International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:5, 2012

Concurrent Access to Complex Entities

Cosmin Rablou

Abstract—In this papemwe present a way of controlling the
concurrent access to data in a distributed appicatising the
Pessimistic Offline Lock design pattern. In ouresathe application
processes a complex entity, which contains in eargaical structure
different other entities (objects). It will be showow the complex
entity and the contained entities must be lockedrufer to control
the concurrent access to data.

Keywords—Obiject-oriented programmingPessimistic Lock,
Design pattern, Concurrent access to data, Procpssomplex
entities

|. INTRODUCTION

VERY distributed business application must deahuwite

issue of data being accessed and updated by diffesers
at the same time. If there is no control of the czmrency
implemented, this can lead to data inconsistenfiés.

In order to avoid this, a business application nnmgiement
a sort of concurrency control. If one user wantspalate a
record from the database, then it must be prevethggdother
users change the same record at the same timesiturasion
is known under the name of synchronizing (or logkithe
access of users to the same data.

Il. LOCKING STRATEGIES

There are two different strategies of implementing a
concurrency control to the database:

e Optimistic Lock [2] — can be implemented when thert
is a low chance that different users will access ar
then change the same entity at the same tim
However, when a simultaneous access occurs, the |
user that updates the data must choose an acti
(rollback or overwrite/merge the data).

e Pessimistic Lock [3] — the first user that accedbes
entity locks it, so that the other users can’t deait.
When the user updates the data, the lock is raleas
so that the other users can access it.

The disadvantage of the Pessimistic Lock is the theat a
user cannot change an entity if another user maady locked
the same entity. But this is something that a user easily
understand and accept.

Cosmin Rablou has graduated the Faculty of CybieseBtatistics and
Economic Informatics, Bucharest in 2001. He joitleel same year the team
at Derdack GmbH, Germany, where his main focus vees the
telecommunications and mobile solutions developmént2007 he joined
OctaVIA AG, where he mainly develops SAP applicasio for
telecommunications.

Cosmin Rablou is currently writing his Ph.D. disgagon on design
patterns.

However, the disadvantage of the Optimistic Lockhiat
the changes that the user has done to the entiy Ineurolled
back, if another user changes the data in betwBeis. leads
often to frustration, as in this case the changesl@st. The
user must start processing the entity from therirégg.

From my experience, when it comes to business dla¢a,
better (and the user-friendlier) choice is the Pastic Lock.

lll. COMPLEXENTITY
A business complex entity is an object that costalata

from more than one table. The complex entity has a

hierarchical structure, as it contains differentjects or
structures or a collection of objects of the saypet Usually,
the entity and the included objects are in a coitipos
relation, which means the included objects are maaolely
through the complex entity. When the object tharesents
the complex entity is destroyed, the contained aibjeare
destroyed, as well. [4]

The business partner in a FICA SAP module is amela
of an entity that contains both simple entities aaliections of
entities. The address, the control data and thesstgae simple
entities. There is a one-to-one relation betweenbhsiness
partner and a simple entity.

BP Mumber 10000012

o & Franz Landmann { 60115 Heidelberg

Display in BP role BLisiness Partner (Gen.) - |@‘
Validity Period 0LOLO0OL- 31129989 - (24|
7/M| Address Overview Identification Cortrol Payrnent Tramsactions Status
Marne
Title: T [
= =l
First name Franz
Last name Landmann
Correspondence lang. DE German
Language DE German
Search Terms
Search Term 1/2 LAMDMANN
Standard Address
\iﬂg Print Preview
Streat Address
Strest/House number Rohrbacher Str. 20
Postal Code/fCity 69115 Heidelberg
Country DE Germarny Region
Time zone CET

PO Box Address
PO Box
Postal Cade

Fig. 1 SAP business partner containing differenects

647

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:5, 2012

The bank details and the payment cards

The relationship between the complex entity andcthrgained
entity is in this case one-to-many.

