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Embedded Singly Diagonally Implicit Runge-
Kutta —Nystrom Method Order 5(4) for the
Integration of Special Second Order ODEs
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Abstract—In this paper a new embedded Singly Diagonally
Implicit Runge-Kutta Nystrom fourth order in fifth order method for
solving special second order initial value problems is derived. A
standard set of test problems are tested upon and comparisons on the
numerical results are made when the same set of test problems are
reduced to first order systems and solved using the existing
embedded diagonally implicit Runge-Kutta method. The results
suggests the superiority of the new method.
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Special second order

. INTRODUCTION

EVERAL methods have been proposed for the numerical
solutions of the special second-order ordinary differential
equations (ODEs) of the form:

y =1 y). ¥(x)=Yo. ¥Y'(X) = Yo @)

In which f does not depend on y'. In general the second

order equation (1) can be reduced to an equivalent first-order
system of twice the dimension and solved using the standard
Runge-Kutta ( RK) method. However, it is more efficient if
the equation can be solved directly using Runge-Kutta
Nystrom ( RKN) method, such work can be seen in Sharp and
Fine [1], Dormand, El-Mikkawy and Prince [2] and EI-
Mikkawy and EI- Desouky [3]. Generally efficient Runge-
Kutta and Runge-Kutta Nystrom codes involved the
embedded pairs of orders g(p) where the method of order q =
p +1 is used to obtain the numerical solutions of the problems
and the method of order p is used to obtain the local truncation
error, hence, the next step of the integration can be calculated.
In this paper we are going to derive embedded pairs which are
diagonally implicit and all the diagonal element are equal,
such method is very efficient in solving stiff differential

equations, since the iteration matrix (I —h2;/ J) (where J is
the Jacobian of the system of equations) of the Newton
iteration can be used in all stages.

The Runge-Kutta  Nystrom pair generates the
approximations  Yn.1, Y1 Yne1 » Y'pes 0 Y(Xpy1) and
y'(Xp41) » according to the following:
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Yne = Yo +hyp +h2X bk L Vi = yh +hY bk (2a)

i=1 i=1

— s-1__ _ s=1__

Ynaa =Yn +hyp +h22bikiv y'n+l:y;1 +hzbi'ki (2b)
i=1 i=

The first two formulae are order q and the second two are
order p and

i
ki = f (X, +cih, y, +cihyy +hzzaijkj)'
j=1

(2c)
i=12,---,s.
The method can also be written in Butcher Tableau

C A
b
bl
b
b’

(C=[c1,Co0e661" A=[a;], b=[by,by,---,bs],

b’ =[bf,bh,--,b{],b = [by,bp, -, bs 41,

b_’:[b_l',@,m,ﬂ]. We refer to (2) as the Runge-Kutta
Nystrom pair, where the approximations of order p+1 are
being advanced from step to step and the approximations of
order p is used for the local truncation error so that the next

stepsize can be obtained based on the local truncation error.
Hence, the code developed here is the variable stepsize code.

Il. DERIVATION OF THE METHOD

According to Papageorgiou, Famwlis and Tsitouras [4]
the coefficients of a fifth order Runge-Kutta-Nystrom method
must satisfy the following order conditions after using two
basic simplifying assumptions.
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TABLEI
ORDER CONDITIONS FOR y’
Order 1 b =1 @)
conditions: i
1
Order 2 D.bic = 3 4)
conditions: i
, 1
Order 3 2.bi Ci2 =3 (5)
conditions: i
, 1
Order 4 > bict = 2 (6)
conditions: i
1 (7
biajici =—
izj: I R Y
41
Order 5 D bici = = (8)
conditions: i
1 ©)
b.’a.. CZ S
208} 60
(10)
1
Zbi’ciaijcj =—
7 60
TABLE Il
ORDER CONDITIONS FOR 7
Order 1 o =1 3)*
conditions: ; '
— 1
Order 2 > bici = 5 4)*
conditions: i
— 5 1
Order 3 Y bic? = 3 G)*
conditions: i
— 1
Order 4 > bic? = 2
conditions: i 6)*
Zga--c- 1 *
7 bl BV @)
The simplifying assumptions are
1
Zaij =—Ci2 (11)
i 2
bj =b'(1-c;j) (12)

From which the values of a;; and b; for i =12,---,s can be

obtained respectively. The proof of using the simplifying
assumptions can be found in Hairer and Wanner [5].
For the fifth order method all eight order equations for y'

in Table | have to be satisfied and for the fourth order method

all the b_i'have to satisfy all the equations in Table 11 and the

values of E can be obtained from the following equation:

by =b{(1-c;) (13)

Here we are going to derive embedded singly diagonally
implicit RKN method of order 4, 4-stage in order 5, 5-stage or
can be written as SDIRKN 5(4) method and y is the diagonal
element.

