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Abstract—In this paper we present, propose and examine 

additional membership functions for the Smoothing Transition 
Autoregressive (STAR) models. More specifically, we present the 
tangent hyperbolic, Gaussian and Generalized bell functions. 
Because Smoothing Transition Autoregressive (STAR) models 
follow fuzzy logic approach, more fuzzy membership functions 
should be tested. Furthermore, fuzzy rules can be incorporated or 
other training or computational methods can be applied as the error 
backpropagation or genetic algorithm instead to nonlinear squares. 
We examine two macroeconomic variables of US economy, the 
inflation rate and the 6-monthly treasury bills interest rates. 
 

Keywords—Forecast , Fuzzy membership functions, Smoothing 
transition, Time-series 

I. INTRODUCTION 
MPIRICAL analysis in macroeconomics as well as in 
financial economics is largely based on times series. This 

approach allows the model builder to use statistical inference 
in constructing and testing equations that characterize 
relationships between economic variables. There are two 
kinds of econometric modelling in time-series analysis. The 
first one contains the linear models like Autoregressive (AR), 
Moving Average (MA) and Autoregressive Moving Average 
(ARMA) models among other. The second is consisted b non-
linear models, as the Threshold Autoregressive (TAR) 
models, Smoothing Transition Autoregressive (STAR) 
Models and Markov Switching Regime Autoregressive (MS-
AR) model. 

One criticism in STAR modeling is that the estimation 
procedure can be incomplete. To be specific the linear part is 
exactly like a linear Autoregressive (AR) process. But the 
non-linear part is actually a fuzzy database, where the values 
are the fuzzy membership grades of the inputs. So a first 
notice is that no rules and no linguistic terms are introduced 
and for inputs more than one the AND-OR operators are not 
considered. The studies employing STAR models do not 
examine and explore this feature and do not explain why the 
nonlinear part should be of this form. One of the very few 
studies which approximated that is the study of Aznarte et al. 
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[1]. The second criticism is that the nonlinear squares with 
Levenberg-Marquardt algorithm might not be appropriate. 
Therefore taking the fuzzy rules and other optimization 
procedures like linear programming or neuro-fuzzy approach 
with error backpropagation algorithm can be more efficient 
optimization techniques.  

The purpose of this paper it to propose some additional 
fuzzy membership functions and specifically the Gaussian and 
the Generalized Bell function, as well as the tangent 
hyperbolic function, which is used in neural networks with 
some appropriate modifications. A further proposal is to 
introduce fuzzy rules, linguistic terms and fuzzy operators in 
the estimation procedure. We examine linearity tests in order 
to find the lag order where we reject linear process, but we do 
not present the process of the test choosing either exponential 
or logistic smoothing functions.  We are interesting in 
forecasting, because a good model is judged on its forecasting 
performance, so hence its estimations would be more reliable. 
Furthermore, the test of choosing exponential versus logistic 
STAR model, do not guarantee that the specific smoothing 
function gives necessary the best forecasts. In section II we 
present the methodology of STAR models and the 
membership functions used in this study, while in section III 
and IV we present the data and the empirical results.  

. 
II. METHODOLOGY 

A. Smoothing Transition Autoregressive Models 
 
The smoothing transition auto-regressive (STAR) model 

was introduced and developed by Chan and Tong [2] and is 
defined as:   

tdtttt uyFwwy ++++= − )c,;()(' '
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,where ut ~ (0,σ2), π10  and π20  are the intercepts in the middle 
(linear) and outer (nonlinear) regime respectively,  wt = (yt-1…. 
yt-j) is the vector of the explanatory variables consisting of the 
dependent variable with j=1…p lags, yt-d is the transition 
variable, parameter c is the threshold giving the location of the 
transition function and parameter γ is the slope of the 
transition function. The STAR model estimation is consisted 
by three steps according to Teräsvirta [3].  
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a) The specification of the autoregressive (AR) process of 
j=1,… p. One approach is to estimate AR models of different 
order and the maximum value of j can be chosen based on the 
AIC information criterion Besides this approach, j value can 
be selected by estimating the auxiliary regression (2) for 
various values of j=1,…p, and choose that value for which the 
P-value is the minimum, which is the process we follow.                                                                          

b) The second step is testing linearity for different values of 
delay parameter d. We estimate the following auxiliary 
regression:  
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The null hypothesis of linearity is H0: β2j =  β3j = β4j =0.  In 
order to specify the parameter d the estimation of (2) is carried 
out for a wide range of values 1≤d≤D and we choose d=1,…,5 
In the cases where linearity is rejected for more than one 
values of d, then d is chosen by the minimum value of p(d), 
where p(d) is the P-value of the linearity test. We examine for 
j=1,…, 5 and we choose those values of j and d , where the P-
value is minimized.  

