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Abstract—The modeling of sound radiation is of 
fundamental importance for understanding the propagation of 
acoustic waves and, consequently, develop mechanisms for 
reducing acoustic noise. The propagation of acoustic waves, 
are involved in various phenomena such as radiation, 
absorption, transmission and reflection. The radiation is 
studied through the linear equation of the acoustic wave that is 
obtained through the equation for the Conservation of 
Momentum, equation of State and Continuity. From these 
equations, is the Helmholtz differential equation that describes 
the problem of acoustic radiation. In this paper we obtained 
the solution of the Helmholtz differential equation for an 
infinite cylinder in a pulsating through free and homogeneous. 
The analytical solution is implemented and the results are 
compared with the literature. A numerical formulation for this 
problem is obtained using the Boundary Element Method 
(BEM). This method has great power for solving certain 
acoustical problems in open field, compared to differential 
methods. BEM reduces the size of the problem, thereby 
simplifying the input data to be worked and reducing the 
computational time used. 
 

Keywords—Acoustic radiation, boundary element  

I. INTRODUCTION 
NGINEERING problems are often described by physical 
laws, which are commonly expressed by partial 

differential equations. Among these problems, we highlight 
the noise sound that is present in various situations of 
everyday life. 

 A very common mechanism for generating sounds consists 
of a vibrating structure. Structures move cyclically vibrating 
air molecules around it, generating local concentration and 
rarefaction of these, which causes pressure variations. 

The sound propagation outdoors is usually studied in terms 
of three components: the sound source, the transmission path 
and receiver. First, the source emits a certain power level, 
generating a noise level that can be measured near the source. 
From there, the sound level is attenuated as the sound travels 
between the source and receiver along a particular path. 

The modeling of acoustic radiation is of fundamental 
importance for understanding the propagation of acoustic 
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waves and, consequently, develops mechanisms for 
attenuation of acoustic noise. To estimate sound pressure 
levels, it is necessary to know the sound power levels of the 
sources in question. 

The distribution of pressure in fluid subject to a source of 
vibration is given by the Helmholtz equation. The derivation 
of this equation begins with the equations governing the fluid, 
with some restrictions. 

In many cases, a mathematical representation of alternative 
equivalent problem is found in terms of boundary integral 
equations. 

The most general and effective numerical technique for 
solving boundary integral equations is the method of boundary 
element. 

This paper presents the formulation and analytical solution 
of the wave equation for an infinite cylinder which is vibrating 
(expanding and contracting) uniformly in the radial direction 
with constant amplitude. This solution is then compared with 
the literature. A numerical formulation for this problem is also 
presented, through the formulation of the direct method of 
boundary element. Currently, the Method of Boundary 
Element is one of the most advanced and used especially when 
it comes to problems considering ways infinite and semi-
infinite, since it allows reducing the size of the problem by 
reducing the number of equations used, allowing the solution 
only contour, without the need to analyze your entire domain. 

The numerical solution to the problem described, using the 
method of boundary element has been implemented and 
compared with results obtained by [6]. 

II. WAVE EQUATION 
The equation that governs the phenomenon of acoustic 

radiation is found from the equations of state, conservation of 
mass and conservation of momentum. 

For fluid media, the equation of state relates physical 
quantities that describe the thermodynamic behavior of the 
fluid and is given for 

 
( )

0

0
0 ρ

ρρ
β

−
=− PP  (1) 

 
where P is the instantaneous pressure at one point, P0 is the 
pressure of the fluid balance, β is the adiabatic module 
(coefficient of thermal expansion of the fluid), ρ  is the 
instantaneous density at one point and 0ρ  is the density of the 
fluid balance . 
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You can set the condensation s at one point as the density 

variation of equilibrium 
0

0

ρ
ρρ −

=s  and express (1) in terms 

of sound pressure p and of the condensation s  
 

sp  β≈  (2) 
 

where 0PPp −= is the acoustic pressure. 
This approach is limited to amplitude waves whose 

relatively small change in density of the medium is small 
compared with its equilibrium value, ie, condensation s must 
be very small, 1<<s , [4]. This supposition is necessary to 

arrive at a simple theory for sound in fluids, which aptly 
describes the most common phenomena in acoustics. 

To relate the movement of fluid with its compression or 
expansion, you need a function that relates the speed u

r
 

particle fluid with its instantaneous density ρ . 
It is an infinitesimal element of fluid volume, fixed in 

space. The continuity equation relates the rate of growth in 
mass volume element, with the mass flow through the closed 
surface that surrounds it. Since the mass flow must be equal to 
the rate of growth, we obtain the continuity equation. 

