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The Effects of Peristalsis on Dispersion of a
Micropolar Fluid in the Presence of Magnetic Field

Habtu Alemayehu and G. Radhakrishnamacharya

Abstract—The paper presents an analytical solution for dispersion
of a solute in the peristaltic motion of a micropolar fluid in the
presence of magnetic field and both homogeneous and heterogeneous
chemical reactions. The average effective dispersion coefficient has
been found using Taylor’s limiting condition under long wavelength
approximation. The effects of various relevant parameters on the aver-
age coefficient of dispersion have been studied. The average effective
dispersion coefficient increases with amplitude ratio, cross viscosity
coefficient and heterogeneous chemical reaction rate parameter. But it
decreases with magnetic field parameter and homogeneous chemical
reaction rate parameter. It can be noted that the presence of peristalsis
enhances dispersion of a solute.

Keywords—Peristalsis, Dispersion, Chemical reaction, Magnetic
field, Micropolar fluid

I. INTRODUCTION

PERISTALSIS is a natural mechanism of transport for
many physiological fluids. This is achieved by the passage

of progressive waves of area contraction or expansion along
the boundary of a fluid-filled distensible tube. Different phys-
iological phenomena, such as the flow of urine from kidney to
the bladder through ureters, transport of food material through
the digestive tract, movement of spermatozoa in the ductus
efferentes of the male reproductive tract and cervical canal
and the transport of ovum in the fallopian tube, take place by
the mechanism of peristalsis. Some biomedical instruments
such as blood pumps in dialysis and the heart lung machine
use this principle. Peristaltic transport of a toxic liquid is
used in nuclear industry to avoid contamination of the outside
environment. The industrial use of this pumping mechanism
in roller/finger pumps to pump slurries and corrosive fluids is
well known. Several studies have been made on peristalsis with
reference to mechanical and physiological situations. (Shapiro
et al. [1], Fung and Yih [2], Misra and Pandey [3], [4], Mishra
and Rao [5], Radhakrishnamacharya [6]).

Most of bio-fluids such as blood exhibit the behavior of non-
Newtonian fluids. Hence, the study of peristaltic transport of
non-Newtonian fluids may help to have better understanding
of the biological systems. Radhakrishnamacharya [6] studied
long wavelength approximation to peristaltic motion of a
power law fluid. Another non-Newtonian fluid that received
considerable attention of researchers is micropolar fluid. The
main advantage of using this fluid model compared to other
non-Newtonian fluids is that it takes care of the rotation of
fluid particles by means of an independent kinematic vector
called the microrotation vector. To mention some studies,
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Srinivasacharya et al. [7], Muthu et al. [8] investigated the
influence of wall properties on the peristaltic motion of
micropolar fluid. Sankad et al. [9] studied long wavelength
approximation to peristaltic motion of micropolar fluid with
wall effects.

Magnetohydrodynamics (MHD) is the science which deals
with the motion of highly conducting fluids in the presence
of a magnetic field. The motion of the conducting fluid across
the magnetic field generates electric currents which change
the magnetic field and the action of the magnetic field on
these currents gives rise to mechanical forces which modify the
flow of the fluid (Mekheimer [10]). MHD flow of a fluid in a
channel with elastic, rhythmically contracting walls (peristaltic
flow) is of interest in connection with certain problems of
the movement of conductive physiological fluids (example:
the blood and blood pump machines) (Hayat et al. [11] and
Srinivasacharya and Mekonnen [12]). Currently, studies on
peristaltic motion in magnetohydrodynamic (MHD) flows of
electrically conducting physiological fluids have become a
subject of growing interest for researchers. This is due to the
fact that such studies are useful particularly for getting a proper
understanding of the functioning of different machines used
by clinicians for pumping blood (Misra et al. [13]). Misra et
al. [13] pointed out that theoretical researches with an aim to
explore the effect of a magnetic field on the flow of blood in
atherosclerotic vessels also find application in a blood pump
used by cardiac surgeons during the surgical procedure.

