
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2735

Abstract—In this work, we present for the first time in our

perception an efficient digital watermarking scheme for mpeg audio
layer 3 files that operates directly in the compressed data domain,
while manipulating the time and subband/channel domain. In
addition, it does not need the original signal to detect the watermark.
Our scheme was implemented taking special care for the efficient
usage of the two limited resources of computer systems: time and
space. It offers to the industrial user the capability of watermark
embedding and detection in time immediately comparable to the real
music time of the original audio file that depends on the mpeg
compression, while the end user/audience does not face any artifacts
or delays hearing the watermarked audio file. Furthermore, it
overcomes the disadvantage of algorithms operating in the PCM-
Data domain to be vulnerable to compression/recompression attacks,
as it places the watermark in the scale factors domain and not in the
digitized sound audio data. The strength of our scheme, that allows it
to be used with success in both authentication and copyright
protection, relies on the fact that it gives to the users the enhanced
capability their ownership of the audio file not to be accomplished
simply by detecting the bit pattern that comprises the watermark
itself, but by showing that the legal owner knows a hard to compute
property of the watermark.

Keywords—Audio watermarking, mpeg audio layer 3, hard
instance generation, NP-completeness.

I. INTRODUCTION
OWADAYS there is a necessity for the development of
reliable and robust schemes for protecting audio data,

especially of those sent over the Internet because they are
vulnerable to unauthorised copying and manipulation by
malicious users. As it has been mentioned by previous works
[1]-[6], [15] there is a number of properties an audio
watermarking algorithm should have in order to be efficient:

• Inaudibility, the watermark embedding should not be
accompanied by loss of audio quality.

• Statistical invisibility, the algorithm should prevent
unauthorised watermark detection/removal or alteration.

• Similar compression characteristics with the original
signal.

• Robustness, the algorithm should be robust against various
attacks for malicious users.

• Embedded directly in the data.

Manuscript received July 8, 2005.
Dimitrios Koukopoulos is with Research and Academic Computer

Technology Institute, 61 Riga Feraiou Str., 26110 Patras, Greece
(corresponding author to provide phone: +30-26410-34473; fax: +30-26410-
58075; e-mail: koukopou@ ceid.upatras.gr).

Yiannis Stamatiou, is with Research and Academic Computer Technology
Institute, 61 Riga Feraiou Str., 26110 Patras, Greece (e-mail: stamatiu@cti.gr).

• Support multiple watermarks.
• Low redundancy.
• Self-clocking.
The most proposed watermarking techniques in the

bibliography embed watermarks to PCM-data (raw audio data)
[1]-[4]. This ensures that these techniques will operate with all
audio formats because it presupposes that the audio file will
be uncompressed in order to embed the watermark and then
recompress again. However, this approach creates two
significant problems. Firstly, it is not sure that the watermark
will survive the coding/decoding procedure and secondly it is
time consuming, which is a luxury not available in real-time
applications. In order to achieve real-time playability, audio
data are commonly stored and transmitted in compressed
format, such as mpeg audio. Thus, the watermarking schemes
would be preferred to target the compressed data domain [5, 6,
14] when they are going to be used to real-time applications.
There is the problem of watermark technique adaptability with
this approach because these techniques are oriented to specific
audio formats and they should be transformed in order to be
able to operate with other audio formats.

An important issue in the context of audio watermarking is
whether the original signal should be used for the detection of
the watermark [2, 6] or not [3, 4, 5, 14]. It is desirable not to
use the original signal for detection because it results in waste
of big amount of storage space and it adds the danger of its
usage by malicious users. Another issue that differentiates
watermarking techniques is whether the watermark is
embedded in the spatial or the frequency domain. Usually,
when it is used the time domain [4, 5, 6, 14], time distortions
are faced well, while it should be taken special care for
spectral distortions. In the frequency domain [2, 3] the
opposite happens. Some of the methods that use the frequency
domain exploit the frequency characteristics of the audio
signal in order to embed the watermark, minimising audible
distortions even for high amplitude watermarks.

In this paper, a digital watermarking algorithm for mp3
audio files is presented that works in the compressed domain,
makes its manipulations in the time and subband/channel
domain and it does not need the original signal to make
detection. This algorithm was implemented in a real-time
environment taking special care for the efficient usage of the
two limited resources of computer systems: time and space.
The scheme was designed and implemented such that the
delays to be decreased and the memory requirements to be as
small as possible. Our algorithm overcomes the problem of
the algorithms operating in the PCM-data domain that are
vulnerable to compression/recompression attacks because it

A Watermarking Scheme for MP3 Audio Files
Dimitrios Koukopoulos, and Yiannis Stamatiou

N

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2736

embeds the watermark in the scale factors domain and not in
parts of the audio data that are masked or are not perceptible
because of psycho-acoustic laws [1, 2, 4]. Also, it does not
need to encode specially the audio data into an mp3 file as it is
done by MP3Stego [7].

