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Abstract—The anti-lock braking systems installed on vehicles 

for safe and effective braking, are high-order nonlinear and time-
variant. Using fuzzy logic controllers increase efficiency of such 
systems, but impose a high computational complexity as well. The 
main concept introduced by this paper is reducing computational 
complexity of fuzzy controllers by deploying problem-solution data 
structure. Unlike conventional methods that are based on 
calculations, this approach is based on data oriented modeling. 
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off, Data oriented modeling. 

I. INTRODUCTION 
NTI  LOCK braking system (ABS) is now a common 
feature on most vehicles. It was first developed in 1950s 

for aircrafts, but then was too expensive for road vehicles. The 
first ABS for vehicles appeared in the late 1960s. Although it 
was commercially unsuccessful, the associated researches 
fostered a number of other commercial products [2]. Since 
then, ingenious mechanical ABSs have been developed, but 
the real growth in ABS technology was made possible by the 
invention of integrated electronics and microcomputers in 
1970s. As a result ABS controllers have moved inevitably to 
microcomputer based methods [2]. 

When braking force is applied to a rolling wheel, it will 
begin to slip. In a normal driving condition the vehicle 
velocity is almost the same as the wheel velocity, but If 
braking force is applied, these two velocities will be different. 
Slip is defined as the difference between the vehicle velocity, 
Vveh and the wheel circumferential velocity, Vwhl normalized to 
the vehicle velocity, and denoted by λ : 

veh

whlveh

V
VV −

=λ  
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If sufficient braking force is applied, the wheel will “lock 
up”, that is, slide without turning at all. During the wheel 
lockup, vehicle greatly loses steering control and the friction 
force which stops the vehicle is reduced. The braking wheel 
provides two-forces, the lateral force, FL and the braking 
force, FB as shown in Fig. 1. These two forces are induced 
from FN, the weight of the vehicle. The first, FL, provides the 
vehicle steering control and the lateral stability, while the 
second, FB, provides the braking forces, which stop the 
vehicle. These forces are nonlinear function of slip [5], [6] as 
shown in Fig. 2. 

The lateral force is greatest at the zero slip. When slip 
increase, the lateral force decrease, that is, the ability to steer 
and control the direction of the vehicle is decreased. The 
brake force is zero at zero slip, and it has a peak value when 
the slip is close to 0.2. Most control strategies define their 
performance goal as maintaining slip near a value of 0.2 
throughout the braking trajectory. Because in this area the 
braking force is close to maximum and the lateral force is 
sufficiently large to providing the lateral stability. 

Not only the braking force and the lateral force are 
nonlinear function of slip but also slip is nonlinearly related to 
many other factors, such as maximum road coefficient of 
friction, temperature of the brake lining, temperature of the 
brake fluid, pedal force, wearing of tire, initial speed of 
vehicle and etc. These factors are varying with time. This 
means braking system is a high-order nonlinear time variant 
system. Therefore there is no classical equation for braking 
system control. The knowledge base methods can be used for 
effective controlling of this system. [4] Uses neural network, 
[3] introduces fuzzy logic controller and [1] give an optimal 
fuzzy logic controller. The fuzzy logic controller is an 
effective controller for ABS but it has a high computing 
complexity. We use Problem-Solution Data Structure for 
almost removing this complexity. 

II. FUZZY  LOGIC  CONTROLLER 
Using fuzzy logic controllers for ABSs was introduced by 

D. P. Madau, et al, in 1993 [3]. It compromises two input 
variables; slip λ  and wheel accelerationα , for generating the 
control output uδ , which controls the force applied to the 
brake lining. It also has following five rules to drive the fuzzy 
logic kernel: 
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1. If λ  is Pos. Small then uδ  is Pos. Small. 
2. If whlα is Neg. Large then uδ is Neg. Med. 

3. If whlα is Pos. Large then uδ is Pos. Large. 

4. If λ  is Pos. Large then uδ is Neg. Large. 
5. If λ  is Pos. Medium then uδ is Neg. Small. 

 
The fuzzy logic kernel utilizes standard max-min fuzzy 

inference. The center of area method was used to generate the 
control output uδ . 