c) The third and last step is the specification of STAR 
model. Because in this study we propose three additional 
membership or smoothing functions we do not examine the 
specific test as it is referred only in exponential and logistic 
STAR models. The fuzzy membership functions we examine 
in the non-linear part are the logistic, exponential, tangent 
hyperbolic, generalized bell function and Gaussian defined by 
(3)-(7) respectively. 
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,where i is the lag order. We apply a grid search procedure for 
equation (1) with non linear squares and Levenberg-
Marquardt algorithm. For parameter c the grid search takes 
place in the range of the input data with increment 0.1, while 
we use the interval [1 10] with increment 0.5 for parameter γ. 

Finally for parameter b of Generalized Bell function we apply 
a grid search in the interval [0.5 2] with increment 0.1. The 
initial values for parameters c, γ and b are the mean value of 
the data, 1 and 0.5 respectively. 
 

B. Unit Root and Stationary Tests 
 
It is possible that the variables are not stationary in the 

levels, but probably are in the first or second differences. To 
be specific we confirm this assumption by applying 
Augmented Dickey-Fuller-ADF [4] and KPSS stationary test 
[5]. The ADF test is defined from the following relation: 
 

tptpttt tyyyy εβφφμ ++Δ++Δ++=Δ −−− ....γ 111  (8) 

, where yt is the variable we examine each time. In the right 
hand of (8) the lags of the dependent variable are added with 
order of lags equal with p. Additionally, regression (8) 
includes the constant or drift μ and trend parameter β. The 
disturbance term is defined as εt. In the next step we test the 
hypotheses: 
 

H0: φ=1, β=0 =>  yt ~ Ι(0) with drift 

against the alternative 

H1: |φ|<1         =>  yt ~ Ι(1) with deterministic time trend 

 
The KPSS statistic is then defined as: 
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, where T is the number of sample and )(
2^

pσ is the long-run 
variance of εt and can be constructed from the residuals εt as: 
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, where p is the truncation lag, wj( p) is an optional weighting 
function that corresponds to the choice of a special window 
[6]. Under the null hypothesis of level stationary,  
 

dxrVKPSS 21

0 1 )(∫→                                                       (11) 

 
, where V1(x) is a standard Brownian bridge: V1(r) = B(r) – 
rB(1) and B(r) is a Brownian motion (Wiener process) on r ∈ 
[0, 1]. Because relation (11) is refereed in testing only on the 
intercept and not in the trend and as we are testing with both 
intercept and trend we have the second-level Brownian bridge 
V2(x) and it is: 
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, where  V2(x) is given by: 
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The forecasting performance of STAR models in both in-

sample and out-of- sample periods is counted based on the 
Mean Absolute Error (MAE) and Root Mean Squared Error 
(RMSE) described respectively by (14) and (15).  
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III. DATA 
 
We examine two macroeconomic variables of US economy, 

the inflation rate and the six monthly treasury bills interest 
rates. The data we use in our analysis are in monthly 
frequency. We examine the period 1950-2009. The period 
1950 to 2005 is used for the in-sample period and the period 
2006-2009, which is a period 48 observations, is left for the 
out-of-sample forecasting period. It should be noticed that the 
forecasting step is one period ahead.  
 

IV. EMPIRICAL RESULTS 
 
In Table I we present the results of ADF and KPSS tests,  

The results are mixed. For gross domestic product we reject 
unit root in α=0.05 and 0.10 based on ADF test, while we 
accept stationarity only in α=0.01 based on KPSS test. For 
example for unemployment and inflation rates we reject unit 
root based on ADF statistic in all statistical significance 
levels, but we reject stationarity hypothesis based on KPSS 
test. We accept that treasury bills interest rates are stationary 
in first differences, I(1), based on both ADF and KPSS tests.  

In Table II we report the linearity tests for the two 
macroeconomic variables we examine. The value of lag order 
p is chosen based on the minimum p-value and in the cases 
where there are more than one zero p-values lag order p is 
chosen based on the highest F-statistic. In all cases we found 
an autoregressive process AR(1), p=1, we choose the lag 
order of delay 1 and 2 respectively for inflation, and interest 
rates.  