Our algorithm exploits the ideas that have been appeared in
[5, 6, 14] extending them in mp3 format with two ways: (i)
applying a control mechanism that monitors the changes of the
scale factors of the source file in the phase of watermark
embedding, (ii) giving to the industrial user the enhanced
capability of applying a crypto mechanism at the watermark
creation part of the algorithm. This mechanism creates a
watermarking key with unique semantic meaning for each
user and strong robustness having the capability of surviving
attacks that achieve to damage a significant percentage of it.

It should be mentioned that the presented algorithm is one
of the first algorithms in our perception that can be used for
authentication and copyright protection without the use of the
original signal. This is because of the capability that is given
by this algorithm to the industrial user to use a crypto-
mechanism to create the watermarking key, which, now, is not
a simple text as in other papers [5]. Here the key is the
instance of a graph that can survive against inversion attacks
(a malicious user subtracts his watermark from the original
marked by the true owner) because it is spread all over the
scale factors range and it can still be “operational” even if a
large part of it has been damaged. Of course if the user does
not want to use a key with semantic meaning he can use a
simple text preserving all the benefits that has in the case of
the key with semantic meaning, but then the key will be
vulnerable to inversion attacks.

II. PROPERTIES OF THE EMBEDDED WATERMARK–FROM
SYNTAX TO SEMANTICS

Any bit-sequence may be seen under two different views:
1) Syntactically, i.e. how it looks like as a sequence of 0’s

and 1’s. Then the sequence’s characteristics and
properties are determined simply by the pattern of 0’s and
1’s.

2) Semantically, i.e. whether in fact, it represents by design
another entity/object converted into the bit-sequence
under the action of a suitable encoding. This time the
sequence, in addition to its syntactic characteristics, may
also be seen as possessing characteristics and properties
inherited from the entity/object from which it resulted.

A watermark, now, is a sequence of bits of a certain length
and it usually provides evidence of ownership of a digital file
by simply being inserted in suitable places in it and later,
being detected and displayed to a referee during a copyright
dispute. The fact that enables the resolution of the copyright
dispute in favor of the legal owner of the file is that this bit
sequence could not have been there by accident but
purposefully.

One problem with many watermarking schemes that use this
approach is that they usually cannot sustain attacks that
destroy even small parts of the watermark. For example, in

many audio watermarking algorithms, multiple copies of the
watermark are embedded in the file to be protected and the
detection is successful when a fraction of them are found in
the file. However, if even a single bit of each of the embedded
watermarks is destroyed after an attack (e.g. lossy
compression/decompression), successful detection is
impossible. Another problem is that if someone steals the
watermark bit-sequence or manages to uncover it from a file
after obtaining knowledge of the embedding mechanism;
he/she may use it in order to prove ownership of a file
personifying the legal originator of the file. The two
aforementioned problems stem from the fact that the
watermarks used for watermarking files are regarded as bit-
sequences possessing a specific pattern (syntactic view). In
order to solve these problems we suggest to view watermarks
semantically and our proposal is to create and use watermarks
that (i) represent a certain combinatorial object with a specific
characteristic/property known only to his/her creator and (ii)
the characteristic/property known to the creator of the
watermark still holds for any part of the watermark (see [13]
for an approach in image watermarking using Zero-
Knowledge proofs). In essence, we propose to rely only on the
knowledge of the property of the combinatorial object encoded
by the watermark and not on the bit pattern. In addition, so as
to guard against stealing of the watermark, we will use
characteristics/properties that are hard to discover or compute
if not known in advance so that whoever attempts to use the
watermark, when asked to prove that he/she has created it by
stating the property, of the object encoded by the watermark,
he/she will be at difficulty to demonstrate such a knowledge.

A. Producing Objects/Watermarks Possessing Hard to
Discover Characteristics/Properties

One of the most intriguing problems in complexity theory
concerns the establishment and the determination of the
satisfiability threshold for random Boolean formulas with 3
literals per clause (3-SAT problem). According to many
experimental observations, there appears to exist a value r0
for clause to variable ratio r = m/n such that almost all
randomly generated formulas with r > r0 are unsatisfiable
while allmost all randomly generated formulas with ratio r <
r0 are satisfiable. In addition, the formulas generated with
variable to clause ratio close to r0 seem to be among the most
difficult formulas to test for satisfiability using the best of
algorithms available. The belief that such a threshold point
exists (theoretically) forms the satisfiability threshold
conjecture and it is widely believed to hold true.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2737

