
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

413

Experimental Parallel Architecture for Rendering 3D
Model into MPEG-4 Format

Ajay Joshi, and Surya Ismail

Abstract—This paper will present the initial findings of a

research into distributed computer rendering. The goal of the
research is to create a distributed computer system capable of
rendering a 3D model into an MPEG-4 stream. This paper outlines
the initial design, software architecture and hardware setup for the
system.

Distributed computing means designing and implementing
programs that run on two or more interconnected computing systems.
Distributed computing is often used to speed up the rendering of
graphical imaging. Distributed computing systems are used to
generate images for movies, games and simulations.

A topic of interest is the application of distributed computing to
the MPEG-4 standard. During the course of the research, a
distributed system will be created that can render a 3D model into an
MPEG-4 stream. It is expected that applying distributed computing
principals will speed up rendering, thus improving the usefulness and
efficiency of the MPEG-4 standard

Keywords—Cluster, parallel architecture, rendering, MPEG-4.

I. INTRODUCTION
HE goal of this project is to create a working cluster of
computers to perform distributed parallel rendering of an

interactive 3D model. The system is designed to be used as the
basis for more advanced research in the future. For example,
the system could be used to study new distributed rendering
algorithms or to measure the efficiency of different high
performance techniques.

The focus of this stage of the research is on building a
stable, working system in a reasonable amount of time, for a
reasonable amount of money. Therefore, performance and
system optimization are not a high priority.

The system will use off-the-shelf, low to mid end, readily
available computers. Linux, an open source operating system
will be used. This choice is actually beneficial as Linux has a
long history of being used for distributed rendering. Many
modern rendering farms are built around Linux based clusters.

Open source applications and libraries will be used. As
much as possible, exiting libraries and source code will be
used for parallelization and rendering. The system will be
based on open standards and established protocols. These
choices will help keep the cost down and will allow the
project to move faster by legally taking advantage of existing
work.

Ajay Joshi is with the University of the West Indies, St. Augustine campus,
Trinidad and Tobago (phone: 868-662-2002; e-mail: ajoshi@ eng.uwi.tt).

Surya Ismail was pursuing Masters degree at Multimedia University,
Persiaran Cyberjaya, Malaysia.

The project proposes two additions to a standard distributed
rendering system, interactivity and output into an MPEG-4
stream. These features aim to add functionality and usability
to the system.

Interactivity will allow the model to evolve based on
external input. The input can take many forms, including
interaction through input devices, input from sensors and
input from data files. Interactivity will allow the system to
function as more than a static visualization tool. It can
potentially be used for applications such as simulation,
modeling and game-playing.

MPEG-4 is a standard from the Moving Pictures Experts
Group [1]. It is gaining industry support. For example, it is the
basis of the popular DivX player. The standard focuses on
adding new features to existing video and audio streaming
capabilities. In incorporates elements from Apple QuickTime
and VRML. It adds support for things positional sound and
3D objects.

Many devices, including PDAs and mobile phones, can or
will support viewing of MPEG-4 streams. Adding support for
MPEG-4 means that any of these devices can potentially view
the output of the distributed rendering system.

II. PHYSICAL SETUP OF CLUSTER
At the hardware level, the system is configured as a small

cluster. Readily available computers and components were
used. It is expected that as more resources become available,
more computers and better quality components can be added.

The computers are connected to a switch at 100Mbps, or
fast-ethernet, connection. The switch is capable of connecting
four computers. This is acceptable for a small cluster. If
resources become available for a large cluster, the switch will
have to be upgraded.

For this initial phase, the cluster will consist of four
computers, two mid-range Pentium 4 machines, and two mid-
range Pentium 3 machines. These computers can be deployed
in a variety of manners depending on the needs of the
software architecture of the system. One of the most common
setups would be to use one of the Pentium 4 machines as a
master with the other three as slaves.

The current setup is probably not good enough for
interactive rendering of high-polygon models. However, it
should be good enough to demonstrate distributed rendering
of medium sized models at a reasonable frame-rate. This
should be sufficient to meet the goals of this project.

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

414

III. SOFTWARE SETUP
Given the hardware setup, there are many software

approaches that can be tried. These approaches differ in the
level of implementation effort, performance profiles and
effectiveness.

These software approaches share some commonalities. All
the software systems are built with the assumption that the 3D
model is stored in a Blender file. Blender [2] is an open source
application for 3D modeling, similar to 3D StudioMax and
Maya. It is a mature program with a rich feature set, strong
API support and solid documentation. There are many Blender
files, with a variety of different types of models, readily
available for testing.

All the proposed software systems are expected to
encompass some form of interactivity and generate output in
the form of an MPEG-4 stream.

A. Parallelization through Animation Frames
Parallelization through animation frames is achieved

through the use of an OpenMosix [3] cluster. OpenMosix is an
application that automatically parallelizes applications based
on processes. Suppose a rendering application is run on the
cluster. The application is multi-threaded and spawns multiple
processes. OpenMosix will assign the processes to different
machines in the cluster. OpenMosix performs load balancing
to make sure that each machine is used optimally.

