
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

842

Abstract—Most file systems overwrite modified file data and

metadata in their original locations, while the Log-structured File
System (LFS) dynamically relocates them to other locations. We
design and implement the Evergreen file system that can select
between overwriting or relocation for each block of a file or metadata.
Therefore, the Evergreen file system can achieve superior write
performance by sequentializing write requests (similar to LFS-style
relocation) when space utilization is low and overwriting when
utilization is high. Another challenging issue is identifying
performance benefits of LFS-style relocation over overwriting on a
newly introduced SSD (Solid State Drive) which has only
Flash-memory chips and control circuits without mechanical parts.
Our experimental results measured on a SSD show that relocation
outperforms overwriting when space utilization is below 80% and vice
versa.

Keywords—Evergreen File System, Overwrite, Relocation, Solid
State Drive.

I. INTRODUCTION
N most file systems including FFS (Fast File System), Ext3,
FAT, and NTFS, locations of files and metadata are fixed,

and when data is modified they are always overwritten in their
original location. We will refer to this type of scheme as the
overwrite scheme. With the overwrite scheme, if geometrically
dispersed data are modified within the same time span, seek and
rotational delay substantially influences disk I/O time resulting
in underutilization of disk I/O bandwidth. In order to fully
utilize disk bandwidth for write requests, the LFS
(Log-structured File System) was introduced, where all
modified data are collected in memory chunks, then written to
disk together [1]. In other words, LFS relocates every modified
block in order to sequentialize the write requests. We will refer
to this type of scheme such as LFS where modified data are

Manuscript received March 31, 2008.
Choulseung Hyun, Hunki Kwon, Jaeho Kim, Eujoon Byun, and Donghee

Lee are with the School of Computer Science, University of Seoul, Seoul,
Korea (e-mail: cshyun@uos.ac.kr, kwonhunki@uos.ac.kr, kjhnet@gmail.com,
smilejoon@uos.ac.kr, and dhl_express@uos.ac.kr). Donghee Lee is a
corresponding author.

Jongmoo Choi is with the Division of Information and Computer Science,
Dankook University, Youngin, Korea (e-mail: choijm@dankook.ac.kr).

Sam H. Noh is with the School of Computer and Information Engineering,
Hongik University, Seoul, Korea (e-mail: samhnoh@hongik.ac.kr).

relocated to a different location, the relocation scheme. LFS,
however, has the disadvantage that it must reclaim contiguous
disk space called segments for further writes, and the efficiency
of reclamation (cleaning in many literatures) determines the
performance of LFS [2-4]. It has been shown that due to this
cleaning overhead, the performance of LFS degrades when the
file system utilization rises over a certain point, which is
determined by characteristics of the storage device and
fragmentation degree of the free space [5, 6]. In order to attain
advantages of both the overwrite and relocation schemes,
Wang et al. propose a hybrid approach called HyLog model
that relocates hot data and overwrites cold data [6]. They also
predict that disk technologies in the future will favor the
LFS-style relocation scheme.

Though the LFS-style sequential writing scheme has
potentials for superior write performance, there have been
numerous debates concerning the performance superiority
between the overwrite and relocation schemes. File systems
today make use of either of the schemes. In fact, even though
LFS use the same inode structure as UNIX file systems, no
implementation of LFS overwrites any part of the files. Though
the HyLog file system proposes to exploit the advantages of
both relocation and overwrite, it was limited to a simulation and
analytical study.

In this paper, we present the design and implementation of a
new file system that we call the Evergreen file system. The
central idea of the Evergreen file system is that it is able to
choose the modification scheme, that is, choose between the
overwrite and relocation schemes for each modified block of a
file and metadata. Currently, the Evergreen file system can
apply a different modification scheme for each category of
metadata and file data. Another issue challenged in this paper is
identifying whether newly introduced SSDs show similar
performance characteristics to magnetic disks or not.
Specifically, we focus on the performance benefits of
LFS-style relocations scheme over overwriting according to
file system utilization on a SSD which has only Flash-memory
chips and control circuits without mechanical parts such as
moving heads and rotating platters.