Fig. 1 Threshold phenomena in 3-SAT

In Fig. 1, we show two diagrams that depict schematically

the conjecture (see, also, [12]). In the lower diagram, we show
the probability that a randomly generated formula is true as a
function of the clause to variable ratio r. Observe the sudden
change of this probability from 1 to 0 as the ratio passes over
the value 4.2. At the same time, in the upper diagram, we see
that the number of solution steps taken by the algorithm
(recursive calls of the Davies-Putnam procedure) suddenly
increases at the value 4.2 and then falls again. Similar
threshold phenomena can also be observed in connection with
properties of other kinds of combinatorial problems besides
the satisfiability problem. In 1991, Cheeseman, Kanefsky, and
Taylor in [10] considered the problem of graph colouring.
Before considering the threshold behaviour of this problem
we will give some preliminaries. Given a graph G, the 3-
colouring problem asks us to discover a colouring of its
vertices using at most 3 colours, so that no two adjacent
colours receive the same colour. Such a colouring is called 3-
colouring of G. The problem of discovering a 3-colouring of a
given graph is computationally intractable or NP-complete
like the 3-SAT problem we considered above (see [8, 9]). This
fact means that there is strong evidence that no fast
(polynomial) time algorithm exists that solves the problem.
On the other hand, it is very easy to create a graph with n
vertices that possesses a 3-colouring: given three non-zero real
numbers p1, p2, and p3 that sum up to 1 (for a further
constraint, see below), each of the n vertices is assigned
independently of the others to one of three colour classes C1,

C2, and C3 with probability p1, p2, and p3 respectively. Then
each pair of vertices that belong to different classes becomes
adjacent independently of the other pairs with probability p.
We now have an instance of the computationally intractable 3-
colouring problem with a known to us 3-colouring and colour
classes of (expected) sizes |C1| = p1n, |C2| = p2n, and |C3| = p3n.
One algorithm that accomplishes this is the following:

Step 1: Let p1, p2, and p3 be real numbers such that
p1 + p2 + p3 = 1 and p1, p2, and p3 > 0.

Step 2: Generate a random permutation i1, i2, …, in of the
numbers 1, 2, …, n (vertices of the graph).

Step 3: For each j = 1, …, n, vertex vj is assigned to color
class Ck with probability pk, k = 1, 2, 3.

Step 4: For each pair u, v of vertices that do not belong to
the same color class, introduce the undirected edge
(u,v) with probability p.

Furthermore, due to the intractability of the problem, it
would be difficult for someone else to discover quickly a 3-
colouring of our graph and we, thus, can use the graph along
with our knowledge of the colouring to prove ownership of a
file into which we have inserted the adjacency matrix
representation of the graph (an n×n matrix containing 1 at
position (i,j) if vertices i and j are adjacent or 0 otherwise).

However, the fact that 3-colouring is NP-complete does not
guarantee difficulty to solve of a specific instance. The
determination of the instance complexity of computationally
intractable problems is a major open issue in complexity
theory and, to the best of our knowledge, no useful practical
characterization of such instances is known as of today. It is a
fact that if a problem is computationally intractable then there
exists an infinite set of instances that can not be solved in
polynomial time by any algorithm. The set of these instances
form the complexity core of the problem and it would be
desirable for us to pick instances that belong to this set. A
possible way to sample this set while constructing our
instance, is to use the theory of threshold phenomena of
intractable combinatorial problems.

Let G be a randomly generated graph with m edges and n
vertices and let r = m/n. Returning to the work of Cheeseman,
Kanefsky, and Taylor in 1991, they reported a remarkable
experimental observation concerning the 3-colorability
property of such graphs. They discovered that for graphs
generated with ratio r around the point 2.3, either almost all of
them were 3-colourable (r < 2.3) or almost all of them were
not 3-colourable (r > 2.3). Thus the value r0 = 2.3 seems to
mark a threshold through which almost certain colourability
switches into almost certain non-colourability. However, the
most important observation for our purposes, was that these
graphs were the most difficult to handle using the most
efficient search algorithms available. So an idea may be to
modify the graph creation procedure we presented before by
setting p = (p1p2+p1p3+p2p3)r0/n in order to achieve an
expected ratio for the generated graphs equal to the threshold
point r0 = 2.3. And since partitions of vertices of about equal

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2738

size have been experimentally observed to make the colouring
problem more difficult, we may set pi = 1/3 and, thus, fix our
p to be equal to 3r0/n. This choice of p samples (according to
experimental observations in threshold phenomena) from the
complexity core of the 3-colouring problem and, thus, to
enable us to construct hard to solve 3-colouring instances to
use as watermarks. Then exhibiting the 3-colouring to a
referee proves ownership of both watermark and the file that
contains it. The referee may, then, easily check that this is
indeed a legal 3-colouring (using a Zero Knowledge
Interactive Proof protocol). Someone who illegally claims
ownership will be in a difficulty to demonstrate a 3-colouring
of our graph. Moreover, if he/she tries to demonstrate another
property not belonging to a class of hard to compute
properties or if he/she simply claims that he has put a string
that “happens” to resemble a graph, then his/her credibility
will be lower than ours since we have demonstrated a 3-
colouring of this string when seen as a graph which we could
not possibly do unless we purposefully had constructed this
string to be a graph possessing the colouring we
demonstrated.