Another fuzzy logic controller for an ABS braking system 
appeared in 1995 [2]. It uses three input variables inferred 
from the road condition identifier, the current slip ratio 
GLISS, predicted slip ratio GLPRED and braking torque 
variable COUPLE. It also has four decision variables 
(blockage, ice, wet and dry) which only takes values zero or 
one. The following eleven rules drive its fuzzy logic kernel:  

 
1. RULEDRY; 

IF DRY IS TRUE AND; 
GLPRED IS NOT VLARGE; 
THEN DGL IS LARGE; 
RULE-1; 

2. RULE DRY 2; 
IF GLISS IS LARGE AND; 
DRY IS TRUE AND; 
COUPLE IS LARGE; 
THEN DGL IS MEDUM; 
RULE-2; 

3. RULE DRY 3; 
IF GLISS IS SMALL AND; 
DRY IS TRUE AND; 
COUPLE IS LARGE AND; 
GLPRED IS NOT VLARGE; 
THEN DGL IS LARGE; 
RULE-3; 

4. RULE DRY 4; 
IF GLISS IS MEDUM AND; 
DRY IS TRUE AND; 
GLPRED IS NOT VLARGE AND; 
COUPLE IS LARGE AND; 
THEN DGL IS LARGE; 
RULE-4; 

5. RULE ICE 7; 
IF ICE IS TRUE AND; 
GLISS IS ZS AND; 
COUPLE IS ZS; 
THEN DGL IS ZS; 
RULE-7; 

6. RULE ICE 5; 
IF GLISS IS ZERO AND; 
ICE IS TRUE; 
THEN DGL IS SMALL; 
RULE-5; 

7. RULE ICE 8; 

IF GLISS IS SMALL AND; 
ICE IS TRUE;  
THEN DGL IS ZERO; 
RULE-8; 

8. RULE BLOCKAGE; 
IF GLISS IS VLARGE AND; 
GLIPRED IS VLARGE; 
THEN DGL IS ZERO; 
RULE-9; 

9. RULE WET 10; 
IF WET IS TRUE AND; 
GLISS IS ZS AND; 
GLIPRED IS NOT LARGE 

THEN DGL IS SMALL; 
RULE-10; 

10. RULE WET 11; 
IF WET IS TRUE AND; 
GLISS IS SMALL; 
THEN DGL IS ZS; 
RULE-11; 

11. RULE WET 12; 
IF WET IS TRUE AND; 
GLISS IS ZERO AND; 
GLIPRED IS NOT LARGE; 
THEN DGL IS SMALL; 
RULE-12; 

 
The output variable named “DGL”, represents the braking 

torque. Output defuzzification is performed by computing the 
centers of all minimum according to Mamdani’s method 
implemented in [2]. 

All fuzzy logic controllers determine the output in the 
following phases: 

1. Input in mapped to the rules. 
2. Each rule governs its output. 
3. Output of rules determines the fuzzy output by fuzzy 

inference. 
4. Defuzzify the output to real value befitting the 

engineering applications. 

 
Fig. 1 Wheel forces 

 FN  Normal Force,  Fb  Braking Force,  Fl  Lateral Force 
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Fig. 2 Brake force and lateral force  

are functions of slip 
 

Each phase needs a considerable volume of computation. 
The computational complexity of a fuzzy controller is strongly 
related to the number of rules, membership function and their 
combinations, fuzzy inference and defuzzification method. 
For given rule sets above, the computational complexity of the 
second controller is higher than the first. Because it has eleven 
combined rules but the first one only has five simple rules. 

We want to design fuzzy equivalent of the first controller 
which bears less computational complexity by using Problem-
Solution Data Structure. It is explained in the next section. 

III. PROBLEM - SOLUTION  DATA  STRUCTURE 
Problem-Solution Data Structure, PSDS, is the arrangement 

of data in the memory. In other words PSDS is a database 
which stores the state of controller and solution of them, each 
component of PSDS has two segments: The first segment 
shows the problem, states of controller, and the second 
segment shows the solution, output of controller. We use 
PSDS in the following step: 

1. Current state of controller is compared with the 
problems in the first segment of PSDS database and 
the nearest match is found. 