BP Number
Display in BP role
Walidity Period

10000012 ¥ & Franz Landmann { 69115 Heidelberg
=]
v |Em

Business Partner (Gen.)
01.01,0001 - 31.12,9999

Address Address Overview Identification Control Payment Transactions | Status

Business Partner (Gen.) 10000012 Franz Landmann f Rohrbacher Str. 20 f 69115 Heidelberg

Eank Details

D Chry

oL DE
| —

£

Bank Key
60050101

Bank Account Control Key IBAN | IBAN
4242424242 =3

4«

E.l Bank Data... || Change Histary ‘ | “Walidity ” Change | Entry 1 of 1

Payment Cards

Card number

£005471000033253
6005471000034137
£005471000000072

j(n) Type Description
000004 GKOL
000013 GKOL
0001 SKOL

Standard Desc

4 b

Fig. 2 SAP business partner containing collectimnsbjects

It is important to understand the relation betweetities
and the database tables.

A simple entity contains at least a record froralald in the
database. It is possible that the entity contails® ather
records, which are bound to the main record byntkans of a
foreign key.

A collection of entities is an array of entitiesdaherefore is

representHowever, when processing a complex entity, thisojam
collections of entities that are included in thesibess partner.

reaches a new level of difficulty.

This is due to the fact that there are differergety of
entities (objects) that are contained in the mairtitye
Different users can request access to the santg.€&rtie users
can even request access to entities on differgatdeby using
different applications.

So the problem is to prevent the change of a comgidity
when another user is changing at least one of rihiided
entities. Furthermore, when a user changes the leanetity,
no other user is allowed to change the includeitiest

It must be considered also the fact that the rdquis
change the complex entity and the included entigghtnrcome
from different applications.

V.SOLUTION

The data inconsistencies occur when several users a
processing the same data at the same time. In twdavoid
such situations, the first user that accesses dbe must also
lock it.

In this case, the first user is the only one who peocess
the entity and later save the changes in the ds¢ah¥hile the
first user locks the entity, no other user is abdvto process it.
Another user can only process the entity wheniteedser has
finished updating it.

However, as the complex entity contains a hieraathdata
structure, it is not enough to lock only a recofthen a user is
accessing a complex entity, it is necessary to hmtk the data
directly included in the complex entity and theadbaelonging
to the simple entities contained in the complextgnt

This means that it is necessary to implement LocHd a

represented by a record set. Each record can hther o Unlock methods in all entities. Therefore, it iefus to define

referencing records, which are connected to then mecord
through a foreign key.

A complex entity groups simple entities and/or ecfion of
entities and therefore represents a complex stridtu the
database.

IV. PROBLEM

If more than one user tries to process the sanity entthe
same time, this can lead to data inconsistency.
Imagine the following scenario:

¢ An user reads the information about a businessyenti

from the database (as a record from a table)

an entity interface that includes the methods Lua#t Unlock.
Even better, the interface can also include thesSaethod.
The Save method updates the data in the databage an
eventually initiates the process of unlocking théte.

It is important that all applications that procéss data use
the same type of locking mechanism for the samiyefmo
matter if complex or simple). If not so, the loakimechanism
would only guarantee a proper processing within the
application boundaries. Cross-application processifi the
same entity would still lead to data inconsistency.

This means the developers of a new application alustys

consider the locking strategy and mechanism already

+ A second user requests the access to the same entifMplemented by existing applications.
e The first user changes something in the entity and

updates the record in the database accordingly

VI. STRUCTURE

« The second user makes another change and updatddie structure of the presented solution is depiatetie next

the record later than first user.

The changes made by the first user are now losheadata
saved by the second user did not contain the clsamgee by
the first user.

This situation is known under the name “lost uptated
this is only one example of data inconsistency mhigiht occur
when different users process data simultaneously.

class diagram.
The following components are included in the class
diagram:
¢ The model — as defined in the MVC-pattern [5], the
model contains the business data and rules. When
processing a complex entity, the model can be

648

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:5, 2012

reduced to a Singleton [6], as the business dala anWhen a complex entity is instantiated, it is imnaaely

rules are mainly grouped in the complex entity.

locked. The complex instance triggers then theamtstion of

* The interface for the entities — defines methods ththe simple entities, which then will also be locked

have to be implemented by the entities, like Lock
Unlock and Save. These methods are implementt
both in the complex entity and in the simple easiti
The methods for setting and getting the attribuaties
the entities cannot be included in this interfaas,
their signature differs from entity to entity.

e The complex entity — contains not only the busines
data belonging to the complex entity, but also th
simple entities and collections of simple entities.

e The simple entity — groups the business data th
belong to the simple entity.

