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Abstract—There are two common types of operational research 
techniques, optimisation and metaheuristic methods. The latter 
may be defined as a sequential process that intelligently performs 
the exploration and exploitation adopted by natural intelligence and 
strong inspiration to form several iterative searches. An aim is to 
effectively determine near optimal solutions in a solution space. In 
this work, a type of metaheuristics called Ant Colonies 
Optimisation, ACO, inspired by a foraging behaviour of ants was 
adapted to find optimal solutions of eight non-linear continuous 
mathematical models. Under a consideration of a solution space in 
a specified region on each model, sub-solutions may contain global 
or multiple local optimum. Moreover, the algorithm has several 
common parameters; number of ants, moves, and iterations, which 
act as the algorithm’s driver. A series of computational 
experiments for initialising parameters were conducted through 
methods of Rigid Simplex, RS, and Modified Simplex, MSM. 
Experimental results were analysed in terms of the best so far 
solutions, mean and standard deviation. Finally, they stated a 
recommendation of proper level settings of ACO parameters for all 
eight functions. These parameter settings can be applied as a 
guideline for future uses of ACO. This is to promote an ease of use 
of ACO in real industrial processes. It was found that the results 
obtained from MSM were pretty similar to those gained from RS. 
However, if these results with noise standard deviations of 1 and 3 
are compared, MSM will reach optimal solutions more efficiently 
than RS, in terms of speed of convergence. 

 
Keywords—Ant Colony Optimisation, Metaheuristics, 

Modified Simplex, Non-linear, Rigid Simplex. 

I.  INTRODUCTION 
PTIMISATION algorithms can be categorised as being 
either conventional or approximation optimisation 

algorithms [1]. Conventional optimisation algorithms are 
usually based upon mathematical procedures such as Integer 
Linear Programming, Branch and Bound or Dynamic 
Programming. These approaches were relatively well 
developed and attributed to the military services early in 
World War II. Based on the full enumerative search within 
these approaches, the optimal solutions are always 
guaranteed. However, the applications of these methods 
might need exponentially computational time in the worst 
cases. This becomes an impractical approach, especially for 
solving a very large size problem.  
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Alternative approaches that can guide the search process 

to find near optimal solutions in acceptable computational 
time are therefore more practical and desirable. 
Approximation optimisation algorithms, called 
metaheuristics, have therefore received more attention in the 
last few decades. Metaheuristics iteratively conduct 
stochastic search processes inspired by natural intelligence. 
They can be categorised into three groups: physically-based 
inspiration such as Simulated Annealing [2]; socially-based 
inspiration for instance Taboo Search [3]; and biologically-
based inspiration e.g. Ant Colony Optimisation [4], 
Artificial Immune System [5], Genetic Algorithm [6], 
Memetic Algorithm [7], Neural Network [8], Particle 
Swarm Optimisation [9], and Shuffled Frog Leaping [10]. 
These alternative approaches have been widely used to solve 
large-scale combinatorial optimisation problems [11]— [14]. 

Metaheuristics optimisation algorithms are considered to 
be more contemporary to solve larger-scale optimisation 
problems. The algorithms are mimicking natural intelligence 
to create algorithms and its processes of defining near 
optimal solutions, instead of using simple mathematic 
constraints to define an exact optimisation.  

Metaheuristics are more complicated due to constraints of 
the algorithm itself not of the question. These constraints or 
their parameters are needed to be initialised to optimise the 
outcome of the solution, or in other word, constraints 
directly affect the quality of the solution. So it is in turn 
inspire an objective of this paper to examine the relation of 
constraints adjacent to the quality of solution of a chosen 
metaheuristic algorithm, Ant Colonies Optimisation (ACO), 
by two similar treatments; Rigid Simplex Method (RS) and 
Modified Simplex Method (MSM). Inspection and analysis 
are used to determine a recommendation on the proper 
levels of parameter settings for eight non-linear continuous 
mathematical models within three classes; unimodal, 
multimodal and curve ridge functions. Eight non-linear 
continuous mathematical models are considered being 
complicated optimisation problems when applied to real 
industrial processes.  