The process of dispersion of a solute in fluids flowing
through channels or pipes has been extensively investigated
because of its important applications in various chemical and
biological systems. The study of such problem was initiated
by Taylor [14]–[16], who presented an analysis to discuss
dispersion of a soluble salt when ejected to a stream of
solvent flowing slowly through a tube. This analysis was
later generalized and extended by many researchers to study
dispersion of solute in Newtonian or non-Newtonian fluid
flows under various situations (Aris [17], Dutta et al. [18],
Shukla et al. [19] and Peeyush and Agarwal [20] and Philip
and Peeyush [21]). The effects of homogeneous and/or het-
erogeneous chemical reactions on the dispersion of a solute
have also been studied by numerous authors under different
conditions (Gupta and Gupta [22], Ramana Rao and Padma
[23], [24], Padma and Ramana Rao [25], Shukla et al. [19],
and Philip and Peeyush [21]).

The effect of peristalsis on dispersion in the presence of
magnetic field has not received any attention. It is realized
that magnetic field and peristalsis may have significant effect
on the dispersion of a solute in the flow of conducting fluid
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and this may lead to better understanding of the flow situation
in physiological systems. The objective of this paper is to
study the effect of peristalsis on the dispersion of a solute
in micropolar fluid in the presence of magnetic field. Using
long wavelength approximation and Taylor’s approach, closed
form solution has been obtained for the dispersion coefficient
for both the cases of homogeneous first-order irreversible
chemical reaction and combined first-order homogeneous and
heterogeneous chemical reactions. The effects of various rele-
vant parameters on the average effective dispersion coefficient
are studied.

II. MATHEMATICAL FORMULATION

Consider the dispersion of a solute in peristaltic flow of an
electrically conducting micropolar fluid in a channel of width
2d and with flexible walls on which traveling sinusoidal waves
of long wavelength are imposed. A uniform magnetic field
B0 is applied to the fluid normal to the walls of the channel.
Cartesian coordinate system (x, y) is chosen with the x-axis
aligned with the center line of the channel. The traveling waves
are represented by (Fig.1)

λ
2π (x − ct )h(x,t) = d + a sin

d (mean half width )

wavelength

a
amplitude

c (wave velocity )

O x

y
λ

membrane

Fig. 1. Geometry of the problem.

y = ±h = ±
[
d+ a sin

2π

λ
(x− ct)

]
(1)

where a is the amplitude, c is the wave speed and λ is the
wavelength of the peristaltic wave.

Under long wavelength approximation, the equations gov-
erning the peristaltic motion of incompressible micropolar
fluid for the present problem are given by

∂u

∂x
+

∂v

∂y
= 0 (2)

−∂p

∂x
+

(
2μ+ κ

2

)
∂2u

∂y2
+ κ

∂g

∂y
− σB2

0u = 0 (3)

−∂p

∂y
= 0 (4)

−2κg + γ
∂2g

∂y2
− κ

∂u

∂y
= 0 (5)

where u(x, y, t) and v(x, y, t) are the velocity components in
the x and y directions respectively, g(x, y, t) is the microrota-
tion component in the direction normal to both x and y axes,
μ is the viscosity coefficient of classical fluid dynamics, κ and
γ are the new viscosity coefficients for micropolar fluids, σ

is the electrical conductivity of the fluid and B0 is a uniform
magnetic field.

We assume that the walls are inextensible so that only lateral
motion takes place and the horizontal displacement of the wall
is zero.

Thus, the no-slip boundary conditions for the velocity and
microrotation are given by

u = 0, g = 0 at y = ±h. (6)

Solving (3)-(5) under the boundary conditions (6), the
velocity is given by

u(y) = − 1

σB2
0

∂p

∂x

1

S∗
3

[m∗
1S

∗
2 sinh(m

∗
2h) cosh(m

∗
1y)

− m∗
2S

∗
1 sinh(m

∗
1h) cosh(m

∗
2y) + S∗

3 ] (7)

where

m∗
1 =

√
(δ∗1 +

√
(δ∗1)2 − 4δ∗2 )/2,

m∗
2 =

√
(δ∗1 −

√
(δ∗1)2 − 4δ∗2 )/2,

δ∗1 =
2(2μκ+ γσB2

0)

γ(2μ+ κ)
, δ∗2 =

4κσB2
0

γ(2μ+ κ)
,

S∗
1 = σB2

0/κ− (m∗
1)

2(2μ+ κ)/2κ,

S∗
2 = σB2

0/κ− (m∗
2)

2(2μ+ κ)/2κ,

S∗
3 = m∗

2S
∗
1 sinh(m

∗
1h) cosh(m

∗
2h)−m∗

1S
∗
2 cosh(m

∗
1h) sinh(m

∗
2h)

Further, the mean velocity is defined by

ū =
1

2h

∫ +h

−h
u(y)dy. (8)

Substituting (7) in (8) we get,

ū = − 1

σB2
0

∂p

∂x

1

S∗
3

[(S∗
1 + S∗

2 ) sinh(m
∗
1h) sinh(m

∗
2h)/h+ S∗

3 ] .