Algorithm to find the coefficients of SDIRKN 5(4) method.
Step 1: Let » =0.25

Step2: ¢ = \/2_7 (from equation 11 for i=1).

Step 3: Give the values of ¢, C3, C4, C5, With all the values
of ¢’s obtain by, b), b3, by and bg from equations

(3).(4).(5),(6) and (8).

Step 4: Use (12) to get the values of by, by, bs, by and bsg.

Step 5: Use (3)*, (4)*,(5)* and (6)* and solve for

bi, by, bs and by .

Step 6:  Use (13) to get the values of E E @ and E.

Step 7:  Give the values of &z, and a5, and use (7),
(7)*, (9) and (10) to obtain the values of aj;
where i #1.

Step 8:  Use (11) to get the values of aj; .

By using MAPLE, the following are the parameters of the
SDIRKN 5(4) method with free parameters are chosen to be
y=0.25 ¢,=02, c3=04, c, =06, ¢c5=0.9, agp =-0.1
and ag3 =0.15

C, =0.7071067811865475

c, =0.2

Cy =04

c, =06

Cs =0.9

@11 =8 =agg =8 =as5 =0.25
a, =023

ag; = —0.3925002502501825
agy = 0.2225002502501825
a,; = —0.008891426702213870
azp = 0.2120976370788504
a3 = —0.2732062103766366
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ag; = -1.672156796751771
agy, =—-0.1

agz =0.15

asy =1.777156796751771
b; = -0.8909522811353591
b, =0.6247556718194198
b3 = —0.7000548195198433
bs =1.615190309345717
bs = 0.3510611194900651
b, =-0.2609538814309234
b, =0.4998045374555358
b; = -0.4200328917119060
b, =0.6460761237382868
bs =0.03510611194900651

bj =1.318915246389200

b, =0.3743745692181844
b} =0.4575746950566785
bj = —1.150864510664063
b, = 0.3863013318570706
b, = 0.2994996553745475
b, = 0.2745448170340071
b, =-0.4603458042656252

The above coefficients are substituted into the error
equations of the sixth order method both for y and Yy’ see

Dormand [6] and we obtained the error norm of the method
which is:

W©k=&m%mm4am‘k@k=awwwm4.

g 2
Where”r(a) “ = Z(r}s)) and
2 iz
j=1
n
i:4®2 ' .
7 , T and 7' are error equations
j=1
associated with the method. The error norms are smaller
compared to other methods such as method in [4] which has

error norms 1072.

.-

IIl. TeST PROBLEMS
Below are some of the problems tested:

Problem 1: A nonlinear problem.

y"+100y =sin(y)
y(0)=0, y'(0)=1 0<x<20z

There is no true solution but the value at 207 is
0.000392823991.
Source: Chawla and Rao [7]

The first order system: The new variablesarey, =y

and y, =y’
Vi=Y
y3 +100y; =sin(y;)
y1(0)=0, y,(0)=1 0<x<20x
Problem 2:
y'=-y+X

y(0)=1, y'(0)=2, 0<x<16x
Solution: y(x) =sin(x) + cos(x) + X
Source:  Allen and Wing [8]

The first order system :

y1="Y>

Yo=-y1+x , y;(0)=1 vy,(0)=2 ,
0<x<207

Solutions:

Y1 (X) = sin(x) + cos(X) + X,

Y, (X) = cos(x) —sin(x) +1.

Problem 3:

”

2
Y1 :—4X2}’1—% :

VY1 Y2
Y1(X0) =0, yi(Xg) =—v27
2y,

N2+yi

Y2(Xo) =1 Y3(%) =0

"

Y, =—4x%y, +

\/ZSXSSIZ
2

Solution: y; (x) = cos(x?), Y, (x) = sin(x?)
Source: Sharp and Fine [1]

The first order system:
2y,

ﬂ=hwbww%=4ﬂw——7—7
VY1 tY2

2y,

Vi +Y5

Yo(X0) =1 y3(Xp) =—\/g1

Yo =—4x%y, +

Y1(Xo) =0,

Y4(X) =0

Solution: y;(x) = cos(x?), y,(x) =sin(x?),
ya(x) = —2xsin(x?), y,(x) = 2xcos(x?).
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Problem 4: (The two-body gravitational problem)

yy =y (0)=1¥i(0)=0
(\/yfﬂéj
II_ _y2 -~ ’ _
Yo =————, ¥2(00=0, y,(0)=1
(\/yfﬂéj
0<x<167 ,

Solution: Yy, (X) = cos(x),
Source: Dorman et. al. [2]

Y, (X) =sin(x) .

The first order system:

Y —Y2
Wy +y3)? Wy +y3)°
¥1(0)=1 y,(0)=0, y3(0)=0, y,(0)=1
Solutions: y;(x) =cos(x), Y, (x)=sin(x),

y3(X) =—sin(x), y4(x) = cos(x).