2. The solution segment of the found match is use as 
the output of the controller.  

Two fuzzy based PSDS controllers for controlling the ABS 
are introduced in the following sections.  

IV. QUAN   PSDS 
We aim to design PSDS equivalent of fuzzy controller of 

[3], since it is a simple controller to implement. λ  and whlα  

are input variables for this controller and δ is the output. Fig. 
3 shows the output,δ , in the input space. 

The surface of Fig. 3 shows the output of controller for the 
giving input space. The quantization of this surface is given as 
subsurfaces, each of which represents a problem and its direct 
solution. This QUAN PSDS contains 1600 subsurfaces, each 
subsurface can be denoted by it’s lower right corner as 
( )iii δαλ ,, . Then we can store the surface of Fig. 3 by 1600 
subsurfaces as the form:  

( ) 1600,...2,1,,, =iiii δαλ . 

 
 

Fig. 3 Output of fuzzy controller 
 
The ( ),, ii λα  identify the i-th  problem and iδ  is the 

solution of it. Each subsurface makes one component of 
QUAN PSDS. For a given controller state ( )λα , , one 

subsurface ( )iii δαλ ,,  exists such that ( )λα ,   settles in it. 
We index this subsurface by the function (1). 

])[40(][ αλ ∗+=i                 (1) 

Index of each subsurface is specified in the λα −  plan, as 
shown in figure 4. By this indexing, it is sufficient to store the 

iδ  instead of ( )iii δαλ ,, , because index I is determined 

from equation 1 substituting ( ),, ii λα . Therefore, QUAN 

PSDS was constructed by locating iδ  in the i-th memory 
location. This PSDS is similar to two dimensional table or 
array, Address of memory i denotes the problem and content 
of it determines the solution of this problem, which is used for 
ABS controlling in the following steps: 

1. The controller state ( )λα ,  is read as the input, then 
index of problem, i, is calculated by the equation (1). 

2. The output iδ  is retrieved from i-th memory location as 
the solution of problem which is assumed to be the output of 
controller. 

Steps above are repeated during the lifetime of controller. 
This controller has a quantizing contradiction with the original 
fuzzy controller. But it is free of computing, and this 
contradiction is not important because the original controller 
is a fuzzy controller. 

In this paper choosing the optimum quantization of 
subsurface is left as an open problem. This quantization must 
be in a way that PSDS controller will still remain stable and 
robust. Fig. 5 demonstrates the performance of fuzzy based 
PSDS controller and original fuzzy controller on the input 
space. These two controllers approximately have the same 
results.  

In the next section we introduce another fuzzy based PSDS, 
named LINEAR PSDS for controlling of ABS. 
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V. LINEAR  PSDS  

Similar to QUAN PSDS, LINEAR PSDS is constructed by 
the output of fuzzy controller of [3]. Fig. 6 shows the output 
of this controller with 16 subsurfaces. Each subsurface is 
denoted by it’s lower right corner ( )iii δαλ ,, , slope at 

direction of λ , ( iγ  ) and slope at direction of α  ( iθ ). That 
is to say each subsurface of Fig. 6 is identified by the 
vector ( )θγδαλ ,,,, . Then we can store surface of Fig. 6 by 
16 subsurfaces as the form: 

( )iiiii θγδαλ ,,,,  , i=1, 2, 3,..., 16 

1560 1561 1562 1563 1564 1565 1566    …    1595 1596 1597 1598 1599 

1520 1521 1522 1523 1524 1525 1526    …    1555 1556 15557 15558 1559 

1480 1481 1482 1483 1484 1485 1486    …    1515 1516 1517 1518 1519 

1440 1441 1442 1443 1444 1445 1446    …    1475 1476 1477 1478 1479 

1400 1401 1402 1403 1404 1405 1406    …    1435 1436 1437 1438 1439 
1360 1361 1362 1363 1364 1365 1366    …    1395 1396 1397 1398 1399 

. . .                             . . . 

. . .                             . . . 

. . .                             . . . 

. . .                             . . . 

