present study is placed, 
the phenomena of ionization of the species can be neglected.  
Similarly, radiation effect is ignored.  The chemical kinetics 
and the non-equilibrium of vibration are taken into account in 
the computational domain.  The system of nonlinear partial 
derivative equations which governs this flow are solved by an 
explicit unsteady numerical scheme. 

II.  EQUATIONS 
The Euler equations for the mixture in non-equilibrium 

contain in addition for mass conservation, momentum and 
energy, equations of the evolution of chemical species (N2, O2, 
NO, O, N) and the energy of vibration of the molecules.  It 
should be noted that only O2 and N2 species are considered in 
non-equilibrium state.  The molecule of  NO, is  taken in 
equilibrium of  vibration as its time characteristic of  vibration 
is of two orders of magnitude lower than that of O2 between 
3000K and 7000K [7].   

 
In its vectorial form, the system of equations is written in 

3D as following: 
 

   Ω=+ )( fdiv
t

W
∂
∂                   (1) 

           
Where: 
 

       kHjGiFf ... ++=          (2)    
 

 
The flux HGFW ,,,  and  Ω   are:  
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The energy per unit of mass ࢋ is such as:   
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 0

fh  is the enthalpy of formation of the species s  in J/kg: 

 
( ) ( ) 6060 1062.33,1043.15 == NhOh ff  

( ) 60 10996.2=NOh f  

( ) ( ) 022 00 == NhOh ff  

 
The pressure of the mixture is obtained by the equation of 

state:  
  

Trp
m=

ρ
           (7)  

Where  

 

 
m

m M
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The temperature of the mixture is calculated based on the 

energy equation (5).  The source term of the chemical equation 
of evolution of the species s   is given provided through:   
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'
sυ   and  '

sυ   are the stoichiometric mole numbers of the 
reactants and products of species s , respectively, for each 
chemical reaction (r) such as:   
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Both forward and backward reaction rates are represented 

by fK  and bK . An empirically expression for the forward 

reaction rate fK  may be written as 
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For the backward reaction rate bK  , it is function of the 

equilibrium constant eqK    

 

  
eq

f
b K

K
K =          (13) 

 
The constants nA,  and the temperature characteristic of 

dissociation dT  are given by Gardiner model [8], Table I. The 
equilibrium constant of the chemical reaction is given like a 
polynomial of the 4th degree:   

 
      )(exp 4

4
3

3
2

210 zczczczccKeq ++++=    (14) 

 
Where Tz /10000= , and the coefficients 0c  through 4c  

are provided for each reaction [8], see Table II. 
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Moreover, at each interface ( )2/1+i ,  two  neighbor states 
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dimensional flow  F  through the interface, total flow ( )η,Wf  
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Where  
a

u
M n

n =  ,   nu  and  nv  are the velocity in the 

reference mark of the interface. 

VI. BOUNDARY CONDITIONS 
6.1 Border upstream  

 On the line of entrance, the parameters M, p, T and Ys are 
fixed.  Furthermore, as the flow reaches the entrance in a 
supersonic state, these parameters are unchanged during the 
iterations.   

 
6.2 Body surface 

 In this case, as flow is not viscous, a slip condition is 
applied on the wall. At any point M(x, y) on the wall the 
following condition must be checked: 

 
        0. =nV                      (39) 

 
n   is the normal to the wall.   
 

6.3 Axis of symmetry  
 In any point M of the axis of symmetry, the following 

condition should be satisfied: 

 iuVv =→= 0        (40) 
 

6.4 Border downstream  
 At the exit of the computational domain, downstream the 

body, the flow is supersonic; the exit values of the flow filed 
parameters are extrapolated from the interior values.  
 
6.5 Stagnation point  
 At stagnation point we are two conditions, axis of symmetry 
and body surface. In this case we use the mesh presented in 
fig. 3. For calculation we impose: 
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becomes frozen, inf2 7.12 TT Ov =  ,  inf2 55.8 TT Nv =  and 

inf53.7 TT = . 
 
Fig. 9 and Fig. 10 illustrate the evolution of the mass 

fractions of the chemical species constituting the mixture of 
air.  It is noticed that the dissociation of O2 and N2   starts just 
after the shock, their concentrations decrease up to the 
stagnation point and then a recombination will take place 
slowly, because the velocity of the flow is larger compared to 
the chemical kinetics. 