III. MAIN ALGORITHM
Our algorithm extends the one that was proposed for mpeg

audio layer 2 files in [5]. The main differences are: (i) the
application of a mechanism that produces unique crypto-keys
that are robust in malicious attacks because they can be
detected correctly even if a big percentage of them has been
damaged, (ii) the use of a control mechanism that ensures that
the embedding of the key in the mp3 audio file scale factors is
done suitably (no audible distortions and preservation of scale
factors bits number), and (iii) the specification of similar
patterns with the one that is wanted to be embedded extremely
fast as an one step procedure, improving extremely the time
complexity of the algorithm.

As input the algorithm takes an mp3 audio file, a unique
key that is produced with the use of the watermarking key
creation algorithm or simple text and a set of three patterns
that represent the binary digits “0” and “1” and a
synchronization bit, which is used between the bits or between
pre-specified group of bits and at the end of the embedding
key for self-clocking and robustness against cropping.

The next step is the transformation of the binary string that
represents the watermarking key into a sequence of the given
patterns and the extraction of the scale factors from the frames
of the mp3 audio file. The scale factors in mp3 files have
variant number of bits that depends from 0 to 4 bits, while in
mpeg audio layer 1 and 2 formats they consist of a fixed
number of bits equal to 6. Because of that along with the scale
factors another stream of information is extracted by an mp3
audio file, which specifies the number of bits used in the bit
representation of each scale factor. Based on the scale factors,
difference patterns are calculated. These patterns correspond
to the difference between the first scale factor that can be
considered as a starting point and the following scale factors

in the scale factor stream. Assuming as an example the list of
scale factors {6, 8, 5, 3}, the first scale factor is considered as
a starting point and the pattern is {2, -1, -3}.

MP3 Audio File

Scalefactors and
bit length of each

scalefactor

extract

Creation of unique key to
embed via Semantic based

crypto-mechanism or use of a
simple string

Patterns
selection

Sequence of given
patterns

(Watermark Creation)transform

Sequence of square
difference scalefactors'

patterns

transform

Watermark embedding

embed

Sequence of
changed

scalefactors

transform

Watermarked
MP3 Audio file

insert

Fig. 2 Main algorithm

In the following step the sequence of patterns produced by

the watermarking key is embedded into the sequence of
difference patterns produced by the scale factors of the mp3
audio file. The embedding is achieved by a mechanism that
changes the scale factors difference patterns until a sufficient
number of them matches the desired sequence of patterns. The
mechanism guarantees that it is not introduced an audible
distortion in the watermarked audio file and that each
modified pattern does not violate the number of bits the
underlying scale factors consist of. The second goal of the
applied mechanism is achieved by applying a control sub-
mechanism that takes as input the stream that carries the
information about the number of bits each scale factor consists
of. Finally, the produced sequence of patterns from the
previous step is transformed to a sequence of scale factors that
are embedded in the source audio file, creating a watermarked
mp3 audio file.

A. Embedding Mechanism
The embedding mechanism takes as input the pattern we

want to embed, the unwanted patterns and the scale factors of
frames where we have decided to embed our pattern. The
embedding mechanism, also, uses as parameters the minimal
number of patterns in the specified area of frames that must be
equal to the pattern of the information bit we want to embed in
order to consider that the wanted pattern has been embedded,
the maximal tolerance that determines the changes that the
patterns can suffer (as concerns the audibility) to match the
wanted pattern and the stream of bit lengths of the scale
factors, which patterns examined.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2739

Selected
patterns Scalefactors

Counting
occurences of
wanted pattern

Searching
of similar
patterns

Output

Removal of
unwanted
patterns

remove

count

< (minimal number
of patterns parameter) ?

NO

Sums of the squares of the
difference between wanted
pattern and scalefactors'

patterns

Pattern that corresponds to the first
sum in the sorted list is checked via a
control mechanism based on maximal
tolerance and length of the underlying

scale factor

estimate

search

Can be changed ?Pattern is
changed

YES

check

NO

Sorting of sums in
increasing ordersort

First control ?