 

0=∇+
∂
∂ u

t
s r

  (3) 

 
The equation of motion relates the sound pressure p at the 

speed u
r

 instantaneous particle to an adiabatic fluid and not 
sticky, that is, the effects of fluid viscosity are neglected. Thus 
is the Euler equation (force equation) to acoustic phenomena 
of small amplitude. 
 

p
t
u

−∇=
∂
∂
r

0ρ  (4) 

 
Combining (1), (3) and (4) it is obtained the linearized wave 

equation for the propagation of sound in fluids, expressed in 
terms of sound pressure 
 

2

2

2
2 1

t
p

c
p

∂
∂

=∇  (5) 

 

where 2∇  is the Laplacian operator and 
ρ
β

=c  is the speed 

of propagation of acoustic wave in the middle [7]. 
 
For non-viscous fluid, the particle velocity is irrotational, 

0=×∇ u
r . This means that the speed can be written as the 

gradient of a scalar function φ called velocity potential, 

φ∇=u
r

. Thus, we obtain the linear wave equation, expressed 
in terms of velocity potential of acoustic wave 

 

2

2

2
2 1

tc ∂

∂
=∇

φφ . (6) 

 
For the solution of (6), it is assumed that the velocity 

potential with harmonic dependence on time. From (6), is the 
Helmholtz equation independent of time for a medium without 
losses, expressed in terms of velocity potential of acoustic 
wave 
 

( ) ( ) 022 =+∇ rkr ff
rr

φφ . (7) 

 
onde fφ  representa a parte espacial do potencial de 

velocidade, ω representa a freqüência angular de vibração e k  
é o número de onda. 

III. ANALYTICAL SOLUTION  
Using the method of separation of variables, we obtain the 

spatial part of the solution of the Helmholtz equation, given by  
(6)  

 

( ) ( )
( )

  ar  
kaH

krH
k

V
zr ≥−=    ,,, )2(

1

)2(
00ψφ  (8) 

 
where ( )uH )2(

0  and ( )uH )2(
1  are the Hankel functions of 2nd 

kind and order 0 and 1, respectively, k is the wave number, a 
is the radius of the cylinder, r is the radial direction of the 
velocity potential. 

The solution, given by (8) is obtained for the special case of 
uniform radiation (monopole mode), ie, the surface of the 
cylinder is vibrating uniformly in the radial direction with an 
amplitude of V0 meters per second at a frequency of f hertz. 

IV. RESULTS AND COMPARISONS 
The analytical solution of the Helmholtz differential 

equation was implemented in Matlab and results were 
compared with those obtained by [6], shown in Table 1 and 
exhibited in Figure 1. In analyzing the data, we calculated the 
absolute error abse , and relative error of the result obtained in 

the literature rele , the way defined below 

valvaleabs −= 1  (9) 
and 

1val
eerel =  (10) 

 
where 1val  is the value obtained in the literature, val is the 
value obtained in this work. 
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TABLE I 
COMPARISON OF RESULTS: ANALYTIC [6] AND ANALYTIC (MATLAB) 

Freq.  
(Hz) 

Analytic  
[6] 

Analytic  
(MatLab) 

Abs.  
Error 

Rel.  
Error 

62,5 0,7709467 0,7709467 -7,00000E-09 -9,07974E-09 
125 0,4193960 0,4193960 7,00000E-09 1,66906E-08 
250 0,2159032 0,2159032 1,50000E-08 6,94755E-08 
500 0,1088600 0,1088600 1,00000E-09 9,18611E-09 
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Fig. 1 Comparison of analytical results implemented 

 
It appears from Fig. 1 that the module of the velocity 

potential decreases as the frequency increases. This can be 
seen in (8), where it is shown that the potential speed is 
inversely proportional to the wave number. 

The results of this work, presented in Table 1 and shown in 
Fig. 1, are quite satisfactory when compared to results 
obtained by [6], by calculating the absolute and relative errors. 

V. NUMERIC METHOD 

A. Advantages of the Boundary Element Method 
One of the most widely used numerical techniques for 

solving boundary integral equations is the boundary element 
method. A peculiarity of the boundary element method is that 
it provides a continuous model of the domain, since no 
discretization of the same is required, making it thus an 
effective method for solving problems of infinite domain.The 
solutions in the internal points are calculated after the 
unknown boundary was calculated, similar to a post-
processing. 

B. Boundary Integral Equation s 
The classical differential equation, Helmholtz equation that 

describes the problem of acoustic radiation from an infinite 
cylinder pulse was determined in previous chapters. To find 
the integral equation on the boundary, from the Helmholtz 
equation, it is a two-dimensional body B immersed in an 
infinite domain Ω, shown in Fig. 2 below. 