(9)
If we now consider convection across a plane moving with

the mean speed of the flow, then relative to this plane, the
fluid velocity is given by

ux = u− ū

= − 1

σB2
0S

∗
3

∂p

∂x
{m∗

1S
∗
2 sinh(m

∗
2h) cosh(m

∗
1y)

−m∗
2S

∗
1 sinh(m

∗
1h) cosh(m

∗
2y)− (S∗

2 − S∗
1 ) sinh(m

∗
1h) sinh(m

∗
2h)/h} .

(10)

A. Diffusion with a Homogeneous First-order Chemical Re-
action

It is assumed that a solute diffuses and simultaneously un-
dergoes a first order irreversible chemical reaction in peristaltic
transport of a micropolar fluid with isothermal conditions.
Assuming ∂2C

∂x2 << ∂2C
∂y2 , the equation for the concentration
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C of the solute for the present problem satisfies the diffusion
equation

∂C

∂t
+ u

∂C

∂x
= D

(
∂2C

∂x2
+

∂2C

∂y2

)
− k1C (11)

where D is the molecular diffusion coefficient and k1 is
the first order reaction rate constant. For typical values of
physiologically relevant parameters of this problem, it is
realized that ū ≈ c. Using this condition and following Taylor
[14]–[16], we assume partial equilibrium is maintained , and
then making use of the following dimensionless quantities

θ = t/t̄, t̄ = λ/ū, η = y/d, ξ = (x− ūt)/λ, H = h/d

(12)

(10) reduces to

ux = − d2

μS3

1

(H∗)2
∂p

∂x
{m1S2 sinh(m2H) cosh(m1η)

−m2S1 sinh(m1H) cosh(m2η)

− (S2 − S1) sinh(m1H) sinh(m2H)/H} . (13)

where

S3 = S∗
3d = m2S1 sinh(m1H) cosh(m2H)

− m1S2 cosh(m1H) sinh(m2H),

m1 = m∗
1d =

√
(δ1 +

√
δ21 − 4δ2 )/2,

m2 = m∗
2d =

√
(δ1 −

√
δ21 − 4δ2 )/2,

S1 = S∗
1d

2 = (1/μ1)
(
(H∗)2 −m2

1(2 + μ1)/2
)
,

S2 = S∗
2d

2 = (1/μ1)
(
(H∗)2 −m2

2(2 + μ1)/2
)
,

δ1 = δ∗1d
2 = M2N2 + (2/(2 + μ1))(H

∗)2,
δ2 = δ∗2d

4 = M2N2(H∗)2,

M = 2d (μ/γ)
1/2

, N = (μ1/(2 + μ1))
1/2

,

μ1 = κ/μ, (H∗)2 = σB2
0d

2/μ.

and H∗ is magnetic field parameter (Hartmann number).
Further, (11) becomes

∂2C

∂η2
− k1d

2

D
C =

d2

λD
ux

∂C

∂ξ
. (14)

Assuming that there is no absorption at the walls, the
boundary conditions for the concentration C are
∂C

∂η
= 0 for η = ±H = ±[1 + ε sin(2πξ)] (15)

where ε = a/d is the amplitude ratio.
Assuming that ∂C/∂ξ is independent of η at any cross-

section and solving (14) under the boundary conditions (15),
the solution for the concentration of the solute C is given as

C(η) = A cosh(αη)− d4

μλDS3

1

(H∗)2
∂C

∂ξ

∂p

∂x

×
{
m1S2 sinh(m2H) cosh(m1η)

m2
1 − α2

− m2S1 sinh(m1H) cosh(m2η)

m2
2 − α2

+
(S2 − S1)

α2H
sinh(m1H) sinh(m2H)

}
(16)

where

A =
d4

μλDS3

1

(H∗)2
∂C

∂ξ

1

L
sinh(m1H) sinh(m2H)

×
{

m2
1S2

m2
1 − α2

− m2
2S1

m2
2 − α2

}
, (17)

α = d(k1/D)1/2 and L = α sinh(αH).