YES

YES

Sum that was checked
in the previous step is

replaced by a big valueNO

Fig. 3 Watermark embedding

The embedding mechanism does not consist of one loop

based on the parameter of tolerance as in [5]. The first step is
the investigation of the scale factors pattern stream for
unwanted patterns and their removal by changing them
slightly. The next step is the looking for patterns similar to the
wanted one and their counting. If the wanted pattern appears
more times than the parameter that specifies the minimal
number of its appearances then the mechanism is satisfied and
it extracts the pattern as a result. Otherwise, the mechanism
tries to find similar patterns to the wanted one. The
specification of the similar patterns is achieved using a control
mechanism that uses as parameters the maximal tolerance
concerning audibility and the number of bits each scale factor
consists of. Firstly, the sums of squares of the difference of
the patterns of all the given scale factors with the wanted
pattern are estimated and sorted in increasing order. Then, the
pattern, which sum is at the beginning of the sorted list, is
selected as candidate for changing. This pattern is checked by
the control mechanism to be specified if the tolerance
parameter is satisfied and the bit size of the underlying scale
factor is not violated. If the check is successful, it is replaced
by the wanted pattern. Then, it is checked if the minimal
number of patterns parameter is satisfied. If not, the
corresponding sum in the sorted list is replaced by a big value,
the list of sums is sorted again and the same procedure is
repeated. This procedure can be considered as a one-step
procedure comparing to the procedure in [5] where the
searching for similar patterns consists of a loop that is based
on the increase one by one of the tolerance parameter until the
maximal tolerance is reached. Thus, most of the changes will
affect patterns that differ as little as possible from the wanted
pattern minimizing the distortion in audio quality, whereas the
number of bits of the underlying scale factors is not violated.

We should always take in care the variant feature of the
number of bits that are used for the scale factors because
otherwise the watermarked audio file can be damaged due to
overwriting different data from scale factors or overlapping
between scale factors. This may affect the audibility of the

audio file because it can lead to pattern changes that are not at
the lowest levels of tolerance. However, in practice with
suitable selection of the set of three patterns, there is only a
slight deterioration of the quality of the watermarked audio
file.

B. Detection Mechanism
The detection mechanism depends basically on the method

we choose to embed the watermarking key and the crypto
mechanism with the help of which the semantically unique
crypto-key is created. Thus, if a fixed number of frames has
been used for the embedding of each information bit, the
given fixed region of each embedding pattern, which is given
as input to the detection mechanism is searched and the
presence of the three patterns is counted. The pattern with the
most hits is selected. This method is sufficient when there is
no trimming. If trimming exists then the synchronization bits
should be used for the re-synchronization of the algorithm at
the beginning of each watermark. Our algorithm handles this
problem efficiently because the watermarking key is long
enough to spread all over the scale factors.

If the number of frames/bit used for watermark embedding
is not given, but we know the minimal number of equivalent
consecutive patterns and the tolerance, then the detection
procedure is more complicated because it demands the
algorithm to search for the dominant of the three patterns in
the frames with respect to the parameter of the minimal
number of patterns. When the dominant pattern changes, then
the previous dominant pattern is considered as a found one. In
this method, the synchronization bit-pattern is used for the
separation of information bit-patterns along with weighting of
the frames and filtering of very short dominance phases in
order our algorithm to be robust against noise and false
detection. Also, the crypto key plays a big role towards the
minimization of noise and false detection artifacts because it is
embedded all over the scale factors and it is robust against
significant damages of it. If the file containing the graph
(adjacency matrix) that is used for the creation of the
watermarking key is attacked, then we expect that at least half
of the embedded (in the scale factors) adjacency matrix will
be left intact (assuming that each of its bits is flipped with
probability ½). But even then, we can still show a 3-colouring
(subset of the 3-colouring of the original graph) surviving, in
this way, the attack.

IV. ALGORITHMIC ENGINEERING
The use of algorithms in a real-time system requires several

modifications in order their needs to adjust to the limited
resources of a computer system. Two crucial factors that
should be taken into account are time and space. The delays,
from which the used algorithms suffer, should be decreased
and the memory requirements should be as small as possible.
In this section, we will present the engineering solutions we
gave to these problems in order to make our algorithm
efficient for real-time application. Also, we present several
issues that improve the audio quality.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2740

In order to achieve the first goal, delays reduction, we
should search for the components of the algorithm that are
time consuming and then to see if they can be improved or
not. It can be noticed that the software module, which is
responsible for scale factors extraction from mpeg audio files,
contributes a significant portion to the total delay, which
depends on the file size. However, this delay cannot be
decreased, as it is proportional to the real music time of an
audio file. The module, which is responsible for the
transformation of the watermarking key to a sequence of
given patterns, is proportional to the key length, but it is very
fast. Therefore, it contributes a minor portion to the total delay
that is less than a second.