TABLE I 
ADF AND KPSS TESTS  

Indices ADF-statistic KPSS-statistic 
Inflation Rate 

Levels 
-5.040 0.3759 

Inflation Rate  
First differences 

 0.1102 

Treasury Bills 
Levels 

-2.089 0.5547 

Treasury Bills 
First differences 

-8.461 0.0335 

Critical values  
for ADF1 

-4.086 
-3.471 
-3.162 

α=0.01 
α=0.01 
α=0.10 

Critical values  
for KPSS2 

0.216 
0.146 
0.119 

α=0.01 
α=0.01 
α=0.10 

     1 MacKinnon [7], 2 Kwiatkowski et al.,[5]  
 

 
TABLE II 

LINEARITY TESTS FOR INFLATION AND INTEREST RATES 
Indices Inflation Rate Treasury 

Bills 

p 1 1 

d=1 24.820 
(0.000) 

7.503  
(0.0001) 

d=2 13.458 
(0.000) 

17.551 
 (0.000) 

d=3 3.470 
(0.0160) 

5.941  
(0.0001) 

d=4 6.278 
(0.0003) 

3.069 
 (0.0274) 

d=5 16.085 
(0.000) 

5.228  
(0.0014) 

                 *p-values in parenthese 

 

In tables III and IV the estimated results for inflation and 
interest rates respectively are reported. We observe, in the 
case of the inflation rate, that the fuzzy membership function 
parameters, c and γ are statistically significant, except from 
Generalized Bell function, where parameters c and b are 
statistically insignificant. On the other hand for Treasury bill 
interest rates, parameter γ is statistically insignificant in the 
case of logistic function, while parameter c is insignificant for 
tangent hyperbolic and Generalized Bell functions. In the 
most cases the estimated parameters in the linear and non-
linear part are significant. 

In Table V the Root Mean Squared Error (RMSE) and 
Mean Absolute Error (MAE) are reported. The results are 
mixed, as in the case of inflation rate and the in-sample 
period, Generalized Bell STAR function presents the highest 
performance, followed by tangent hyperbolic, logistic and 
exponential, while the lowest forecasting performance is 
reported for Gaussian. In the out-of-sample period for 
inflation rate exponential STAR model presents the highest 
forecasting performance, followed by Generalized Bell 
function, tangent hyperbolic, logistic and finally, Gaussian 
presents again the highest RMSE and MAE values.  
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TABLE III 
ESTIMATIONS FOR INFLATION RATE 

 Linear Part Non-Linear Fuzzy Part 
Exponential 

STAR 
π10 π11 π20 π21 

 0.0509 
(1.018) 

0.5971 
(3.639)* 

-0.1005 
(-0.378) 

-2.0167 
(-4.506)* 

 γ c   
 2.9327 

(1.997)** 
0.1163 

(1.671)*** 
  

Logistic 
STAR 

π10 π11 π20 π21 

 0.2611 
(2.173)** 

-0.2701 
(-0.639) 

-0.3606 
(-2.220)** 

0.0317 
(0.067) 

 γ c   
 4.875 

(2.034)** 
-0.0696 

(-2.723)* 
  

Tangent 
STAR 

π10 π11 π20 π21 

 0.5809 
(2.075)** 

-0.2542 
(-1.161) 

-0.6804 
(-2.219)** 

0.0159 
(0.0676) 

 γ c   
 4.876 

(2.035)** 
-0.0696 

(-2.722)** 
  

Generalized 
Bell STAR 

π10 π11 π20 π21 

 -0.1854 
(-0.667) 

0.6010 
(1.767)*** 

0.2143 
(0.757) 

-1.3164 
(-1.713)*** 

 γ b c  
 1.6512 

(2.531)** 
0.3844 

(0..0617) 
0.1743 
(0.030) 

 

Gaussian 
STAR 

π10 π11 π20 π21 

 -0.5123 
(-2.023)** 

-0.9766 
(2.396)** 

0.8722 
(3.260)* 

1.5900 
(3.752)* 

 γ c   
 1.5073 

(2.654)** 
0.8140 

(2911)** 
  

*,**,*** denotes significance in 0.01, 0.05 and 0.10 respectively, t-statistics 
in parentheses 
 

On the other hand for six-monthly treasury bills, 
Generalized bell function presents again the highest 
forecasting performance followed by tangent hyperbolic, 
logistic and exponential STAR models, whose RMSE and 
MAE values are very close among them. Gaussian function 
presents again the highest RMSE and MAE vales and 
therefore the lowest forecasting performance. In the out-of-
sample period logistic STAR model presents the highest 
performance, followed by Gaussian function.  