The volumetric rate Q at which the solute is transported
across a section of the channel of unit breadth is defined by

Q =

∫ +H

−H
Cuxdη. (18)

Substituting (13) and (16) in (18), we get the volumetric
rate Q as

Q = − 2d6

λμ2D

∂C

∂ξ

(
∂p

∂x

)2

F (ξ, ε, α, μ1,M,H∗) (19)

where

F (ξ, ε, α, μ1,M,H∗) =
1

S2
3

1

(H∗)4

×
{
m3

1S
2
2 sinh(m1H) sinh2(m2H)

α sinh(αH)(m2
1 − α2)2

B1

− m2
1m2S1S2 sinh

2(m1H) sinh(m2H)

α sinh(αH)(m2
1 − α2)(m2

2 − α2)
B2

− m2
1S2(S2 − S1)

α2H(m2
1 − α2)

sinh2(m1H) sinh2(m2H)

+
m2

2S1(S2 − S1)

α2H(m2
2 − α2)

sinh2(m1H) sinh2(m2H)

− m1m
2
2S1S2 sinh(m1H) sinh2(m2H)

α sinh(αH)(m2
1 − α2)(m2

2 − α2)
B1

+
m3

2S
2
1 sinh

2(m1H) sinh(m2H)

α sinh(αH)(m2
2 − α2)2

B2

− m1S
2
2 sinh

2(m2H)

4(m2
1 − α2)

(2m1H + sinh(2m1H))

− m2S
2
1 sinh

2(m1H)

4(m2
2 − α2)

(2m2H + sinh(2m2H))

+
m1m2S1S2

(m2
1 −m2

2)
sinh(m1H) sinh(m2H)

(
1

m2
1 − α2

+
1

m2
2 − α2

)
B3

+
S2(S2 − S1)

H(m2
1 − α2)

sinh2(m1H) sinh2(m2H)

− S1(S2 − S1)

H(m2
2 − α2)

sinh2(m1H) sinh2(m2H)

}
(20)

B1 = m1 cosh(αH) sinh(m1H)−α cosh(m1H) sinh(αH),

B2 = m2 cosh(αH) sinh(m2H)− α cosh(m2H) sinh(αH),

B3 = m1 cosh(m2H) sinh(m1H)−m2 cosh(m1H) sinh(m2H).

Comparing (19) with Fick’s law of diffusion, we find that
the solute is dispersed relative to a plane moving with the mean
speed of the flow with an effective dispersion coefficient D∗

given by
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D∗ = 2
d6

μ2D
(
∂p

∂x
)2F (ξ, ε, α, μ1,M,H∗) (21)

Let the average of F be F and is defined by

F =

∫ 1

0

F (ξ, ε, α, μ1,M,H∗)dξ. (22)

B. Diffusion with Combined Homogeneous and Heteroge-
neous Chemical Reaction

We now discuss the problem of diffusion with a first-
order irreversible chemical reaction taking place both in the
bulk of the medium (homogeneous) as well as at the walls
(heterogeneous) of the channel which are assumed to be
catalytic to chemical reaction. The diffusion equation is same
as given by (11), i.e.,

∂C

∂t
+ u

∂C

∂x
= D

(
∂2C

∂x2
+

∂2C

∂y2

)
− k1C.

The differential material balance at the walls (Philip and
Peeyush [21]) gives the boundary conditions

∂C

∂y
+fC = 0 at y = h =

[
d+ a sin

2π

λ
(x− ūt)

]
, (23)

∂C

∂y
− fC = 0 at y = −h = −

[
d+ a sin

2π

λ
(x− ūt)

]
.

(24)
If we introduce the dimensionless variables (12) and assume

the limiting condition of Taylor [14]–[16], the diffusion equa-
tion remains as (14) but subject to the boundary conditions

∂C

∂η
+ βC = 0 for η = H = [1 + ε sin(2πξ)] (25)

∂C

∂η
− βC = 0 for η = −H = −[1 + ε sin(2πξ)] (26)

where β = fd is the heterogeneous reaction rate parameter
corresponding to catalytic reaction at the walls.
The solution of (14) satisfying the boundary conditions (25)
and (26) is

C(η) = A
′
cosh(αη)− d4

μλDS3

1

(H∗)2
∂C

∂ξ

∂p

∂x

×
{
m1S2 sinh(m2H) cosh(m1η)

m2
1 − α2

− m2S1 sinh(m1H) cosh(m2η)

m2
2 − α2

+
(S2 − S1)

