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Abstract— This paper reports on a receding horizon filtering for 
mobile robot systems with cross-correlated sensor noises and 
uncertainties. Also, the effect of uncertain parameters in the state of 
the tracking error model performance is considered. A distributed 
fusion receding horizon filter is proposed. The distributed fusion 
filtering algorithm represents the optimal linear combination of the 
local filters under the minimum mean square error criterion. The 
derivation of the error cross-covariances between the local receding 
horizon filters is the key of this paper. Simulation results of the 
tracking mobile robot’s motion demonstrate high accuracy and 
computational efficiency of the distributed fusion receding horizon 
filter.  

Keywords— Distributed fusion, fusion formula, Kalman filter,   
multisensor, receding horizon, wheeled mobile robot 

I. INTRODUCTION

owadays, more and more autonomous mobile robots are 
being developed and deployed in many real-world 

applications. Predominantly tracking and motion generation 
topics have been treated [1]-[5].  Recently attention is given to 
active sensing, that incorporates in itself tracking and motion 
planning solutions in the presence of uncertainties. The mobile 
robots often work in unknown and inhospitable environments. 
To survive, these robots must be able to constantly monitor and 
appropriately react to variation and uncertainty in their 
environments. Model uncertainty appears due to un-modeled 
dynamics and inaccurate parameters of the robot system. One 
must admit that there is no mathematical model that can 
perfectly represent a real physical system. Thus, any 
discrepancy between the physical system and the mathematical 
model causes the model uncertainty. The error between the 
system parameters used in the mathematical model and the ones 
presented in the physical system also contributes to the model 
uncertainty since it is almost impossible to obtain all system 
parameters correctly. 

In practical applications, there could be cross-correlations 
between the sensor noises. This is true in practical situations 
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when the dynamic process is observed in a common noisy 
environment such as when a target is taking an electronic 
countermeasure, e.g. noise jamming, or when the sensor noises 
are coupled because of their dependence on the target state [6].             

To get a more accurate and robust estimate of a state of 
system under potential uncertainty, various kinds of techniques 
have been introduced and discussed. Among them, receding 
horizon estimation is one of popular and successful strategies, 
which is robust against temporal uncertainty has been 
rigorously investigated [7]-[10]. The local receding horizon 
Kalman filters (LRHKFs), which we fuse, utilize finite 
measurements over the most recent time interval [7]-[9], [11]. It 
has been a general rule that the LRHKF is often robust against 
dynamic model uncertainties and numerical errors than the 
standard local Kalman filter, which utilize all measurements. 
Based on the LRHKFs [7], [9] and the optimal fusion formula 
with matrix weights [10], [12], [13], we propose a distributed 
receding horizon fusion filtering for the mobile robot systems 
with cross-correlated sensor noises and uncertainties which has 
a better accuracy than every LRHKF, and it has the reduced 
computational burden as compared to the centralized fusion 
receding horizon filter.  
 This paper is organized as follows. The problem is set up in 
Section II. The centralized fusion receding horizon filter is 
described in Section III. In Section IV, we present the main 
result regarding the distributed fusion receding horizon filter 
for multisensory environment. Here the key equations for 
cross-covariances between LRHKFs are derived. In Section V, 
an example of tracking error model with three sensors 
illustrates the proposed distributed filter. In Section VI, 
concluding remarks are given. 

II. PROBLEM SETTING

Consider the continuous-time linear dynamic system with 
additive white Gaussian noise 

00 0, , ,t t t t t tx F x G t t x x                                                   (1) 
( ) ( ) ( ) , 1, , ,i i i
t t t ty H x w i N                                                      (2) 

where n
tx  is the state, ( ) imi

ty  is the local sensor 

measurement, r
t  and ( ) imi

tw  are white Gaussian 

noises with zero mean and intensity matrices tQ  and ( )i
tR ,

respectively, and ( ), , i
t t tF G H are matrices with compatible 
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dimensions. Superscript ( )i  denotes the ith  sensor, N  is the 
number of sensors.  
 We assume that the initial state 0 0 0; ,x m P

0 0m E x , 0P 0 0cov ,x x ; the system noise t  is 

uncorrelated with sensor noises ( ) ( ),...,i N
t tw w , but all sensor 

noises ( ) ,imi
tw 1, ,i N  are mutually correlated with 

intensity matrices ( ) ,ij
tR , 1, , , .i j N i j

 Our aim is to find the distributed weighted fusion estimate 
of the state tx  based on the overall horizon cross-correlated 
sensor measurements  

(1) ( ), , , .t N
t s sy y y t s t                                               (3) 