This paper is organised as follows. Section 2 describes the 
selected metaheuristic; Ant Colonies Optimisation (ACO) 
and its pseudo code. Section 3 and 4 are briefing about 
proposed algorithms of Rigid Simplex and Modified 
Simplex, respectively. Section 5 presents eight tested 
problems, all of which are non-linear continuous 
mathematical functions. For each function, the optimal 
solution, the equation, considered ranges and its surface plot 
are provided. Section 6 presents design and analysis of 
computational experiments for comparing the performance 
of the proposed methods. The conclusion is also summarised 
and it is followed by acknowledgment and references. 
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II.  ANT COLONY OPTIMISATION ALGORITHM (ACO) 
Ant algorithm was first proposed by Dorigo and his 

colleagues [4] as a multi-agent approach to optimisation 
problems, such as a travelling salesman problem (TSP) and 
a quadratic assignment problem (QAP). There is currently a 
lot of ongoing activity in the scientific community to extend 
or apply ant-based algorithms to many different discrete 
optimisation problems. Recent applications cover problems 
like a vehicle routing, a plant layout and so on. Ant 
algorithm is inspired by observations of real ant colonies. 
Ants are social insects and they live in colonies. Behaviour 
is direct more to the survival of the colony as a whole than 
to that of a single individual component of the colony. 
Social insects have captured the attention from many 
scientists because of a structure of their colonies, especially 
when compared with a relative simplicity of the colony’s 
individual. An important and interesting behaviour of ant 
colonies is their foraging behaviour and in particular how 
ants can find shortest paths between food sources and their 
nest [9], [15].  

While walking from food sources to the nest and vice 
versa, ants deposit on the ground a substance called 
pheromone, forming a pheromone trail. With ants ability to 
smell pheromone they tend to choose a path marked by 
strong pheromone concentrations with the higher 
probability. The pheromone trail allows the ants to find their 
way back to the food source and vice versa. It can be also 
used by other ants to find the location of the food sources 
that found by their nest mates [10]. Generally, Ant Colony 
Optimisation algorithm consists of the iteration steps where 
each ant makes its own solution as follows; 

1. Define parameters for Ant Colony Optimisation 
Algorithm, such as number of ants, moves, iterations and 
etc. 

2. Each ant makes its own initial states (s), paths and 
communicate the responses (or yields) and coordinates 
where 

• Construct the feasible solution. 
• Evaluate the generated solution. 
• Decide to retrace the path that the ant has followed. 
3. Random ‘k’ variables for initial states (s) of each ant 

which turn on the ant activities and compare its responses 
and termination criteria. 

4. From initial state (s), ant activities drive all ants in 
system and move to its neighbourhood state: r, sr. 

5. While each ant locates at neighbourhood states: r, sr, a 
system compares the responses and its initial states (s). If 
any response of the same ant is better than its initial states 
(s), then move to a neighbourhood state: n, sn. 

6. In case of neighbourhood states: n, sn less than the 
previous state, the system generates a probability number 
(q1) and compare with a certain number (q0). If q1 is greater 
than q0, a movement of each ant is going ahead. Otherwise, 
there is no movement. 

7. In case of no better neighbourhood response, set this 
state as ‘Local Optima’ (Li) and wait for a communication 
from other ants at other ‘Local Optima’ (Lj). 

8. Compare among ‘Local Optima’ (L1, L2, …, Li, Lj , …, 
Ln) and set a direction of the path to the best Local Optima. 

9. Construct the solution by repeating steps 4-9, until the 
termination conditions are met. 

 
The pseudo code is used to briefly explain to all the 

procedures of ACO shown in Fig. 1. 