Model

-m_ComplexEntity

+5etEntityi)
+iGetEnkity()
+5aveEntity()

ComplexEntity

-m_#Attributel
-m_#ttributez
-m_Attributes
-m_SimpleEntities

+Setattributes()
+izetAttributes() L
+iEetEntities() : ZS <<interfaces s
IEntity
+Lock()
-+Unlocki)
V +5avel)
Lz .
SimpleEntity
-m_Akkribute
+Setattributes()
~+izetAttributes()

Fig. 3 Class diagram for locking a complex entity

: MainController : Model : ComplexEntity : SimpleEntity

Fig. 4 Sequence diagram for locking the complexyent

: MainContraller : Model : ComplexEntity : SimpleEntity.

SaveCompIexEntity(j

Bl

Fig. 5 Sequence diagram for saving and unlockiegctimplex entity

When the user saves the entity, the data is wribethe
database and the complex entity is unlocked. Furtbee, the
complex entity initiates the saving of the simpfditees. The
Save method in the simple entities unlocks thexe, t

VII. CONSEQUENCES

The main advantage of using the Pessimistic Lockrnwh
processing a complex entity is that it ensures asser
application concurrency control and thus eliminates data
inconsistencies.

The main downside of the solution is the fact thatdata is
locked for an undefined time interval.

When a complex entity is processed, the lockingca$f not
only the complex entity, but also the included tegi Thus,
no other user can change the locked entities, et by using
another application. This is not a disadvantageloag as
another user actually processes the entity.

However, it is possible that the connection betwéen
server and the user that processes the entitygisThe entity
would remain locked and there would be no way toclnit.

The solution to this problem is to use the destnuof the
entity to unlock it. Even if the connection is imted, at
some point the session of the user on the senlketine out.
When the session times out, the server removekealbbjects
related to the session from the memory and therdsst of
the entity is called, thus unlocking the object.

In order to increase the availability of the compdtities,
it is possible to define in the application twofeiient ways of
acquiring a complex entity:

e A display mode, where the user can see the
complex entity, but cannot process it. In this mode
the entity is not locked.

649

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:5, 2012

» A change mode, where the user locks the complex The data is locked using special forms of the S@le&

entity for processing.

The user loads in the beginning the entity in thgpldy
mode. He/she must actively switch to the change emiod
order to process the entity. This reduces thevatevhere the
entity is locked to the minimum, therefore incregsithe
availability of the entities.

Another problem that might occur when locking éetitis
the deadlock. Imagine the scenario where our agipdic locks
the complex entity and want to acquire a lock onretuded
simple entity. In the meantime, an existing appitwalocks
first the simple entity and then tries to lock teamplex entity.
This would lead to a deadlock, as both applicatisosld wait
for the other entity, which is already locked.

This kind of situation can be avoided if every apgion
implements the same order of acquiring the lock.olr
example, it would be necessary that both applinatlock first
the complex entity and then the simple entity. Liyc&nough,
this is also the logical way of acquiring the loeksl therefore
such collisions are quite rare.

VIIl. IMPLEMENTATION

command in a transaction.

Sadly enough, the SQL standard does not offer @&rgén
form of the Select command for locking records. ldwer,
each database system offers its own command fkinigc

For example, Oracle uses the Select command wih th
clause “For Update”. SQLServer uses the Select cmim
with the clause “With (Updlock, Rowlock)” for theame
purpose.

public bool Lock()

{
if (m_nID == 0)
return false;

string strSQL = "SELECT * FROM Invoices WITH
(UPDLOCK, ROWLOCK) WHERE ID = @ID";

m_Connection = new
SglConnection(m_SglConnectionString);

DataSet IDS = new DataSet();

The following code, that shows how to implement the try

concurrency control for a complex entity is part af
ASP.NET application written in C#. The applicatiaises
SQLServer as a database.