 

 
The solution of  (7) that describes the problem considered 

subject to boundary condition 
 

1=
∂
∂

n
φ

 (Neumann Condition) (11) 

 
It is found by solving boundary integral equations. Equation 
(7), which is a differential equation is valid at all points of the 
domain Ω. To turn it into an integral equation, it is assumed 
that it is she can not be zero throughout the domain, thus 
generating a residual r. With this you can write it as follows 
 

( ) ( ) Ω∈∀=+∇ rrrkr
rrr

,22 φφ .    (12) 
 
The residue of (12) is evaluated at each point, using the 

method of weighted residues, which gets the sum of the 
residues in the field. For this, part of a weight function *u for 
this sum is zero. Thus, we obtain 

 

∫
Ω

=Ω 0  * dur  .                       (13) 

 
Substituting (12) in (13) we obtain 
 

( )∫
Ω

=Ω+∇ 0  *22 duk φφ .       (14) 

 
For the solution of the equation above, one must make use 

of some vector identities, to know 
 

( ) φφφ ∇⋅∇−∇⋅∇=∇ **2*    uuu        (15) 
 
and 
 

( ) *2**  u  uu ∇−∇⋅∇=∇⋅∇ φφφ .  (16) 
 
Applying the distributive property and (15) in (14) we 

obtain 
 

( ) ( ) .0    *2** =Ω∇⋅∇−+Ω∇⋅∇ ∫∫
ΩΩ

dukudu φφφ      (17) 

 
Applying the divergence theorem in (17) we obtain 
 

( ) 0    *2** =Ω∇⋅∇−+Γ∇ ∫∫
ΩΓ

dukudu φφφ  (18) 

 
It is known that 
 

n
dnd

∂
∂

=Γ⋅∇=Γ⋅∇
φφφ  ˆ    (19) 
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Thus, (18) becomes 
 

( ) 0    *2** =Ω∇⋅∇−+Γ
∂
∂

∫∫
ΩΓ

dukud
n

u φφφ  (20) 

 
Substituting (16) in (20) we obtain 
 

( ) ( ) .0      **22** =Ω∇⋅∇−Ω∇++Γ
∂
∂

∫∫ ∫
ΩΓ Ω

dudukud
n

u φφφφ   (21) 

 
Applying the divergence theorem in (21) is 
 

( ) .0       2*2
*

* =Ω+∇+Γ
∂
∂

−Γ
∂
∂

∫∫ ∫
ΩΓ Γ

dukud
n

ud
n

u *φφφ
   (22) 

 
Due to the property of Dirac delta function, we have 
 

( ) ( )rduku
r

φφ −=Ω+∇∫
Ω

  *2*2 . (23) 

 
Substituting (23) in (22) we obtain 
 

( )∫ ∫
Γ Γ

=−Γ
∂
∂

−Γ
∂
∂ 0      

*
* rd

n
ud

n
u

r
φφφ . (24) 

 
The above equation was obtained for placement points r

r  
belonging to the domain, where *u it is the fundamental 
solution, represented by the Green's function. This solution is 
presented for the two-dimensional body [1], as 

 

( )kRHiu 1
0

*

4
=  (25) 

 
and its derivative is given by 
 

( )
n
RkRHik

n
uq rr

∂
∂

−=
∂
∂

= 1
1

*
*

4
 (26) 

 
Where R  it is the distance between the point r

r
 and the 

application point  'r
r

in the domain Ω . 
In the boundary element method, this equation is applied in 

the boundary. When 'rr vv
= , the value of R  it will be zero, 

causing a problem of singularity in (25) and (26). One way to 
avoid this problem is to consider a point 'rv  in the boundary, 
but the area around it being increased by a semi-circle radius 
ε, and to examine the solution in the limit when the radius 
ε→0. As this process limit depends only on the order of the 
singularity of the velocity potential φ ,which is the same for 
operators of Laplace and Helmholtz second [5], we conducted 
a study of boundary integrals of (24) using the fundamental 
solution for Laplace equation in Ω. Thus, one arrives at the 
Boundary Integral Equation 

 

( )∫ ∫
Γ Γ

=Γ
∂
∂

−Γ
∂
∂ Yd

n
ud

n
u φφφ

2
1      

*
*   (27) 

 
A more general way of representing it, in which 'rv may be 

located in the area, the boundary or outside the field, can be 
formulated using a free term ( )'rc v  related to to the position of 

'rv . 
 