III. CENTRALIZED FUSION RECEDING HORIZON FILTER

Let consider the original dynamic system (1) and rewrite the 
measurement model (2) in equivalent form. We obtain 

00 0, , ,

,
t t t t t t

t t t t

x F x G t t x x

Y H x w
                                                   (4) 

where 

(1) (1) (1)

( ) ( ) ( )

, , .
t t t

t t t
N N N

t t t

y H w
Y H w

y H w

                                           (5) 

Then the optimal centralized fusion receding horizon filter
(CFRHF) ˆopt

tx  of the state tx  based on the overall receding 
horizon measurements (3) is described by the following 
differential equations [7]-[9]: 

1

1

(11) (1 )

( ) ( )

( 1) ( )

ˆ ˆ ,

,

, ,

, , 1,..., ; ,

opt opt opt opt
s s s s s s s

opt opt opt T opt T opt
s s s s s s s s s s s
opt opt T T
s s s s s s s s

N
s s

ii i
s s s

N NN
s s

x F x K Y H x

P F P P F P H R H P Q

K P H R Q G Q G

R R
R R R i N t s t

R R

    (6) 

where the horizon initial conditions at time instant s t
represent the unconditional mean  

ˆ
def

opt
t ttx m E x

 and covariance  

def Topt
t t t t ttP P E x m x m

of the horizon state tx satisfying the Lyapunov equations 

0

0

0 0 0

0 0 0

0

, , ,

, cov , ,

.

t

T
t

m F m t t m m E x

P F P P F Q P P x x

t t

                 (7) 

Let us now summarize the algorithmic procedure for the 
CFRHF. First, the horizon initial conditions  ˆopt

tx  and opt
tP  are 

determined by the Lyapunov equations (7). Then, the CFRHF 
equations (6) are solved on the horizon interval ,s t t
using current horizon measurements (3). 

The CFRHF represents a joint estimator. To compute the 
state estimate ˆopt

tx , the implementation of the CFRHF requires 
all the horizon sensor measurements (3) jointly at each time 
instant t . Therefore, in the case of several limitations, such as 
computational cost, communication resources, the CFRHF 
cannot produce well-timed results, especially for the large 
number of sensors. So distributed receding horizon filter is 
preferable as there is no need to estimate state by using overall
sensor measurements (3) simultaneously.

IV. DISTRIBUTED FUSION RECEDING HORIZON FILTER

Now we show that the fusion formula [10], [12], [13] can 
serve as the basis for designing of a distributed fusion filter. A 
new suboptimal distributed fusion receding horizon filter
(DFRHF) is described as follows: first, the local sensor 
measurements (1) ( ), , N

t ty y are processed separately by using 
the optimal LRHKF [7]-[9] and, second, the obtained local 
estimates (filters) are fused in an optimal linear combination.  

Let denote local receding horizon Kalman estimate of the 
state tx  based on the individual sensor ( )i

ty  by ( )ˆ i
tx . To find 

( )ˆ i
tx  we can apply the LRHKF to system (1) with sensor ( )i

ty
[7]-[9].  We obtain the following differential equations: 

1

1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ,

,

,

ˆcov , , , ,

T

T

i i i i i i
s s s s s s s

ii ii ii T ii i i i ii
s s s s s s s s s s s

i ii i i
s s s s
ii i i i i

s s s s s s

x F x K y H x

P F P P F P H R H P Q

K P H R

P e e e x x t s t

       (8) 

with the horizon initial conditions ( )ˆ ,i
ttx m ( )ii

tP tP
determined by (7). 
  Thus the distributed fusion receding horizon suboptimal 
estimate ˆ sub

tx  based on the overall sensor measurements (3) is 
constructed by using the fusion formula, i.e., 

( ) ( ) ( )

1 1

ˆ ˆ , ,
N N

sub i i i
t t t t n

i i

x c x c I                                                    (9) 
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where nI is the identity matrix, (1) ( ), , N
t tc c  are the 

time-varying weighted matrices determined by the mean square 
criterion. 

Theorem 1 [10], [12]. (a) The  optimal weights (1) ( ), , N
t tc c

satisfy the linear algebraic equations 

( ) ( ) ( ) ( )

1 1

0, ,
N N

i ij iN i
t t t t n

i i

c P P c I                        (10) 

and they can be explicitly written in the following form

1

( ) ( ) ( )

1 , 1

, 1, ,
N N

i ij lh
t t t

j l h

c W W i N                        (11) 

where ( )ij
tW  is the ij th n n submatrix of the nN nN

block matrix 1
tP , ( )

, 1
.