α2H
sinh(m1H) sinh(m2H)

}
(27)

where

A
′
=

d4

μλDS3

1

(H∗)2
∂C

∂ξ

∂p

∂x

1

L′

{
m2

1S2 sinh(m2H) sinh(m1H)

m2
1 − α2

−m2
2S1 sinh(m1H) sinh(m2H)

m2
2 − α2

+
βm1S2 sinh(m2H) cosh(m1H)

m2
1 − α2

− βm2S1 sinh(m1H) cosh(m2H)

m2
2 − α2

+
β(S2 − S1) sinh(m1H) sinh(m2H)

α2H

(28)

and L = α sinh(αH) + β cosh(αH)

Substituting (27) and (13) in (18), we get

Q = −2
d6

λμ2D

∂C

∂ξ
(
∂p

∂x
)2G(ξ, ε, α, β, μ1,M,H∗)

(29)
where

G(ξ, ε, α, β, μ1,M,H∗) =
1

S2
3

1

(H∗)4

×
{

1

L′

[
m3

1S
2
2 sinh(m1H) sinh2(m2H)

(m2
1 − α2)2

B1

− m2
1m2S1S2 sinh

2(m1H) sinh(m2H)

(m2
1 − α2)(m2

2 − α2)
B2

− (S2 − S1)

αH csch(αH)

(
m2

1S2

m2
1 − α2

− m2
2S1

m2
2 − α2

)
sinh2(m1H) sinh2(m2H)

− m1m
2
2S1S2 sinh(m1H) sinh2(m2H)

(m2
1 − α2)(m2

2 − α2)
B1

+
m3

2S
2
1 sinh

2(m1H) sinh(m2H)

(m2
2 − α2)2

B2

+ β
m2

1S
2
2 cosh(m1H) sinh2(m2H)

(m2
1 − α2)2

B1

− β
m1m2S1S2 cosh(m1H) sinh(m1H) sinh(m2H)

(m2
1 − α2)(m2

2 − α2)
B2

−β
m1S2(S2 − S1)

αH(m2
1 − α2)

cosh(m1H) sinh(m1H) sinh2(m2H) sinh(αH)

− β
m1m2S1S2 cosh(m2H) sinh(m1H) sinh(m2H)

(m2
1 − α2)(m2

2 − α2)
B1

+ β
m2

2S
2
1 cosh(m2H) sinh2(m1H)

(m2
2 − α2)2

B2

+β
m2S1(S2 − S1)

αH(m2
2 − α2)

cosh(m2H) sinh2(m1H) sinh(m2H) sinh(αH)

+ β
m1S2(S2 − S1)

α2H(m2
1 − α2)

sinh(m1H) sinh2(m2H)B1

− β
m2S1(S2 − S1)

α2H(m2
1 − α2)

sinh2(m1H) sinh(m2H)B2

− β
(S2 − S1)2

α3H2
sinh2(m1H) sinh2(m2H) sinh(αH)

]
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− m1S
2
2 sinh

2(m2H)

4(m2
1 − α2)

(2m1H + sinh(2m1H))

− m2S
2
1 sinh

2(m1H)

4(m2
2 − α2)

(2m2H + sinh(2m2H))

+
S2(S2 − S1)

H(m2
1 − α2)

sinh2(m1H) sinh2(m2H)

+
m1m2S1S2

(m2
1 −m2

2)
sinh(m1H) sinh(m2H)

(
1

m2
1 − α2

+
1

m2
2 − α2

)
B3

− S1(S2 − S1)

H(m2
2 − α2)

sinh2(m1H) sinh2(m2H)

}
(30)

Comparing (29) with Fick’s Law of Diffusion, we find that
the solute is dispersed relative to a plane moving with the mean
speed of the flow with an effective dispersion coefficient D∗

given by

D∗ = 2
d6

μ2D

(
∂p

∂x

)2

G(ξ, ε, α, β, μ1,M,H∗) (31)

The average of G denoted by G is defined as

G =

∫ 1

0

G(ξ, ε, α, β, μ1,M,H∗)dξ. (32)

III. RESULTS AND DISCUSSION

The effects of various parameters on the average ef-
fective dispersion coefficient can be observed through the
functions F (ξ, ε, α, μ1,M,H∗) (for homogeneous case) and
G(ξ, ε, α, β, μ1,M,H∗) (for combined homogeneous and het-
erogeneous case) given by equations (22) and (32), respec-
tively. The expressions for F and G have been obtained by
numerical integration using MATHEMATICA software for dif-
ferent values of relevant parameters and presented graphically.
The important parameters involved in the expressions are: the
amplitude ratio ε, the homogeneous reaction rate parameter
α, the heterogeneous reaction rate parameter β, the cross
viscosity coefficient μ1, the other micropolar parameter M
and the Hartmann number (or magnetic field parameter) H∗.