Main topics of this paper are in the design and
implementation of the Evergreen file system and also in the
performance trade-offs of relocation and overwriting on a SSD.

Performance Trade-Off of File System between
Overwriting and Dynamic Relocation on a Solid

State Drive
Choulseung Hyun, Hunki Kwon, Jaeho Kim, Eujoon Byun, Jongmoo Choi, Donghee Lee, and Sam H.

Noh

I

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

843

In our presentation, we will focus on the relocation features of
the Evergreen file system rather than on the basic file system
operations. Also, our experiments will concentrate on SSDs as
the benefits of LFS-style relocation on HDDs are well known.
Surprisingly, the performance benefit of overwriting on an SSD
is similar to that of HDDs in our experiments.

This paper is organized as follows. In Section 2, we describe
the motivations of the Evergreen file system and related works.
In Section 3, we explain the design and structure of the
Evergreen file system. Section 4 shows experimental results
measured on a SSD and we conclude this paper in Section 5.

II. RELATED WORKS
The Log-structured File System (LFS) collects modified file

data and metadata in memory and writes them sequentially to a
segment on disk. Even though LFS uses the same inode
structure as conventional UNIX file systems that overwrite
modified data, no implementation of LFS supports overwriting
of file data and metadata. Unlike LFS, the Evergreen file
system can selectively relocate each file or metadata block by
modifying only the relevant file system structure for that block.
The performance gain of LFS and extent-based allocation
schemes in real environments has been debated for a long time
[5, 7] and many performance models were defined for
LFS-style relocation [1-4, 6]. The HyLog file system was
proposed along with its performance models for overwriting
and relocation. However, previous models did not consider
Solid State Disks (SSDs) as this technology is relatively new.
Currently, performance characteristics of SSDs are challenging
issues.

File systems that dynamically relocate modified data do
exist. For example, JFFS2 [8] and YAFFS [9] relocate
modified data to write them sequentially on Flash-memory
media. Also, they recycle Flash-memory space by a garbage
collection scheme that is similar to cleaning in LFS. However,
as these systems directly control the raw Flash-memory chips,
they cannot run on storage devices that provide block device
interfaces such as magnetic disks, SSDs, and USB drives.

A major issue that must be considered in file system design is
the recovery scheme. Creation/deletion of a file/directory is
accompanied with multiple block updates and those modified
blocks need to be updated altogether. If not, the file system falls
into an inconsistent state. To recover from file system
inconsistency, some file systems rely on file system check and
recovery utilities (ex, fsck in UNIX system). However,
recovery time increases proportionally to disk capacity and
often takes too much time to be acceptable in commercial
environments. To reduce recovery time, some file systems such
as Ext3 and NTFS use journaling mechanisms [10, 11] that
write logging information before modifying the file system
structure. Another approach called Soft Update [12, 13] has
been introduced and applied in the Sun file system.

The WAFL (Write Anywhere File Layout) file system
relocates modified file data and metadata blocks to new
locations and the relocated data are confirmed only after a

checkpoint [14]. Therefore, the file system can recover file
system consistency immediately after system crash and also it
can provide multiple versions of file system state. Moreover,
the WAFL file system has some chances to increase
performance by relocating file and metadata blocks to
somewhere near current disk head position. In some aspects,
the design of the WAFL shares some common things with the
Evergreen file system. However, design and implementation of
the WAFL file system focuses on providing multiple versions
of file system state while the Evergreen file system focuses on
performance trade-offs between overwriting and fine-grained
relocation. For example, the Evergreen can overwrite existing
file and metadata for performance reasons and the dynamic
selection of overwriting and relocation is the main difference of
the WAFL and Evergreen file systems.

III. DESIGN OF THE EVERGREEN FILE SYSTEM
In this section, we explain design of the Evergreen file

system. In our presentation, we will use conventional terms
such as inode of UNIX file systems and ifile of LFS even
though our code uses different names. Also, we will focus on
the relocation feature of the Evergreen file system rather than
on other basic file system operations. Therefore, we assume in
the following descriptions that the Evergreen file system
always relocates every file data and metadata block when it is
modified.