Procedure ACO Metaheuristic() 
While (termination criterion not satisfied) – (line 1) 

   Schedule activities 
      ants generation and starting point; 
      makes path or step for each ant 
      compare cost or response function 
      if no improvement of cost function then 
          communication with best ant cost function 
          make path or step from local trap to best ant 
      else 
          if ant found the better cost function then 
              go to line 5. 
          else 
              wait for best ant communication 
          end if 
       end if 
  end schedule activities 

end while 
end procedure  

 
Fig. 1 Pseudo Code of ACO Metaheuristic 

 
As shown above, nature has always been a source of 

inspiration. Various types of nature-inspired algorithms have 
been developed during the last few decades. These 
algorithms iteratively conduct stochastic search processes 
adopted from natural intelligence. However, these 
metaheuristics seem to get the same problem of having 
sensitive parameters affecting the quality of solutions. In 
this work a nature-inspired algorithm called Ant Colony 
Algorithm (ACO) were proposed to review and give an aid 
on complicatedness of the proper levels of parameter 
settings via Rigid Simplex (RS) and Modified Simplex 
Methods (MSM). 

III.  THE BASIC SIMPLEX /RIGID SIMPLEX METHOD (RS) 
The rigid simplex method (RS) has been first proposed by 

Spendley et al. [16]. The basic shape (design) is called the 
simplex. The simplex design in a problem with k variables 
consists of k+1 design points (vertices) but it is not 
necessary to have a property of equidistance. For k equal to 
two, this simplex is a triangle, for k equal to three it is a 
tetrahedron (Fig. 2). 

         
Fig. 2 Simplex Designs for k = 2 and 3. 

 
 

The simplex design is first applied at arbitrary points 
within the safe region of operation. In practice this might be 
the current operating conditions or the centre of the safe 
operating region. Response function is computed for each of 
the k+1 design points. The vertex corresponding to the 
design point with the lowest yield, i.e. the vertex, W, is 
identified and reflected in the opposite hyper-face. The next 
computation is carried out with variables set at values 
corresponding to a new point, R, that is the reflection of W 
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along a line joining W to the centroid ( P ) of the other 
points in the simplex. Thus 

R = P + ( P - W) 
Where,  

W = the vertex corresponding to the design point 
with the lowest yield 

P = the centroid of the other points in the simplex. 
• For variable k = 2 (Fig. 3); 

 

 
Fig. 3 Simplex Move for k = 2 

 
 

• For Variable k = 3 (Fig. 4); 

 

 
Fig. 4 Simplex Design and its Centroid for k = 3 

 
 

The algorithm continues in this fashion. However, it is 
possible that the new design point leads to the least yield of 
the new simplex. A reversed reflection will be occurred in 
order to increase a chance of finding more favourable yield.  
If there is an oscillation the process will be stopped 
according to one of the preset stopping criteria, appeared in 
the pseudo code (Fig. 5). And the only best so far value will 
be counted for further conclusion. In order to avoid rotating 
about a spurious high yield, there’s a probability of choosing 
an acceptable small size of the initial simplex design. This 

would indeed solve the problem more effectively but would 
consume more execution time. In the former case the 
finishing strategy is then applied. An idea of RS’s operation 
is shown in Fig. 6. 
 
The Rigid Simplex (RS) consists of a few basic rules:  

• The first rule is to reject the least favourable 
response value in the current simplex in order to 
improve the trial towards the optimisation value.  

• The second rule is never to return to control 
variable levels that have just been rejected.  

• In which case the second lowest yield of the 
original simplex is rejected in an attempt to prevent 
the algorithm oscillating. 

 
Besides three main rules, two more rules are also 
considered.  

• Trials (vertices) may be reevaluated in order to 
avoid a probability of wondering around spurious 
optimum.  

• Calculated trials outside the effective boundaries of 
the controllable variables are not applicable. 
Instead a very unfavourable response is applied, 
forcing the simplex to move away from the 
boundary.  

 
 

However, these rules can be adjusted depending on 
prospective users’ specifications and satisfaction. Lastly 
termination criteria should be set in order to run the process 
within the interested operating regions and its lower or 
upper limit. Preset termination criteria could be in logics of 
or/and, and should be analysed and evaluated to suit a 
particular practice. 
 