( ) ( )∫ ∫
Γ Γ

=Γ
∂
∂

−Γ
∂
∂ YYcd

n
ud

n
u φφφ       

*
* . (28) 

 
If the point 'rv  belongs to the field outside the body studied, 

its value is 0 if the point belongs to the boundary then its value 
will be 

2
1  and 1 if the point belongs to the interior of the body 

[1]. 

C.  Discretization of Variables  
For the discretization of the physical and geometrical 

variables of the problem, the boundary is discretized into N 
elements. It assumes a constant distribution of variables and 

*u  and 
n

u
∂
∂ *

 over the elements on which the contour was 

discretized. Thus, from (23) and (24) can be written 
  

( ) ( ) ( ) ( ) ( ) ( )rdr,ru
n

rd
n

r,rurr
N

j

j
N

j
jj

jj

rrrr
rr

rr ∑ ∫∑ ∫
= Γ= Γ

Γ
∂

∂
=Γ

∂
∂

+
1

*

1

*
  '   '' '

2
1 φ

φφ  (29) 

 

The integrates Γ
∂
∂
∫
Γ

d
n

u

j

*
 and Γ∫

Γ

du
j

*
in (29) are called 

coefficients of influence, it relates the influence of the solution 
at point P, when the fundamental solution is integrated over 
the element Q. Renaming it the integrals above, we obtain 

 
Γ= ∫

Γ

duG
j

ij
*  (30) 

 
and 
 

Γ
∂
∂

= ∫
Γ

d
n

uH
j

ij

*)  (31) 

 
where i represents the point of release and j the element into 

account to be integrated. Thus (29) can be written as follows 

( ) ij
11

'
2
1 G

n
Hr

N

j

j
ij

N

j
jj ∑∑

== ∂

∂
=+

φ
φφ

)v  (32) 

 
Styling by Hij 
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⎪⎩

⎪
⎨
⎧

=+

≠
=

jiparaH

jiparaH
H

ij

ij

ij  
2
1

 
)

)

  (33) 

 
Because ( )'r

r
φ it is zero for the elements that do not contain 

the singularity and one for which it contains. Thus, one arrives 
at the following equation 

 

∑∑
==

=
N

j
jij

N

j
j qGH

1
ij

1

φ  (34) 

 
where 1=

∂
∂

=
n

q φ  (Neumann condition) as defined above. In 

the more general case, the variables *u  and 
n
u
∂
∂ *

 are 

approximated by interpolation functions of the form 
 

( ) ( )QNQ m

E

m
m∑

=

=
1

φφ  (35) 

 
where E is the degree of the interpolating function. It is 
assumed that the position of node i also varies from 1 to N. 
Thus, the fundamental solution is applied on each node, which 
enables you to check the influence of all other elements in the 
node and the uniqueness of it on himself, resulting in a system 
of equations expressed in matrix form, for each point of 
contour, as following 
 

qGH vr
=φ  (36) 

 
where H and G are two matrices N x N, φ

r
 is a vector of size 

N and q
r

 is a unit vector of dimension N. 
Being part of all elements of the matrices H and G 

corresponding to the unknown boundary conditions on the left 
and those corresponding to the known boundary conditions on 
the right side, and multiplying the matrices on the right, 
formed the following system of equations 

 
byA
rv

=  (37) 
 
where yv  is the vector of unknown boundary values of φ

r
. The 

vector b
v

is found by multiplying the columns of H or G at the 
known values of φ

r
 and q

r . 
After solving the boundary is possible to calculate the 

internal value of any potential or its derivative. 

VI. NUMERICAL METHOD 
From the numerical formulation presented was made 

through the implementation of the MATLAB software and the 
results were compared with the numerical results obtained [6]. 

 
 

TABLE II 
COMPARISON OF NUMERICAL RESULTS  

Freq. 
(Hz) 

Analytic  
[6] 

Analytic  
(MatLab) 

Abs.  
Error 

Rel.  
Error 

62,5 0,770955817 0,771765586 -0,000809769 -0,001050344 
125 0,419302101 0,425843833 -0,006541732 -0,015601477 
250 0,215899747 0,216669203 -0,000769456 -0,00356395 
500 0,108885018 0,107506492 0,001378526 0,012660383 
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The numerical results compare favorably with those 

obtained by [6] and the absolute error introduced due to the 
fact that the treatment of the uniqueness of the solution found 
in the diagonal of the matrix G of the linear system. The 
singularity in question was resolved using the method of 
increasing the number of Gauss points for the solution of the 
Hankel function of containing the singularity. This is a 
procedure often used to solve some singularities. 
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Fig. 3 Comparison of numerical results implemented 