Fig. 1 ifile and master blocks

The Evergreen file system has an ifile that was originally

introduced in LFS. In the original UNIX file system, all inodes
have their own fixed locations. However, LFS packages inodes
into an ifile in order to relocate them on demand. Like LFS, the
Evergreen file system uses the ifile to package inodes. As a
result, an inode can move to a new location by relocating a part
of the ifile. We will call the first block of the ifile the master
block, where the self inode, root inode, dBitmap inode, and
iBitmap inode reside (Fig. 1). The self inode (inode 1)
represents the ifile itself and keeps block numbers of the ifile
itself. By convention, the root directory uses the third inode
(inode 2) and its role is the same as that in other UNIX file
systems. The dBitmap inode (inode 3) represents the dBitmap
file, which contains a bit-array for all the blocks in the file

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

844

system, with each bit indicating whether the block is used or
not. The iBitmap file represented by the iBitmap inode (inode
4) contains a bit-array indicating whether an inode is being
used or not. The first and the last inodes in the master block are
used to store check-point information. Let us assume that 16
inodes reside in the master block. Then, the check-point
information is stored in inodes 0 and 15, which we call the head
and tail check-point inodes, respectively. The check-point
information consists of a 64-bit sequence number, logging
information (described later), and a checksum of the
check-point information itself. As all file system structures
starts from the master block, modifications of file system
structures are committed by writing the master block. On the
contrary, modifications are aborted if the system crashes before
writing the master block.

Fig. 2 shows cascading relocations of relevant metadata
when a file/directory data block is modified. When a file data
block is modified in the buffer cache, the file system allocates a
new location and relocates the modified block to the new
location (relocation is done by just changing the block number
of the cached block in the buffer cache). If an indirect block is
used to address the data block, a new location is allocated again
and the indirect block is also relocated. Then, the file system
modifies the inode of the file to point to the new location or to
the new indirect block. Modification of the inode requires
relocation of a part of the ifile and the modified block of the
ifile is also relocated to a new location. As block numbers of the
ifile are kept in the self inode, relocation of the ifile block is
accomplished by registering the address of the new location in
the self inode. In all cases, block relocation requires allocating a
new empty block and freeing an old block, and these all modify
the contents of the dBitmap file (not shown in Fig. 2). If the
contents of dBitmap are changed, the modified dBitmap blocks
must also be moved to new locations and their locations will be

registered in the dBitmap inode. As the self inode and dBitmap
inode exist in the master block, all cascading modifications end
in the master block.

Relocation of the Evergreen file system seems to be quite
wasteful because it modifies many relevant file system
structures to relocate file data or metadata blocks. However, a
file/metadata block moves to a new location only when it is
modified in the buffer cache for the first time. In other words,
the relocation occurs when the state of the cached block is
changed from CLEAN to DIRTY. Modification of an already
DIRTY block, however, does not trigger relocation. Therefore,
because of locality, overall number of relocations is typically
not very large for most file system operations if the buffer
cache is sufficient. Also, when compared to the overwrite
scheme, relocation does not demand excessive overhead.
Consider a file system using the journaling mechanism. In this
file system, modification of a file/metadata block incurs
modification of the inode of that file and also requires
additional writing of logging information to the journaling area.
Therefore, though relocation has possibilities to incur
additional writes when synchronous writes are requested, it is
not as inefficient as it appears in case of normal file system
operations.

The Evergreen file system calls commit() in two cases; when
sync() is called periodically by the operating system or
sporadically by applications and when internal resources of the
file system are consumed. The commit procedure writes all
DIRTY blocks in the buffer cache except for the master block.
When writing DIRTY blocks, it memorizes the last-written
block number. Then, it writes the master block to one of the
blocks reserved for the master block. As shown in Fig. 3, some
blocks are reserved for master blocks and the master block must
be written to one of these reserved blocks. Specifically, the
Evergreen file system chooses the nearest one to the

Fig. 2 Cascading relocations in Evergreen file system

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

845

last-written block (as it remembers the last-written block
number) among the reserved blocks except for one case. If the

master block was already written to the chosen reserved block
at the previous commit, then the Evergreen file system selects
the second-to-nearest block. Before writing the master block,
the sequence numbers of the head and tail check-point inodes
are incremented so as to be the largest among previously
written master blocks.