Nij
t t i j

P P

(b) The fusion error covariance cov , ,
def

sub sub sub
t t tP e e

ˆsub sub
t t te x x   is given by 

( ) ( ) ( )

, 1

.
TN

sub i ij j
t t t t

i j

P c P c                                              (12) 

Equations (10)-(12) defining the unknown weights ( )i
tc  and 

fusion error covariance sub
tP depend on the local 

covariances ( )ii
tP , which determined by (8) and the local 

cross-covariances 

( ) ( ) ( )cov , , , 1, , ,ij i j
t t tP e e i j N i j                        (13) 

given in Theorem 2.  

Theorem 2.  The local cross-covariances  (13)  satisfy the 
following differential equations: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

, ,

, , 1, , ,

Tij i ij ij j
s s s s s s

i i i
s s s s

P F P P F Q t s t

F F K H i j N i j
                   (14) 

with the horizon initial conditions ( )ij
ttP P  and gains  ( )i

sK
determined by (7) and (8), respectively. 

 The derivation of (14) is given in Appendix. 
Thus, equations (8)-(14) completely define the DFRHF. 

Remark 1. The LRHKFs ( )ˆ , 1,i
tx i N are separated for 

different types of sensors, i.e., each local estimate  ( )ˆ i
tx  is found 

independently of other estimates. Therefore, the LRHKFs can 
be implemented in parallel for different sensors (2).  

Remark 2. We may note, that the local error covariances  
( ) , , 1,ij

tP i j N  and weights ( )i
tc  may be pre-computed, 

since they do not depend on the sensor measurements ,t
ty

but  only on the noise statistics tQ  and ( )i
tR , and the system 

matrices ( ), , i
t t tF G H  which are the part of system model (1), 

(2). Thus, once the measurement schedule has been settled, the 
real-time implementation of the DFRHF requires only the 
computation of the LRHKFs  ( )ˆ , 1,i

tx i N  and the final 

suboptimal fusion estimate ˆ .sub
tx

V. EXAMPLE

A. Tracking error model 
There are two basic control approaches to solving the 

mobile robot’s motion task: stabilization to a fixed posture and 
tracking of the reference trajectory. For nonholonomic mobile 
robot systems, the trajectory-tracking problem is easier to solve 
and more natural than posture stabilization. The state of the 
tracking error can be expressed in the frame of the real robot 
[14], as shown in Fig. 1.  

Fig. 1  Robot following error transformation 

In Fig. 1 the reference robot is an imaginary robot that 
ideally follows the reference path. In contrast, the real robot 
(when compared to the reference robot) has some error when 
following the reference path. This linearized tracking error 
model is described by 

0 0 1
0.5 0 1 , 0,

0 0 0 1

r

r t r tx v x tt t t             (15) 

where 1, 2, 3,
T

t t t tx x x x , and 1,tx is the x-position error, 

2,tx is y-position error, 3,tx is the robot heading angle error, 
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vr  is the tangential velocity, and r  is angular velocity. The 
obtained linearization is shown to be controllable [15], [16] as 
long as the trajectory does not come to a stop. Thus, the 
reference inputs vr  and r are constant (linear and circular 
paths), t  is an uncertain model parameter, and t  is a white 

Gaussian noise. Here, 0.1643 / ,v m sr 0.3788 / ,rad sr the 

system noise intensity tQ  is 20.02  and 1t  on the interval 
2 6.t The horizon length of the LRHKFs is taken as  

1 0.4, 2 0.5  and 3 0.6.
The second coordinate related to the y-position error 

between real and reference robot is observable through the 
measurement model containing three identical local sensors 
with different accuracy given by 

(1) (1) (1) (1)

(2) (2) (2) (2)

(3) (3) (3) (3)

, 0 1 0 ,

, 0 1 0 ,

, 0 1 0 ,

t t t

t t t

t t t

y H x w H

y H x w H

y H x w H

                                  (16)  

where (1) (2),t tw w and (3)
tw are cross-correlated white Gaussian 

noises with zero-mean and stationary intensities 
( ) , , 1, 2,3.ij
tR i j  The parameters are subjected to  

( ) 2 (12) (21) 2

(13) (31) 2 (23) (32) 2

0.01 , 1, 2,3 0.02 ,

0.018 , 0.015 .

i
t t t

t t t t

R i R R

R R R R

 Two fusion receding horizon filters the CFRHF 
ˆ ,opt opt
t tx P  and DFRHF ˆ ,sub sub

t tx P ,  and two fusion 

non-receding horizon filters the  centralized Kalman filter 
(CKF) and decentralized Kalman filter (DKF) for the system 
model with uncertainty t  are compared. Here the model is 
considered to show robustness of the receding horizon filters 
against uncertainty [11].  