A. Homogeneous Chemical Reaction
Figs. 2-5 show the effects of various parameters on dis-

persion in the presence of homogeneous chemical reaction in
the bulk of the medium. It can be observed that the average
effective coefficient of dispersion decreases with homogeneous
chemical reaction rate parameter α (Figs. 2-5). This result is
expected since increase in α leads to increasing number of
moles of solute undergoing chemical reaction, which results in
the decrease of dispersion. The result that dispersion decreases
with α agrees with previous results obtained by Gupta and
Gupta [22], Dutta et al. [18], Ramana Rao and Padma [23],
[24], Padma and Ramana Rao [25], Shukla et al. [19]. Further,
average dispersion decreases with magnetic field parameter
(or Hartmann number) H∗ (Fig. 2). The result that dispersion
decreases with Hartmann number H∗ agrees with the results
obtained by Ramana Rao and Padma [23], [24]. However, F
increases with micropolar parameters M and μ1 (Figs. 3 and
4, respectively) and amplitude ratio ε (Fig. 5). The result that
dispersion increases with ε shows that dispersion is more in
the presence of peristalsis.
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Fig. 2. Effect of H∗ on F for M = 5.0, μ1 = 10.0 and ε = 0.2.
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Fig. 3. Effect of M on F for H∗ = 4.0, μ1 = 10.0 and ε = 0.2.
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Fig. 4. Effect of μ1 on F for H∗ = 4.0, M = 5.0 and ε = 0.2.

B. Combined Homogeneous and Heterogeneous Chemical Re-
actions

Figs. 6-10 show the effects of various parameters on dis-
persion for the case of combined first-order homogeneous
and heterogeneous chemical reactions both in the bulk and
at the walls. Average effective dispersion coefficient G de-
creases with magnetic field parameter H∗ (Fig.6), micropolar
parameter M (Fig.7) and homogeneous chemical reaction rate
parameter α (Fig. 10). But it increases with cross viscosity
coefficient μ1 (Fig. 8) and amplitude ratio ε (Fig.9). Further,
Figs. 6-10 show that dispersion increases with heterogeneous
chemical reaction rate parameter β. The increase with β is
less significant for higher values of heterogeneous chemical
reaction rate parameter (β ≥ 6). Similarly, the result that
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Fig. 5. Effect of ε on F for H∗ = 4.0, M = 5.0 and μ1 = 10.0.

dispersion increases with amplitude ratio shows that dispersion
increases in situations where peristalsis takes place.
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Fig. 6. Effect of H∗ on G for M = 5.0, μ1 = 10.0, α = 1.0 and ε = 0.2.
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Fig. 7. Effect of M on G for H∗ = 4.0 , μ1 = 10.0, α = 1.0 and ε = 0.2.

IV. CONCLUSION

The dispersion of a solute in peristaltic motion of a mi-
cropolar fluid in the presence of magnetic field with both
homogeneous and heterogeneous chemical reactions has been
studied under long wavelength approximation and Taylor’s
limiting condition. It is observed that average effective coeffi-
cient of dispersion decreases with magnetic field parameter (or
Hartmann number) H∗ and homogeneous chemical reaction
rate parameter α. But dispersion increases with amplitude ratio
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Fig. 8. Effect of μ1 on G for H∗ = 4.0 , M = 5.0, α = 1.0 and ε = 0.2.
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Fig. 9. Effect of ε on G for H∗ = 4.0 , M = 5.0, μ1 = 10.0, and α = 1.0.
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Fig. 10. Effect of α on G for H∗ = 4.0 , M = 5.0, μ1 = 10.0 and
ε = 0.2.

ε, cross viscosity coefficient μ1 and heterogeneous chemical
reaction rate parameter β. In both the cases, it can be noted
that dispersion is more in the presence of peristalsis.
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