A frozen of concentrations is obtained downstream where 
YO2 becomes equal 0.19 instead of 0.21 and YN2 becomes 0.78 
instead of 0.79.  For NO, O and N a fast formation of these 
species will occur after the shock up to the stagnation point 
and then a slow disappearance begins until having an 
inevitable freezing, where %16.1=NOY , %9.0=OY  and   

%10.3 4−=NY  . For more details see haoui [15]. 
 

 
 

Fig. 6 Variation of residue 
 

 
Fig. 7 Variation of temperature 

 
 

 
Fig. 8 Variation of temperature of vibration 

 
 

 
 

 
Fig. 9 Evolution of the mass fraction of O2 

 
 

 
Fig. 10 Evolution of the mass fraction of N2 
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Fig. 14 Atmospheric Temperature distribution 

 
 

 
Fig. 15 Velocity and Mach number trajectory 

 

 
Fig. 16 Stagnation temperature along the trajectory 

 
 

 
Fig. 17 composition mixture along the trajectory at the stagnation 

point 
 
 

 
Fig. 18 Temperatures along the trajectory at the 

 stagnation point 

VIII.   CONCLUSION 
The numerical simulation of the flows around reentry 

bodies at high temperatures provided satisfactory results from 
a numerical and a physical point of view.  With high degree of 
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accuracy requirements, computational convergence is 
achieved and the physical phenomena considered are visible 
after the detached shock wave and around the blunt body.  The 
choice of the kinetic model for this type of flows is interesting. 
The model with 17 reactions proves to be more realistic since 
it practically considers all the possible collisions between 
molecules and atoms of the air mixture.  After the shock, the 
air is in nonequilibrium state, and a freezing is obtained after 

the stagnation point, about 6.0=
r
x .  At the stagnation point of 

the body, the temperature of gas is found to be lower than a 
case where molecules dissociations are not implemented in the 
simulation. During the atmospheric reentry of spacecraft, 
when the altitude passes from 70Km to 50Km, the temperature 
at the stagnation point passes from 12000K to 3000K.  The 
region surrounding the stagnation point is exposed to the high 
heat transfer. For example, at 45 km of altitude, the 
temperature at the stagnation point  is 5100K, then it decreases 
along the wall up to the value 2000K  which corresponds to 
the distance x/r=1 from the stagnation point.  
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TABLE I 

FORWARD CONSTANTS. GARDINER MODEL 
Reactions A n Td 
r=1 
r = 2 
r = 3 
r = 4 
r = 5 
r = 6 
r = 7 
r = 8 
r = 9 
r = 10 
r = 11 
r = 12 
r = 1 3 
r = 14 
r = 15 

1.64e+19 
3.64e+18 
1.82e+18 
4.56e+19 
1.82e+18 
1.40e+21 
3.70e+21 
1.40e+21 
1.40e+21 
1.60e+22 
4.00e+20 
4.00e+20 
8.00e+20 
8.00e+20 
8.00e+20 

-1 
-1 
-1 
-1 

-1.6 
-1.6 
-1.6 
-1.6 
-1.6 
-1.6 
-1.5 
-1.5 
-1.5 
-1.5 
-1.5 

59380 
59380 
59380 
59380 
59380 
113200 
113200 
113200 
113200 
113200 
75510 
75510 
75510 
75510 
75510 

r = 16 
r = 17 

1.82e+14 
3.80e+9 

0 
1. 

38370 
20820 

 
 

 
TABLE II 

EQUILIBRIUM CONSTANTS 
reactions    c0            c1             c2          c3                  c4

r = 1  à 5 
r = 6  à 10 
r = 11 à 15 

1.335      -4.127    -0.616     0.093     -0.005 
3.898    -12.611     0.683    -0.118      0.006 
1.549      -7.784     0.228    -0.043      0.002 

r = 16 
r = 17 

2.349      -4.828     0.455    -0.075      0.004 
0.215      -3.658     0.843    -0.136      0.007 

 
 
 

TABLE III 
CHARACTERISTICS OF FREE STREAM ALONG THE TRAJECTORY 

H(Km) 70 65 60 50 
P(Pa) 5.52 14.01 22.5 79.8 
T(K) 220 238 256 271 
Mach 22 18 15 8 

 
 