Procedure of RS () 
While (termination criterion not satisfied) – (line 1) 
    Schedule activities (for maximisation) 
        Reflection of least yield W is processed 
        Compute R and f(R)  
        Compare cost or response function  
        if f(R) is the least then 
            reflect backward to prior point W 
            recalculate f(W) 
           else 
               reflect the least cost function vertex  
              if R and f(R) continue to be the least then 
                reflect new least cost function’s vertex 
            end if 
         end if 
    end schedule activities 
end while 
end procedure  
 

Fig. 5 Pseudo Code of RS 
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Fig. 6 An Example of a Typical Optimisation Sequences with the 
Rigid Simplex. Change in the Levels for Two Controllable 

Variables with the Response Marked as Contours 
 
 

IV.  MODIFIED SIMPLEX METHOD (MSM) 
There are many extensions on the rigid simplex 

algorithm. One of the well-known is a modified simplex 
method (MSM) of Nelder and Mead [17]. In the MSM an 
expansion or contraction of the reflection is allowed at each 
step. Although there are many possible stopping criterions 
for simplex algorithms, this study follows Nelder and Mead 
and includes the standard deviation of the estimated yields at 
the vertices of the simplex. Various stopping rules and one 
based on the sample range were also tried on the literatures, 
but they appeared to offer no advantage over the stopping 
rule based on the standard deviation of process yields. 

This work incorporated the MSM into the same manner 
of the first algorithm based on the RS. As before, the 
simplex design is first applied at an arbitrary point within 
the safe region of operation. The response is measured for 
each of the design points. In a maximisation process with 
three variables or a tetrahedron simplex, the vertex 
corresponding to the lowest yield (W) is identified and 
reflected in the opposite hyper-face to obtain (R) via the 
centroid ( P ). The centroid obtained by other vertices in the 
simplex consists of VH, VS, and VSH, or vertices of highest 
yield, second least yield and second highest yield, 
respectively. The new design point can be extended (E) in 
the direction of more favourable conditions, contracted (C- 
or C+) if a move is taken for least favourable conditions, 
and Shrunk toward best vertex if a contracted vertex is still 
the least but not less than the rejected trial condition (Fig. 7). 
The next run is carried out with variables set at values 
corresponding to this new design point. This MSM 
terminates, and the finishing strategy is applied. An idea of 
MSM’s logical decision is shown in Fig. 8.  
 

 

Fig. 7 Different Simplex Moves from the Rejected Trial Condition 
(W). R = Reflection, E = Expansion, 

C+ = Positive Contraction and C- = Negative contraction 

 

Procedure of MSM () 

While (termination criterion not satisfied) – (line 1) 

    Schedule activities 
        Reflection of least yield W is processed 
        Compute R and f(R) 
        Compare cost or response function  
        if f(R) is highest then 
 extension E will be processed  
        else 
              if R and f(R) continue to be the least then                     
                   reflect backward to prior point 
      recalculate W and f(W) 
 or 
                   contraction C or shrinking S will be processed 
     recalculate f(C) or f(S) 
     else 
                     go to line 3. 
               end if 
          end if 
     end schedule activities 
end while 
end procedure 
 

Fig. 8 Pseudo Code of MSM 
 
 

V.  TESTED FUNCTIONS 
In this paper, eight non-linear continuous mathematical 

functions were used to test the performance of the proposed 
methods for searching the optimal solutions under a 
consideration of parameters adjacent to RS and MSM. The 
functions including the equations and its surface plot with 
ranges of -20<x1<20 and -20<x2<20 are illustrated in the 
following subsections. However, for both Rastrigin and 
Styblinski surfaces will be plotted within ranges of -5< 
x1<5; -5< x2<5 to clearly illustrate the texture and 
characteristic of the surfaces. 
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5.2 Branin Function 
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5.3 Camelback Function  
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5.4 Goldstein-Price Function 
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5.5  Styblinski Function 
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5.6 Rastrigin Function 
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5.7 Rosenbrock Function 
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5.8 Shekel Function 
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VI.  EXPERIMENTAL DESIGN AND ANALYSIS 
In this work, a computer simulation program was 

developed using Matlab program 2006v.7.3B and 
EVOPtimiser program v.1.1.0. A desktop computer with 
IntelQ6600, RAM DDR2 4 GB and Geforce 9800GT was 
used for computational experiments. Eight non-linear 
continuous mathematical functions were used to test the 
performance of the proposed methods. For each function, 
the computational runs were repeated until it reaches the 
preset termination criteria. However, it has been stated that 
ACO’s parameters have to be merely positive and integer, as 
a result it would obtain a quicker stop or face with some 
round-off errors. It might make the process stop faster than 
what it should. As a result, the development of ACO results 
can’t be clearly seen or in other words, a termination of the 
algorithm may be prematurely occurred. In this paper, the 
stopping criteria, categorised by RS and MSM, are followed. 
 