Another important module is the one that embeds the
watermark to the scale factors of the audio file. The initial
algorithm for watermark embedding in mpeg layers 1 and 2
audio files that was proposed by Dittman et al. [5] consists of
a loop that is used to find out similar patterns with the pattern
that is wanted to be embedded in the scale factors patterns
stream of the original audio file. In each round of this loop the
patterns of the scale factors are processed one by one for the
estimation of the sums of squares difference with the wanted
pattern. In the first round of the loop only patterns, which sum
of squares difference to the wanted pattern is one, will be
changed, in the next round the used tolerance is increased
until the given maximal tolerance or the minimal number of
patterns is reached. This loop was found that delays the
watermarking procedure unexpectedly because it can’t find
the appropriate patterns fast enough. In order to decrease the
delay we tried to find a way to break the loop. The chosen
solution was proved that improves the time duration of the
whole procedure dramatically. The solution we gave is based
on the idea that the patterns with the smallest sum of the
squares difference with the wanted pattern can be found if we
estimate the sum of squares differences of the patterns of all
the given scale factors with the wanted pattern and sort them
in increasing order. Then, the wanted patterns are the patterns
at the beginning of the sorted list that can be picked if the
tolerance parameter is not violated. This solution can be
applied after the counting of wanted pattern occurrences in
scale factors’ patterns sequence for the location of similar
patterns.

In order the watermark embedding module not to consume
much time, we only change the scale factors of the frames that
are enough to embed the watermark once. So, we save time
not only at this module, but as considers the software module
that embeds the changed scale factors in the original audio
file, too. The changed scale factors embedding procedure in
the source audio file is limited only to the embedding of the
changed scale factors frames. As considers the watermark
detection part of our system, it doesn’t need the original audio
file to extract the embedding watermark and it is very fast as
the only consuming part of it is the scale factors extraction
mechanism applied.

Another factor that affects the delay of the system is the
selection of patterns for the representation of binary digits “0”

and “1” and the synchronization bit. The selected patterns
should appear rare in the audio stream. Especially care should
be taken when mp3 audio files are watermarked where scale
factors have variant sizes. An improper selection of patterns in
that case could result in big delay for finding the appropriate
scale factors for modification in order the watermark to be
embedded. For example if the chosen pattern has in its triplet
a number bigger than four and the scale factors have sizes one
or two bits in many consecutive frames it will have as a result
big delay. In order to handle this problem in the mp3 case the
patterns that have been selected are triplets that consist of
numbers close to zero.

 Moreover, the predefined number of frames for the
embedding of a bit’s pattern plays big role in system delay. If
we embed each bit in a small number of frames the system
will be fast but the audio quality will be low because the
changed factors will be concentrated in a small region, if we
choose a big number of frames to embed our bit then we will
face biggest delays because we will have many more scale
factors to process in each step. So, an appropriate trade-off
should be found. After exhaustive testing, we decided that a
good trade-off for fast system execution and acceptable audio
quality in the resulted watermarked audio file is a selection of
5 to 15 frames for the embedding of each bit. Also, we found
out that in the mp3 case we can use less number of frames to
embed each bit than in the other cases.

As concerns the space requirements, we introduce a
mechanism in the scale factors extraction procedure and in the
changed scale factors embedding procedure that permits the
process of audio data in small portions of 9800 bytes in each
step. Thus, we don’t need to preserve big arrays for storing
audio data and other data that are required for the needed
manipulations. With this way we make our system
independent of the memory resources of the system, in which
it is executed, as it needs to use small amounts of memory.

Another important issue is the processing of audio data in
mp3 audio files for watermark embedding and detection. The
problem starts from the fact that audio data of a frame are not
located in the frame as happens in mpeg layers 1 and 2. They
can be in the audio data field of previous frames. The solution
we selected is the loading of audio data in a special buffer and
their processing as a whole. Also, we use a special mechanism
for the specification of the starting and ending byte of each
scale factors region of each frame because the scale factors of
a frame can be spread in many frames and the audio data field
that contains scale factors has a special organization in
granules and channels where Huffman bits intervene between
scale factors areas.

Finally, it should be mentioned the fact that the
watermarking algorithm for mp3 audio files not only
implemented, but, also, designed by our team. It’s the first
compressed-domain watermarking algorithm proposed for
mp3 audio files. In its design and implementation we faced a
lot of problem mainly because of the different encoding it uses
for audio data and scale factors respectively. Furthermore,
another basic problem is owed to the variant nature of scale

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2741

factors size. Scale factors have 0 to 4 bits size. This fact
differentiates mainly the scale factors extraction algorithm and
watermark-embedding algorithm. In the scale factors
extraction phase not only the scale factors should be extracted
but their sizes should be extracted, too. Also, in the watermark
embedding phase when we search for similar patterns in scale
factors pattern stream we should check not only the sum of
squares difference to be as small as possible for audio quality
preservation but, also, we should control the size of scale
factors that are proposed to be changed not to be violated.
This is done using a special control mechanism.