Yi=VYs Y2 =Y4, Y3 = Yo =

IVV. IMPLEMENTATION AND NUMERICAL RESULTS

The set of tested problems in section 111 is solved using the
new method and the results are compared with the numerical
results when the same set of test problems are reduced to first
order system twice the dimension and solve using method by
Butcher and Chen [9].

For all the problems, they are considered as nonstiff and
solve using simple iterations where every k’s are iterated

three times once stiffness is detected through hg.. > Ny,
the whole system is considered stiff and solve using Newton
iterations. N, is the stepsize which is expected to meet the
specified accuracy .

Niter is the stepsize which will make the iteration converge.

Coefficient matrix for the Newton iteration is (I —hzy.]).
JR— S —
Local truncation error : LTE = y, —y, = h?Y (bk; —bik;).
i

In this paper we just control the stepsize for y because we feel
that the formula for y contained the value of y’ , thus
controlling y means we are also indirectly controlling the
value of y’.

For the new method (F1) the next stepsize is
1

tol Pt
new = 0.9 ——— hold

h —
2yn_yn

and for the second method (B1)
1

tol Pt
hnew =02 —— hold

2Yn _y_n

Where tol is the chosen tolerance, hgy is the current

is the

Yn _y_n
local truncation error. The reason why we used safety factor

0.2 here is that to keep the global error small enough so that it
is comparable with method F1.

stepsize, p is the order of the method and

Some of the notations used:
2.345789 (1072) means 2.345789 x 102

TOL ~ The tolerance chosen

MTD ~ The method used.

F1 - SDIRKN 5(4) which has been derived in this paper.

B1 - SDIRK 3" order 4-stage embedded in 4™ order
5-stage method by Butcher and Chen [9].

FCN ~ Number of functions evaluated.

STEP ~ Number of steps.

JAC ~ The number of Jacobian evaluation.

FS ~ The number of failed steps.

GE ~ Maximum global error (max |y, — y(x,)| ), that is
the computed solution minus the true solution.
TABLE Il
NUMERICAL RESULTS FOR PROBLEM 1
TOL [ MTD| FCN STEP | JAC | FS GE
102 | Ft 976 882 1 0 0.115425
B1 10366 797 1 0 | 5.808069(-4)
104 | R 26707 2413 1 16 | 4.023551(-4)
Bl | 26880 2067 1 1 | 2.448647(-2)
106 | FL 85927 7807 0 5 | 9.651620(-7)
Bl | 67691 5206 1 2 | 2502111(-2)
107 F1 | 216716 | 19700 0 2 | 1.265587(-8)
Bl | 170070 | 13081 1 3 | 2.503427(-2)
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TABLE IV
NUMERICAL RESULTS FOR PROBLEM 2
TOL MTD FCN STEP JAC | FSTEP GE
10_2 F1 1740 158 0 0 1.434827(-2)
Bl 2537 195 0 0 3.715717(-2)
10_4 F1 4655 423 0 0 6.379218(-6)
B1 6385 491 0 0 2.361495(-3)
10 F1 | 11783 | 1071 0 0 3.575833(-8)
Bl | 16044 | 1234 0 0 1.487438(-4)
10-8 F1 | 29614 | 2692 0 0 3.005017(-10)
Bl 40289 3099 0 0 9.376044(-6)
TABLE V
NUMERICAL RESULTS FOR PROBLEM 3
TOL MTD FCN STEP JAC FS GE
10 -2 F1 1916 174 0 0 0.183162
B1 2386 183 1 0 2.470289(-2)
10 -4 F1 4853 441 0 0 1.589209(-3)
B1 5917 455 0 0 | 1.582103(-1)
10 -6 F1 12201 1109 0 0 1.542600(-5)
Bl 14952 1150 0 0 9.933131(-3)
10_8 F1 30648 2786 0 0 1.533881(-7)
B1 37585 | 2891 0 0 | 6.256793(-4)
TABLE VI
NUMERICAL RESULTS FOR PROBLEM 4
TOL MTD FCN STEP JAC FS GE
10_2 F1 9018 819 1 1 6.219093(-3)
B1 20928 3201 1 1 6.784609(-1)
1074 F1 23590 2144 0 1 4.094247(-5)
B1 52786 | 8120 0 1 | 4.258569(-2)
10_6 F1 59505 5409 0 1 3.777785(-7)
Bl 132736 20420 0 1 2.663875(-3)
10-8 F1 149631 | 13601 0 2 | 3.654645(-9)
Bl 333534 51312 0 1 1.675455(-4)

V. CONCLUSION

From the tables we observed that the new embedded
SDIRKN 5(4) method produced better results in terms of
function evaluations, number of steps and maximal global
error. Problem 1 is considered stiff for all the tolerances
whereas problem 4 is only stiff for lower tolerance. The
numerical results suggest that, the new method is more
efficient than the existing technique whereby the problem is
reduce to first order system of ODEs.
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