Fig. 3 shows the overall layout of the Evergreen file system
right after format. The PBR (Partition Boot Record) resides at
the starting sector of the partition and some unused sectors
follow. Then, the master block is located at the first block of the
file system. As the master block contains self inode, root inode,
dBitmap inode, and iBitmap inode, all files and directories can
be found and relocated by modifying structures starting from
the master block.

LFS divides the entire storage space into a number of
segments and scans them to find the last-written one at boot
time. As the segment structure is predefined, LFS can easily
determine the location of the segment summary block within a
segment. However, the Evergreen file system has no segment
structure; rather, it has the master block from which all files and
metadata stems. Assume that the master block can reside at any
block of the file system. Then, the file system must scan all
blocks to search the last-written master block. Also, it needs a
proper method to discriminate the master block from other data
blocks. In order to reduce the scanning delay and to avoid the
confusion, the Evergreen file system reserves some blocks for
the master block and it scans them to find the last-written
master block at boot time. Specifically, the first block, the last
block, and the every nth block are reserved for the master block.
Currently, the maximal n is 1024, and it can be adjusted to a
smaller value according to the capacity of the storage device.
The Evergreen file system scans the first, the last, and the every
nth block to find the last-written master block, and the boot
procedure finishes if the last one is found. Therefore, the boot
procedure of Evergreen is similar to LFS in that they both scan
to find the last-written segment or master block. There exists
trade-offs between performance and boot time and between
performance and available space. The lower the n value, better
performance is expected because the master block can be

written to a location closer to the last-written data block.
Reversely, higher n decreases booting time and available space.

Considering those trade-offs, we set n to 1024 in our
experiments, but further investigation as to the effect of this
value need to be done. With n=1024, the available file system
space decreases by about 0.1%.

IV. EXPERIMENTAL RESULTS ON A SSD
We implemented the Evergreen file system in the Windows

CE operating system and measured the performance with the
Postmark benchmark [15] on CE/PC. The Evergreen file
system has two operation modes; synchronous and
asynchronous. In the synchronous mode, the Evergreen file
system commits (flushes the buffer cache) after every file
system operation such as creating/writing/deleting a
file/directory. In the asynchronous mode, the Evergreen file
system commits only when the Windows CE operating system
requests to flush the buffer cache or when all internal resources
of the file system are consumed.

The Windows CE operating system comes with a FAT file
system. Because the FAT file system uses the overwrite
scheme, it is a good reference to compare performance with the
Evergreen file system. In the experiments on an SSD, indeed,
the Evergreen file system runs multiple times faster than the
FAT file system. However, structural overheads of the two file
systems could be different and, thus, a direct performance
comparison would be unfair. Therefore, we will focus on the
trade-off of the overwrite and relocation schemes of the
Evergreen file system.

We used a Samsung SSD MCAQE32G5APP-0XA (32G) in
our experiments. For consistency of experiments, we made a 1
GB partition and formatted it with the desired file system and
run an arbitrary Postmark benchmark to fill the file system up
to a desired utilization before the experiments. In the
experiments, the buffer cache size of the Evergreen file system
is set to 64 blocks.

Fig. 4 shows the elapsed times of the Postmark benchmark
program running on the SSD as the file system utilization is
varied. In Fig 4(a) and (b), the Evergreen file system operates in
synchronous mode and in asynchronous mode, respectively. In
order to compare the performance of the relocation and

Fig. 3 Layout of Evergreen file system after format

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

846

overwrite schemes, we did not use adaptive scheme, but set the
scheme to either one. In both figures, we can observe that the
relocation scheme outperforms the overwrite scheme when file
system utilization is low, but performance crosses over at some
point between 70% and 80%, beyond which, the overwrite
scheme shows better performance the gap increasing as
utilization increases. Currently, the Evergreen file system
freezes block allocation when file system utilization exceeds
95%. Therefore, the Postmark benchmark program sometimes
fails to create files when it starts to execute with 90% utilization
(and less frequently 80% utilization). As a result, the
experimental results underestimates the elapsed times at
utilization 80% and 90% and, if we take this into account, the
performances of relocation and overwriting schemes matches
well to the models previously proposed for magnetic disks.
Specifically, many models for magnetic disks predicted the
existence of cross-over point and, even on a SSD, there exists
the cross-over point between 70% and 80% of utilization.