For RS 

• Dispersion rule - when a standard deviation (SD) of 
the yields of a simplex’s vertices is less than a 
preset value of 0.7 (obtained from several pilot 
trials), and 

• Replication rule - Opposing to the Second rule of 
RS, if the yield of a new calculated reflection 
brings the least favourable result, a backward 
reflection is possible in order to increase chances of 
finding more favourable outcome or yield. 
However, a repeated path of reflection number 
should be set. The procedure would be terminated, 
after three repeated path of reflection. Maximal 
yield produced so far would be considered as the 
performance measures of the algorithms, or  

• Parameter default rule - when the coordinates 
escape from the first quadrant or the upper or lower 
limit, or 

• Adjacent rule - when each vertex of a simplex 
approximately brings the same level of the yields.  

 
For MSM 

• Size rule - when the size of simplex is as small as 
2% of the ranges in the solution space.  In this case 
ACO parameters have to be integer, as a result a 
premature stopping of the process may occur upon 
an oscillation rule, or 

• Oscillation rule - when round-up coordinates give 
same numbers for three times or replicates, or 

• Dispersion rule - when a standard deviation (SD) of 
the yields of a simplex’s vertices is less than 0.7, or 

• Parameter default rule - when the coordinates 
escape the first quadrant or of the upper or lower 
limit, or 

• Replication rule - when yields of processed vertices 
approximately repeat at the same result for four 
times.  

 
Using different random seed numbers, experimental 

results obtained from each method including best-so-far 
(BSF or Y) solutions and its error percentages (as shown in 
Table I) were compared to the optimal solutions of all eight 
tested functions described in the previous section. It should 
be noted that the achieved solutions of Camelback function 
cannot be found since the function does vary around optimal 
coordinates.   Moreover, it is harder to identify solutions of 
a curve-ridge, Rosenbrock, function (the hardest function), 
due to an occurrence of “zigzag” effect circulating the 
maximal path (Section 5, 5.7).  On a multimodal function 
(moderately hard function), there is probability that the 
search would find a local optimum rather than the global 
optimum and this lead to using more execution time to 
terminate processes, such as, Rastrigin function (Section 5, 
5.6). In addition, if computational process exceeds upper or 
lower limit, the super modified simplex would be applied 
[18]. 

From Table I, it can be seen that both Rigid Simplex (RS) 
and Modified Simplex Methods (MSM) found the optimal 
solutions at about the same rate when applied without noise.  
MSM are more efficient for some surfaces. The algorithms 
also operate and analyse the results under levels of noise (N) 
standard deviation of one (Table II) and three (Table III). 
When levels of noises increase in the system, computational 
time is also taken longer due to complexities of ACO 
algorithm (ant activities and communications) for checking 
‘Local optima’ [19]. Moreover, more complicate function is 
let to higher rate of resource consumptions; number of ants, 
moves and iterations (Table III).  

From Table IV, preferable levels of parameters found by 
RS and MSM are determined and are set to be suggested 
levels for ACO’s parameters, to promote an ease of use in 
every kind of equation. Under a consideration of 
recommended levels of its parameters, those may bring the 
benefit to solve industrial processes via ACO when the 
nature of the problems can be categorised as unimodal, 
multimodal or curve ridge.  
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TABLE I 
EXPERIMENTAL RESULTS OBTAINED FROM THE PROPOSED METHODS ON EACH TESTED FUNCTION WITHOUT NOISE 

Modified Simplex Method  
(MSM) 

Rigid Simplex  
(RS) 

BSF  and Round-up Parameters BSF and Round-up Parameters 
No. Function 

Name 

% 
Difference 
of (BSF) 