The results indicate that we can examine additional 
membership functions in STAR modelling for further 
applications in more cases, as the gross domestic product, the 
stock returns and the exchange rates among others. To be 
specific we found that Gaussian function outperforms 
exponential STA model in the out-of-sample period, for 
interest rates. Furthermore, in the case of inflation rate and the 
out-of-sample period tangent hyperbolic and Generalized Bell 
functions outperform logistic STAR model, so additional 
membership functions for STAR modelling are proposed for 
further research applications.  

 

TABLE IV 
ESTIMATIONS FOR TREASURY BILLS INTEREST RATES 

 Linear Part Non-Linear Fuzzy Part 
Exponential 

STAR 
π10 π11 π20 π21 

 0.0424 
(0.602) 

0.7752 
(1.691)*** 

-0.0506 
(-0.658) 

-1.1159 
(-2.111)** 

 γ c   
 3.335 

(1.761)*** 
0.601 

(15.916)* 
  

Logistic 
STAR 

π10 π11 π20 π21 

 0.0140 
(0.683) 

0.0022 
(0.017) 

-0.0489 
(-1.226) 

-0.5597 
(-2.548)** 

 γ c   
 4.206 

(0.022) 
0.638 

(3.682)* 
  

Tangent 
STAR 

π10 π11 π20 π21 

 0.0013 
(0.007) 

0.4424 
(4.034)* 

-0.0106 
(-0.620) 

0.2480 
(2.260) 

 γ c   
 1.782 

(1.735)*** 
0.6001 
(0.008) 

  

Generalized 
Bell STAR 

π10 π11 π20 π21 

 -0.0079 
(-0.461) 

0.6629 
(7.639)* 

-0.0704 
(-0.179) 

-2.1910 
(-0.106) 

 γ b c  
 1.167 

(5.412)* 
1.749 

(3.369)* 
1.1051 
(0.060) 

 

Gaussian 
STAR 

π10 π11 π20 π21 

 -0.0082 
(-0.419) 

-0.3406 
(-2.541)* 

0.0506 
(0.658) 

1.1159 
(-2.115)** 

 γ c   
 2.601 

(15.916)* 
-0.387 

(-2.540)** 
  

*,**,*** denotes significance in 0.01, 0.05 and 0.10 respectively, t-statistics 
in parentheses 

TABLE V  
RMSE AMD MAE VALUES 

In sample period 
 Inflation Interest rates 
 RMSE MAE RMSE MAE 

Exponential 0.2719 0.2057 0.1641 0.1153 
Logistic 0.2696 0.1981 0.1643 0.1119 
Tangent 

hyperbolic 
0.2684 0.1974 0.1643 0.1117 

Generalized 
Bell 

0.2674 0.1971 0.1494 0.0952 

Gaussian 0.2760 0.2088 0.1661 0.1190 
Out-of-sample period 

 Inflation Interest rates 
 RMSE MAE RMSE MAE 

Exponential 0.2791 0.2240 0.3249 0.2741 
Logistic 0.2857 0.2363 0.2929 0.2333 
Tangent 

hyperbolic 
0.2819 0.2288 0.3420 0.2678 

Generalized 
Bell 

0.2816 0.2317 0.3259 0.2752 

Gaussian 0.2898 0.2387 0.3032 0.2533 
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V. CONCLUSIONS 
 
In this paper we proposed three additional fuzzy 

membership functions for the non-linear part of Smoothing 
Transition Autoregressive (STAR) models. Furthermore the 
STAR models are incomplete. To be specific the nonlinear 
part accounts for the membership grades of inputs but no rules 
are included. Additionally, STAR models assume only one or 
even no linguistic term and it should be for example for 
exchange rates or stock returns a fuzzy set of linguistic terms 
like {negative returns, zero returns, positive returns}, or even 
assigning more or different linguistic terms like {very 
negative returns, negative returns, zero returns, positive 
returns, very positive returns} and therefore taking the 
appropriate operator, max, min or product. More over 
additional membership functions can be proposed; besides 
those we have examined on this study, as the triangular, 
trapezoidal, the S-shaped or Z-shaped among others. Finally, 
other optimization methods can be applied in order to find the 
fuzzy parameters as the error backpropagation or genetic 
algorithms instead to nonlinear squares and Levenberg-
Marquardt algorithm.  
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