Fig. 5 shows the number of read and write requests issued for
each of the schemes. In Fig. 5(a), which shows the results
executed in asynchronous mode, we observe that the number of

relocation write requests is almost the same as that of
overwriting. In the asynchronous mode where the buffer cache
is fully utilized to delay actual writes, overhead of relocation is
minimized because the already dirtied blocks do not incur
relocation. Also, there is no notable difference in read request
counts between the overwrite and relocation schemes. In the
synchronous mode (Fig. 5(b)), relocation has about 5% more
write requests than overwriting, which is actually more
efficient than we expected. This efficiency can be explained in
two ways. First, the Postmark benchmark simulates small file
read/write workloads and a small file does not heavily use
indirect blocks to address its data blocks. The relocation
overhead of small file is small because it requires only
changing block addresses in the inode of the file and the inode
has to be modified for other reasons such as changing time and
size. However, if a large file is modified, then relocation is
expected to see higher overhead. Another overhead of
relocation is frequent modification of the dBitmap file to
allocate and to free blocks. However, buffering and locality
seem to hide the overhead successfully. The second reason
behind efficient relocation is that the Evergreen file system

(a) Asynchronous mode (b) Synchronous mode

Fig. 4 Performance of Postmark benchmark program on the Evergreen file system

(a) Asynchronous mode (b) Synchronous mode

Fig. 5 Number of read and write requests on the Evergreen file system

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:3, 2008

847

efficiently localizes the core structures that must be modified
for relocation into a small spot. In the Evergreen file system,
cascading modifications converge to the master block and
many of modified blocks were to be modified for other reasons
anyway. For these reasons, the dynamic relocation of modified
blocks can be implemented without significant overheads.

V. CONCLUSION
The Evergreen file system can choose between the relocation

and overwrite schemes as its modification scheme for each
modified file data and metadata block. As a result, the
Evergreen file system can apply different schemes for each
categories of metadata and file data. Recently developed SSDs
raise questions about whether they show similar trade-offs to
magnetic disks between sequential and random writes and
between overwrite and LFS-style relocation schemes. The
experimental results of the Evergreen file system measured on a
SSD show that LFS-style relocation outperforms overwriting
when space utilization is low and vice versa. These results
confirm that the SSD has similar performance characteristics to
conventional magnetic disks though it has no mechanical parts.

REFERENCES
[1] M. Rosenblum and J. K. Ousterhout, "The Design and Implementation of

a Log-Structured File System," ACM Transactions on Computer Systems,
vol. 10, pp. 26-52, 1992.

[2] T. Blackwell, J. Harris, and M. I. Seltzer, "Heuristic Cleaning Algorithms
in Log-Structured File Systems," in Proceedings of the 1995 USENIX
Technical Conference, New Orleans, Louisiana, USA, 1995, pp. 277-288.

[3] J. N. Matthews, D. Roselli, A. M. Costello, R. Y. Wang, and T. E.
Anderson, "Improving the performance of log-structured file systems
with adaptive methods," ACM Operating Systems Review, vol. 31, pp.
238-251, December 1997.

[4] J. Wang and Y. Hu, "WOLF-A Novel Reordering Write Buffer to Boost
the Performance of Log-Structured File Systems," in 1st Conference on
File and Storage Technologies, 2002, pp. 47-60.

[5] M. Seltzer, K. A. Smith, H. Balakrishnan, J. Chang, S. McMains, and V.
Padmanabhan, "File System Logging versus Clustering: A Performance
Comparison," in USENIX Annual Technical Conference, 1995, pp.
249-264.