MSM - RS 
Y Iterations Ants Moves Y Iterations Ants Moves 

1 Branin  0.000017 5.92158 6 12 9 5.92158 6 38 10 
2 Camelback  58.28752 72.52808 8 13 13 30.25326 4 8 9 

3 Goldstein-
Price  0.00001 8.90138 9 14 19 8.90138 9 7 15 

4 Parabolic  0 12.00000 1 7 9 12.00000 1 2 10 
5 Rastrigin  0 100.00000 4 9 24 100.00000 7 7 16 
6 Rosenbrock  0 80.00000 1 13 13 80.00000 16 16 21 
7 Shekel  0.000016 18.98052 1 15 12 18.98051 6 5 9 
8 Styblinski  0.000009 353.33230 10 8 18 353.33233 16 10 12 

 
 

TABLE II 
EXPERIMENTAL RESULTS OBTAINED FROM THE PROPOSED METHODS ON EACH TESTED FUNCTION WITH NOISE STANDARD DEVIATION OF 1 

Modified Simplex Method  
(MSM) 

Rigid Simplex  
(RS) 

BSF and Round-up Parameters BSF and Round-up Parameters 
No. Function 

Name 

% 
Difference 
of (BSF) 

MSM - RS 
Y Iterations Ants Moves Y Iterations Ants Moves 

1 Branin 30.39 9.578468 7 20 11 9.361398 7 7 12 
2 Camelback 85.48 66.594600 13 11 13 32.618253 10 11 14 

3 Goldstein-
Price 29.86 11.4073 11 4 9 12.091057 8 5 14 

4 Parabolic 65.39 15.62516 8 8 10 15.860091 6 11 15 
5 Rastrigin 89.35 103.3521 20 6 11 103.648839 11 5 11 

6 Rosenbrock 89.93 91.59732 13 16 12 83.637236 10 8 11 

7 Shekel 70.23 23.51877 10 11 23 22.805576 7 10 13 

8 Styblinski 97.47 356.7795 9 5 12 356.563572 9 9 12 

 
 

TABLE III 
EXPERIMENTAL RESULTS OBTAINED FROM THE PROPOSED METHODS ON EACH TESTED FUNCTION WITH NOISE STANDARD DEVIATION OF 3 

Modified Simplex Method  
(MSM) 

Rigid Simplex  
(RS) 

BSF  and Round-up Parameters BSF and Round-up Parameters 
No. Function 

Name 

% 
Difference 
of (BSF) 

MSM - RS 
Y Iterations Ants Moves Y Iterations Ants Moves 

1 Branin  17.98 16.93000 10 6 13 13.88597 8 11 9 
2 Camelback  -13.24 23.78742 5 7 9 26.93891 13 15 10 

3 Goldstein-
Price  4.82 19.03004 7 15 11 18.11240 10 9 11 

4 Parabolic  3.57 22.84964 8 9 9 22.03162 13 5 12 
5 Rastrigin  -2.28 108.0246 5 5 7 110.49653 14 13 10 

6 Rosenbrock  -0.91 90.14356 4 5 9 90.96466 11 11 14 

7 Shekel  -0.19 27.30065 5 8 10 27.35385 11 4 8 

8 Styblinski  -0.21 363.5414 10 10 15 364.32332 10 4 11 
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TABLE IV 
RECOMMENDED LEVELS OF PARAMETER SETTINGS WITHOUT NOISE (N=0) AND WITH NOISE (N=X) 

Function 
No. 

Function 
Name 

Recommended Levels of 
Parameters MSM RS 

N=0 (1,2,10)*   
1 Parabolic  

N=x (8,9,9)   
N=0 (6,12,9)   2 Branin  
N=x (10,6,13)   
N=0 (8,13,13)   

3 Camelback  
N=x (13,11,13)   

N=0 (9,14,19)   
4 Goldstein-Price  

N=x (7,15,11)   

N=0 (7,7,16)   
5 Rastrigin   

N=x (14,13,10)   
N=0 (16,10,12)   

6 Styblinski  
N=x (10,4,11)   
N=0 (1,15,12)   7 Shekel  
N=x (11,4,8)   
N=0 (1,13,13)   

8 Rosenbrock  
N=x (13,16,12)   

Note: (a,b,c)*: a = Iterations, b = Ants, c = Moves 
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