V. EVALUATION
In the context of this algorithm a lot of issues arise. The

first of them is how somebody should choose the appropriate
group of patterns to represent the information bits and the
synchronization bit in order to enhance the security of the
watermark and the inaudibility of watermark embedding.
Basically, there are two rules for this selection that became
evident after experimental evaluation. The first rule states that
patterns, which occur often in the context of scale factors,
should not be selected and the second one that patterns with
larger steps than two among the components of their triple
should be preferred. Also, when multiple keys are inserted
inside the scale factor stream then the used patterns in
different keys should differ as much as possible. Our
algorithm is more secure than others with similar
characteristics because it uses a key with semantic meaning.
Thus, even if somebody guesses correctly the used patterns,
he will not be able to deduce the semantics of the key.

Another important issue is that of robustness. Our algorithm
operates at the compressed domain and not at the time
domain. That is, we embed the watermark bits in the scale
factors regions of the frames of an mp3 audio file that are
special fields inside the audio data stream and not in the
original raw audio data. Therefore, our algorithm is robust
against attacks in audio data. Also, it is robust against local
attacks or even random attacks to the whole region of scale
factors because the watermarking key patterns are distributed
over the whole range of subbands and the key allows its
detection even if a percentage of it has been damaged. Such
kind of attacks is not really a danger because they lead to
audible distortions and damage the audio quality. We should
mention that, as far as it concerns time-domain attacks that are
applied to raw audio data, they require the watermarked mp3
audio file to be first decompressed. But, our algorithm cannot
handle the decoding of the mp3 audio file and the recoding of
it. However, the malicious users do not prefer this kind of
attack, because it leads to a serious loss of quality. This occurs
because in a watermarked mp3 audio file, we have modified
some of the scale factors, which are used for the production of
the real audio data at the decompression phase. This
modification precludes decompression without affecting the
sound quality. So in this sense, we can claim that our
algorithm is robust against such attacks. Another kind of

attack is the creation of a mono channel from the two stereo
channels. This attack is handled efficiently because the
patterns in the time axis survive this attack even if the patterns
over the subband axis are damaged. Finally, in the context of
robustness we should mention that our algorithm could be
used both for authentication and copyright-protection. This is
because of the nature of our watermarking key, which is a
graph with a known 3-colouring, that can survive against
inversion attacks (a malicious user subtracts his watermark
from the original marked by the true owner) because it is
spread all over the scale factors range and the colouring of
even a small part of it can be used by the legal owner for
proving ownership of the file that contains it.

Our algorithm has been tested in laboratory conditions
where has been proved that the watermark embedding inserts
a slight distortion but not a strong one. It should be mentioned
that the distortion is more obvious in the case of spoken
poems when there is no background sound. Our algorithm can
be used for online distribution of audio files and in CD-
ROMS and DVD from music industry for authentication and
copy-protection purposes because it needs only small transfer
rates for online use and the used calculations have low
complexity because they are just additions or subtractions on
integers or bytes. Also, the key’s nature makes it essential for
copyright protection.

The audio files that have been used in our experiments are:
• Youthinasia: Disco music (44.1 kHz, 128 kbps),
• Dream: Male ethnic singing with native instruments

(44.1 kHz, 128 kbps),
• Ipomoni: Greek folk music (44.1 kHz, 128 kbps),
• Blue: Greek pop music (44.1 kHz, 96 kbps)

The following experiments have been conducted in a
Pentium 4 at 3.4 GHz. Repeating these time tests in PCs with
different processor speeds from 733 MHz to 3.1 GHz it was
observed that the estimated times (embedding-detection time)
are proportional to the raw processor speed. All the times that
have been presented in the following experiments are in the
same range as the real music time on the described platform.
Furthermore, we should mention that these times refer to the
users of our algorithm that want to make watermark
embedding and detection and not to the audience of
watermarked audio files who do not face any artifacts or delay
hearing the watermarked audio files.

Table I shows that the perceived quality of watermarked

files is approximately the same as the quality loss produced by
MPEG-compression. Most results are in the range of two,
which means a difference like between two stereo-sets.

TABLE I
AVERAGED RESULTS OF TEST

Example MPEG 1 wm

Youthinasia 1.5 1.6
Dream 1.5 1.6

Ipomoni 1.5 1.6
Blue 1.5 1.6

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:8, 2008

2742

Table II gives some test results of the time needed in our

system to embed a watermark in mp3 audio files. Again the
scale factors extraction component of the system is the most
time consuming. We observe that less bit rate leads to more
frames, which results in the encoding of more audio data.
That’s way the Blue audio file has more real music time than
Ipomoni while it has less size.

Another important part of our algorithm is the watermark

detection mechanism that suffers from the significant time
needed to extract the scale factors from the original file. Table
III gives some time results of the detection procedure along
with the percentage of successful watermark detection.

Except from the above basic time tests, we used Dream
audio file to study the impact of the use of different
watermarking keys in the same audio file on watermark
embedding and detection time (Table IV).