[6] W. Wang, Y. Zhao, and R. Bunt, "HyLog: A High Performance Approach
to Managing Disk Layout," in Proceedings of the 3rd USENIX
Conference on File and Storage Technologies, San Francisco, CA 2004.

[7] L. W. McVoy and S. R. Kleiman, "Extent-like Performance from a UNIX
File System," in Proceedings of the USENIX Winter 1991 Technical
Conference, Dallas, TX, USA, 1991, pp. 33-43.

[8] D. Woodhouse, "JFFS: The Journaling Flash File System," in Ottawa
Linux Symposium 2001, 2001.

[9] "YAFFS (Yet Another Flash File System) Specification Version 0.3,"
http://www.aleph1.co.uk/yaffs/, 2002.

[10] R. Hagmann, "Reimplementing the Cedar File System Using Logging and
Group Commit," ACM Operating Systems Review, vol. 21, pp. 155-162,
1987.

[11] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
"Analysis and evolution of journaling file systems," in Proceedings of the
USENIX Annual Technical Conference 2005 Anaheim, CA

[12] G. R. Ganger and Y. N. Patt, "Metadata Update Performance in File
Systems," in Proceedings of the USENIX 1994 Symposium on Operating
Systems Design and Implementation, Monterey, CA, USA, 1994, pp.
49-60.

[13] G. R. Ganger, M. K. McKusick, C. A. N. Soules, and Y. N. Patt, "Soft
updates: a solution to the metadata update problem in file systems," ACM
Transactions on Computer Systems, vol. 18, pp. 127-153, 2000.

[14] D. Hitz, J. Lau, and M. Malcolm, "File System Design for an NFS File
Server Appliance," in Proceedings of the USENIX Winter 1994 Technical
Conference, San Fransisco, CA, USA, 1994, pp. 235-246.

[15] D. Katcher, "PostMark: A New File System Benchmark," Network
Applicance Inc. 1997.

Choulseung Hyun received the BS degree in telecommunication and computer
engineering from Cheju National University in 2001 and the MS degree in
computer science from University of Seoul in 2007. He is now a PhD student in
the University of Seoul, Korea. His research interests include operating
systems, file systems, and performance modeling

Hunki Kwon received the BS and MS degrees in computer science from
University of Seoul in 2006 and 2008, respectively. He is now a PhD student in
the University of Seoul, Korea. His research interests include operating
systems, embedded systems, and flash-memory storage.

Jaeho Kim received the BS degree in information and telecommunication
engineering from Inje University in 2004. He is now an MS student in
University of Seoul, Korea. His research interests include file systems and
cache management algorithms.

Eujune Byun received the BS degree in computer engineering from Daejin
University in 2007. He is now an MS student in University of Seoul, Korea. His
research interests include embedded systems and flash-memory storage.

Jongmoo Choi received the BS degree in oceanography from Seoul National
University, Korea, in 1993 and the MS and PhD degrees in computer
engineering from Seoul National University in 1995 and 2001, respectively. He
is an assistant professor in the division of information and computer science,
Dankook University, Korea. Previously, he was a senior engineer at Ubiquix
Company, Korea. He held a visiting faculty position at the University of
California, Santa Cruz from 2005 to 2006. His research interests include
micro-kernels, file systems, flash memory, and embedded systems.

Donghee Lee received the MS and PhD degrees in computer engineering, both
from Seoul National University, Korea, in 1991 and 1998, respectively. He is
currently an associate professor in the School of Computer Science, University
of Seoul, Korea. Previously, he was a senior engineer at Samsung Electronics
Company, Korea, in 1998. His research interests include embedded systems,
cache algorithms, and flash-memory storage.

Sam H. Noh received the BS degree in computer engineering from Seoul
National University, Korea, in 1986, and the PhD degree from the University of
Maryland at College Park in 1993. He held a visiting faculty position at George
Washington University from 1993 to 1994 before joining Hongik University in
Seoul Korea, where he is now a professor in the School of Information and
Computer Engineering. His current research interests include parallel and
distributed systems, I/O issues in operating systems, and real-time systems. Dr.
Noh is a member of the IEEE, the IEEE computer Society, and the ACM.