The definition of the entity interface containsleast the
methods for locking, unlocking and saving the gntit

This interface is implemented in the complex endibd in
the contained entities.
interface IEntity
{

bool Lock();

void Unlock();

bool Save();

}

The constructor of the complex entity has as ampater the
key that uniquely identifies the data includedthie bbject (the
primary key). This key can have a null value, whbe
complex entity does not exist yet in the databasei is just
being created by the application.

The constructor loads the data belonging direablythte
complex entity and initializes also the includediters.

public Invoice(int nID)

{

m_nID = nID;

m_InvoicePos = new ArrayList();

LoadInvoicePositions();

}

In this case the application does not lock thetiestifrom
the beginning. This happens only later, when ther us
switching to the change mode.

The complex entity must then lock its own data #meh
loop over the included entities in order to ingighe locking
process for these, too.

{

m_Connection.Open();

m_Transaction =
m_Connection.BeginTransaction(lsolationLevel.Sexédlle);

SglCommand ICommand = new SqlCommand(sttSQL
m_Connection, m_Transaction);

ICommand.Parameters.Add("@ID", SqIDbTyp@;In

ICommand.Parameters["@ID"].Value = m_nID;

ICommand.CommandTimeout = 1;

m_Adapter = new SqglDataAdapter(ICommand);

m_Adapter.Fill(IDS);

catch (Exception err)

{

return false;

}
for (inti=0; i <=m_lInvoicePos.Count - 1:#)

IEntity lInvoicePos = (IEntity)m_InvoiceFds
if (IlnvoicePos.Lock() == false)
return false;
}

return true;

}
The Save method updates the data in the databalseks

the data belonging to the entity and finally irtéi& the Save
procedure for the included entities. The Save ntethbthe
included entity saves and unlocks the respectitigyen

public bool Save()

{
if (m_nID == 0)
{

650

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:6, No:5, 2012

if (Insert() == false)
return false;
}
else
{
if (Modify() == false)
return false;

}

Unlock();

for (inti=0; i <= m_InvoicePos.Count - 1)

{

IEntity linvoicePos = (IEntity)m_InvoiceHds
if (IInvoicePos.Save() == false)
return false;
}
return true;
}

The destructor of the object must call the methatbtk, to
make sure that the entity is unlocked when the aibjs
destroyed. This way, even if the user forgets tapprly close
the application, the lock will be released when ghssion on
the server times out.

~Invoice()

Unlock();
}

The Unlock method of the complex entity unlocksatgn
records and initiates the unlock process of thelkkmantities.

public void Unlock()
{

if (m_Connection != null)
{
/I Close connection to unlock the record
if (m_Connection != null)
{
m_Connection.Close();
m_Connection = null;
}
m_Adapter = null;
m_Transaction = null;
}
for (inti=0; i <= m_InvoicePos.Count - 1
{
IEntity linvoicePos = (IEntity)m_InvoiceHds
lInvoicePos.Unlock();

}
}

(1
[2]
(3]
(4]

(5]

(6]

REFERENCES

Martin Fowler, “Patterns of Enterprise Applicatiofirchitecture”,
Addison-Wesley Professional, 2002, pp. 64-65

Martin Fowler, “Patterns of Enterprise ApplicatioArchitecture”,
Addison-Wesley Professional, 2002, pp. 416-425

Martin Fowler, “Patterns of Enterprise Applicatiofrchitecture”,
Addison-Wesley Professional, 2002, pp. 426-437

Cosmin Rablou, “Processing complex entities in M¥gplications”,
World Academy of Science, Engineering and Technology, Issue 62,
February 2012, Florence, Italy, pp. 2549.

Glenn E. Krasner, Stephen T. Pope, “A cookbookufsing the model-
view controller user interface paradigm in Smakth80”, Journal of
Object-Oriented Programming, August/September 1pf826—49.
Erich Gamma, Richard Helm, Ralph Johnson, JohnsMies, “Design
patterns: elements of reusable object-orientedwso#’, Addison
Wesley, 1994, pp. 127-134.

651