160 161 162 163 164 165 166   …   195 196 197 198 199 

120 121 122 123 124 125 126    …    155 156 157 158 159 

80 81 82 83 84 85 86     …    115 116 117 118 119 

40 41 42 43 44 45 46     …    75 76 77 78 79 

0 1 2 3 4 5 6      …    35 36 37 38 39 

                       
 

Fig. 4  Index of each subsurface 
λ 

α  

 
a                       b  

Fig. 5 a) Output of fuzzy controller b) Output of QUAN PSDS controller 

δ  

α

λ  
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The ( ),, ii λα  identifies the i-th problem and ( )iii θγδ ,,   
is the solution of it. 

Each subsurface constructs one component of LINEAR 
PSDS. For a given controller state, ( )λα , , one subsurface 

( )iiiii θγδαλ ,,,,  exists such that ( )λα ,  settles in it. We 
index this subsurface by the function 2: 

]10[4]10[ ÷∗+÷= αλi     (2)  
As shown in Fig. 7 index of each subsurface is written in 

their subsurface in the αλ −  plan. By this indexing, it is 
sufficient to store ( )iii θγδ ,,  instead of ( )iiiii θγδαλ ,,,, , 
it is because index i is retrieved from equation (2) by 
substituting ( ),, ii λα  and vice versa. Therefore LINEAR 
PSDS is constructed by locating three memory locations 
starting from 3i respectively. 

 
LINEAR PSDS is used for controlling ABS in the 

following steps: 
1. The controller state ( )λα ,   is read as input. Then index 

of problem (i) is calculated, substituting ( )λα ,    in the 
equation (2). 

2. Get three element from memory location 3i respectively 
as ( )iii θγδ ,, . 

3. The output of controller is calculated from linear 
adaptation function: 

( ) ( ) ( ) iiiiif δλλθααγλα +−+−=,      (3) 

 
Fig. 6 Output of fuzzy controller 

 
These three steps are repeated at the lifetime of controller. 

Fig. 8 shows the performance of fuzzy based LINEAR 
PSDS and the original the fuzzy controller. These controllers 
approximately have the same results; Because LINEAR PSDS 
controller has a linear contradiction with the original fuzzy 
controller.  

VI. COMPARING 
In this paper two methods, QUAN PSDS and LINEAR 

PSDS were introduce for ABS controlling. We can choose the 

 
a                     b  

Fig. 8   a) Output of fuzzy controller 
                            b) Output of LINEAR PSDS controller 
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elements of any PSDS in a way that it operates the same 
results as the original fuzzy controller. PSDS controllers bear 
much less computational complexity compared with fuzzy 
controllers. Still two PSDS controllers introduced here, differ 
in memory consumption and computational complexity; 
QUAN PSDS uses 1600 but LINEAR PSDS uses 16 memory 
locations. LINEAR PSDS uses adaptation function to provide 
output, but QUAN PSDS gets output without any calculation. 
In the other word QUAN PSDS needs more memory 
locations, than LINEAR PSDS does, but it is faster than 
LINEAR PSDS. 

VII. CONCLUSION 
Fuzzy logic is an effective method using the knowledge for 

ABS controlling, but it suffers from the high computational 
complexity. 

In this paper we introduced fuzzy based PSDS for ABS 
controlling. Unlike conventional calculation based methods, 
PSDS is an approach based on data oriented modeling which 
has proved to be in good conformity with computer structure 
and hence increase efficiency [7]. This method has the 
following advantages: 

1. We get a fast fuzzy based controller. 
2. If fast monitoring of Vwhl is provided, then we will get a 

real time fuzzy based controller. 
3. By using the PSDS method, input space is divided into 

subspaces. We can tune the output in each subsurface then we 
can get local optimization. Tuning iδ  in QUAN PSDS 

and ( )iii θγδ ,,  in LINEAR PSDS for getting local 
optimization is left as an open problem. This means we can 
optimize the fuzzy controller by PSDS method. 

4. One of most important issues in ABS controlling is the 
prediction of maximum friction coefficient. This parameter 
can be predicted from sequence of much recently used PSDS 
elements (Sequence of controller states). This prediction by 
sequence of recently used PSDS elements is left as an open 
problem. 

The PSDS is an infant method, it will grow and shine. 
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