In Table IV we can observe that using different one-

character keys (9-bit watermarks-8 bits the character + 1 the
synchronization bit) there is a slight difference in watermark
detection time, while using a two-characters key (17-bit
watermarks) the detection time becomes bigger than the
embedding time. These results are logical if we have in mind
the embedding algorithm that searches for similar patterns to
use them for watermark embedding. Therefore, it is logical
different keys to have different probabilities of finding similar
patterns in the audio stream. The second result in which the
use of a two-characters key results in more detection time than
embedding time comes to strengthen the previous conjecture.
This implies that the selection of the watermarking key is
more crucial for watermark embedding/detection time than the
size of the key.

VI. CONCLUSION
The contribution of the presented watermarking scheme is

two-fold: (i) It adopts and integrates in the audio
watermarking concept ideas, which applicability and
efficiency is well-known in cryptography giving to the users
the enhanced capability their ownership of the audio file to be
accomplished by showing that the legal owner knows a hard
to compute property of the watermarking string. (ii) It exploits
efficiently the speed and the memory of the PC system where
it runs offering to the industrial user the capability of
watermark embedding and detection in time immediately
comparable to the real music time of the original audio file,
while the end user/audience does not face any artifacts or
delays hearing the watermarked audio file.

REFERENCES
[1] W. Bender, D. Gruhl, N. Morimoto and A. Lu, “Techniques for data

hiding,” IBM Systems Journal, Vol. 35, No. 3&4, pp. 313-336, 1996.
[2] L. Boney, A. Tewfic and K. Hamdy, “Digital watermarks for audio

signals,” IEEE International Conference on Multimedia Computing and
Systems, pp. 473-480, 1996.

[3] M. Arnold and S. Kanka, “MP3 robust Audio Watermarking,” DFG
VIIDII Watermarking Workshop 1999, Erlangen, Germany, 1999.

[4] V. Basia, I. Pitas and N. Nikolaidis, “Robust Audio Watermarking in the
time-domain,” IEEE Transactions on Multimedia, Vol. 3, No. 2, pp.
232-241, June 2001.

[5] J. Dittmann, M. Steinebach and R. Steinmetz, “Digital Watermarking for
MPEG Audio Layer 2,” Multimedia and Security Workshop at ACM
Multimedia, October 1999.

[6] L. Qiao and K. Nahrstedt, “Non-Invertible Watermarking Methods for
MPEG Video and Audio,” Multimedia and Security Workshop at ACM
Multimedia, pp. 93-98, September 1998.

[7] F. Petitcolas, “MP3Stego,” Computer Laboratory, Cambridge, 1998.
[8] C.H. Papadimitriou, Computational Complexity. Addison-Wesley, 1994.
[9] M. Garey, and D. Johnson, Computers and Intractability, a guide to the

theory of NP-completeness. W.H. Freeman and Company, 1979.
[10] P. Cheeseman, B. Kanefsky, and W. Taylor, “Where the really hard

problems are,” International Joint Conference on Artificial Intelligence,
Vol. 1, pp. 331-337, 1991.

[11] B. Hayes, “Computing Science: Can't Get No Satisfaction,” American
Scientist, March-April 1997.

[12] S. Kirkpatrick and B. Selman, “Critical behavior in the satisfiability of
random Boolean expressions,” Science 264, pp 1297-1301, 1994.

[13] S. Armeni, D. Christodoulakis I. Kostopoulos, Y.C. Stamatiou and M.
Xenos, “Proving copyright ownership using hard instances of
computationally intractable problems,” 8th Panhellenic Conference on
Informatics, Nicosia, Cyprus, November 2001.

[14] D. K. Koukopoulos, Y. C. Stamatiou, “A Compressed-Domain
Watermarking Algorithm for Mpeg Layer 3,” Multimedia and Security
Workshop at ACM Multimedia, pp. 7-10, October 1999.

[15] J. Seok, J. Hong and J. Kim, “A Novel Audio Watermarking Algorithm
for Copyright Protection of Digital Audio,” ETRI Journal, Vol. 24, No.
3, pp. 181-189, June 2002.

TABLE II
WATERMARK EMBEDDING TIME TESTS

File Name-Size Embedding time (sec) Real music time (sec)

Youthinasia-103Kb 6 6
Dream-1.3Mb 55 78

Ipomoni-2.9Mb 128 178
Blue-2.2Mb 92 180

TABLE III
WATERMARK DETECTION TIME TESTS

File Name-Size Detection time (sec) Detection (%)

Youthinasia-103Kb 4.5 100
Dream-1.3Mb 54 100

Ipomoni-2.9Mb 108 100
Blue-2.2Mb 90 100

TABLE IV
DIFFERENT WATERMARKING KEYS TIME TESTS

Dream Embedding time (sec) Detection time (sec)

1-char watermark (w) 57 54
1-char watermark (p) 56 54

2-char watermark (re) 53 54