B.   Results and Analysis 

The behavior of the CFRHF and DFRHF estimates 
ˆ ˆ,opt sub
t tx x and their fusion error covariances ,opt sub

t tP P  is 

studied. We focus on the mean square errors (MSEs)  

2 2
2, 22, 2, 2,22, 2,ˆ ˆ,opt opt sub sub

t t t tt tP E x x P E x x              (17) 

for the second coordinate 2,tx , which is called y-position error, 
because the uncertainty t appears in (15) only in this 
coordinate. Simulation results of other coordinates 1,tx and 3,tx
are similar. The point of interest is the comparison of the 
optimal and suboptimal receding horizon estimates 

2,2,ˆ ˆ,opt sub
ttx x  of the y-position error, and corresponding MSEs 

(17).  
The MSEs are shown in Figures 2-4. Fig. 2 presents two 

pairs of the estimates of y-position error using the receding 
horizon and non-receding horizon fusion filters under the 
uncertainty 1t  The first pair includes the CFRHF and 
DFRHF, and the second one contains the CKF and DKF [10].  

Fig. 2  The y-position error 2,tx  and its estimates using                 
CFRHF, DFRHF, CKF and DKF 

In Fig. 2 we observe that around the uncertainty interval 
2 6t , the receding horizon filters (CFRHF, DFRHF) 
demonstrate good performance compared to the non-receding 
horizon filters CKF and DKF. This is confirm the general 
agreement with robustness of the receding horizon strategy. 
Also in each pair of filters, the centralized versions give more 
accurate estimates than the decentralized one. However, these 
differences are negligible.  

Fig. 3 MSE comparison for 2,tx with uncertainty 1t

The estimation accuracy of the filters can be more clearly 
compared through MSEs in Fig. 3. Here the actual MSEs are 
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calculated through Monte-Carlo method with 1000 runs. In 
Fig.3 we see that within the uncertainty interval 2 6,t the 
MSEs of the non-receding horizon filters CKF and DKF are 
remarkably large. However, the differences between all optimal 
and suboptimal filters are negligible outside of the uncertainty 
interval. This means that for our example the application of the 
DFRHF can produce good results in real-time processing 
requirements.  

Fig. 4  MSE comparison for 2,tx without uncertainty 0t

Fig. 4 shows the filter performances of the CFRHF and 
DFRHF as a function of the horizon length .  Since the 
uncertainty does not appear, the actual MSEs can be calculated 
directly through (6)-(8), (12)-(14) without Monte-Carlo 
simulations as in Fig. 3. The results in Fig. 4 demonstrate that 
the receding horizon filters (CFRHF and DFRHF) reach to the 
non-receding horizon Kalman filters (CKF and DKF) with 
increasing the horizon length .

VI. CONCLUSION

In this paper, a new distributed receding horizon filter for 
mobile robot systems in cross-correlated sensor environment is 
proposed. It represents the weighted sum of the LRHKFs. Each 
LRHKF is fused by the minimum mean square error criterion. 
The matrix weights depend on the cross-covariances between 
the LRHKFs. The key differential equations for them are 
derived. 

Furthermore, the DFRHF has the parallel structure and 
allows parallel processing of observations making it reliable 
since the rest faultless sensors can continue to the fusion 
estimation if some sensors occur faulty. Taking into account 
tracking error model of the mobile robot systems, the proposed 
DFRHF gives good tracking results under the uncertainty. 
Simulation analysis and comparison with the optimal CFRHF 
verifies the effectiveness of the proposed DFRHF.  

APPENDIX

DERIVATION OF EQUATIONS (14) 

According to (8) the local errors ( )i
se and ( ) ,j

se i j  satisfy 
the following differential equations on the receding horizon 
interval ;s t t  :    

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

, 0 ,

, 0 ,

, ,
T T

i j

i i i i i i
s s s s s s s s

j j j j j j
s s s s s s s s

T m m ri j T
s s s s

e F e B B K G

e F e B B K G

w w t s t

where s  is the composite white noise with intensity matrix  

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0 , , .
0 0

T

ii ij
s s

ji jj ii i ij ji
s s s s s s s

s

R R

Q R R R R R R
Q

 Then the cross-covariance ( )ij
sP  represents expectation of 

the product ( ) ( ) ,
Ti j

s sE e e satisfying the following differential 

equation [17, p.166]: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .
T T Tij i j i ij ij j i j

s s s s s s s s s s
dP E e e F P P F B Q B
ds

And after simple manipulations with the item  

( ) ( ) ( ) ( ) ( ) ( ) ,
T Ti j i ij j T

s s s s s s s s sB Q B K R K G Q G

we obtain (14). 

 This completes the proof of Theorem 2. 
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