The approach uses Blender’s existing animation rendering
engine. The engine renders blender files into animation
frames. The engine is multi-threaded and is ideal for
parallelization on an OpenMosix cluster [4].

The idea is to schedule the rendering engine to run at fixed
intervals. At the beginning of each interval, any input from
user interaction is captured. The appropriate changes are made
the animation sequence. Then the rendering engine is called to
generate the sequence. The rendering engine spawns processes
which in turn are fed to OpenMosix. OpenMosix assigns these
processes to the various machines in the cluster. At the end of
the interval, all the frames are collected and fed to an MPEG-4
component to be turned into an MPEG-4 stream. (See “Fig. 1.
Example of OpenMosix cluster”)

Fig. 1 Example of OpenMosix cluster

This approach is among the easiest to implement because it

requires no changes to the rendering engine to allow it to
work. However, there is a reasonably high communication
overhead for using an OpenMosix cluster. Current
implementations show that this form of parallelization only
provides performance benefits for animation sequences of
more than 1000 frames.

With a frame rate of 50 to 60 frames per second (standard
for interactive games), this means that 15 to 20 seconds worth
of animation need to be rendered at one time. This means that
the system can only respond to input 3 or 4 times a minute.
This is acceptable for applications with low interactivity, but
unacceptable user interactivity. The frame by frame approach
also limits the system’s ability to utilize the full potential of
the MPEG-4 standard.

B. Parallelized Rendering Library
This software approach works by replacing the underlying

3D rendering library with a parallelized version. This
technique works because a large number of applications do
not use their own rendering engines. Instead they rely on
generic rendering libraries like DirectX or OpenGL.

OpenGL is of primary interest to this project because it is
an open standard with open source implementations. It has
strong industry support with many popular graphics cards
supporting it in hardware. The Blender GUI and rendering
engine utilize OpenGL.

The WireGL project [5], at the Stanford University
Computer Graphics Lab, is a good example of a parallelized
rendering library. WireGL implements the exact same API
calls as OpenGL. Therefore any program designed for
OpenGL can run in a distributed environment using WireGL.

WireGL uses a sort first parallelization algorithm along
with some other optimizations for memory and band-width
management. It was initially designed for tiled display
systems, so essentially, it divides the work among the various
machines in the cluster by partitioning the camera space into
tiles. Each machine is assigned a tile to render. All the tiles are
then collected and reassembled. For this project, as a final
step, the reassembled tiles are built into an MPEG-4 stream.
(See “Fig. 2. Example of WireGL cluster”).

Fig. 2 Example of WireGL cluster

When tested on a medium sized cluster (16-32 nodes),

WireGL was able to achieve good frame rates, even for high-
interactivity applications. One of the test applications was a
high-interactivity game. However, this approach still does not
fully utilize the capabilities of MPEG-4.

C. Custom Rendering Engine
A custom rendering engine is the end goal of this project.

The basic structure of the system will involve a PVM driven
Linux based cluster. The interactivity is driven by Python
scripts embedded into the Blender files.

Parallel Virtual Machine (PVM) [6] is a software package
that permits a heterogeneous collection of networked
computers to be used as a single large parallel computer. At

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:2, 2009

415

its’ heart, it is a C API that can be used to simplify distributed
computing.

Python [7] is an interpreted, interactive, object-oriented
programming language. Python’s interpreted nature makes it a
good match for Blender. Blender provides a growing
collection of Python APIs for a variety of purposes. Python
scripts are available for controlling animation, textures and
most other aspects of the 3D model. There is even an API for
game logic.

The goals of the custom rendering engine should be
consistent with the goals of the project. Therefore, the focus
here is on creating a stable source code base that can be used
for developing and testing new rendering algorithms (See
“Fig. 3. Architecture of custom rendering engine”).

Fig. 3 Architecture of custom rendering engine

The proposed architecture will be based on Multi
Instruction Multi Data parallelization with each node running
its own set of data. A polygon based rendering approach will
be used as opposed to ray tracing.

At this point, it is planned that a rendering library approach
similar to WireGL will be used. The Mesa [8] implementation
of OpenGL will be used as the initial code base. Mesa is open
source, mature and well documented and is therefore an ideal
starting point.

Unlike WireGL, the system will not use camera space
partitioning. A sort-middle algorithm is proposed for the
initial implementation. Since the focus is on rendering and not
on network management, much of the 3D modeling data will
be stored on each individual machine, distributed before
rendering begins. This will reduce network traffic. However
this approach assumes that each machine has a reasonable
amount of memory and the models themselves are not too
large.

One interesting aspect of this setup will be experimenting
with how to best utilize the newer features of the MPEG-4
standard, mainly ability to specify 3D-objects. It will be
possible to study the balance between performing work on the
cluster and on the output device. It may be possible to attempt
different divisions of labor for different output devices.

IV. CONCLUSION
This stage represents a good initial step in a long term

research project to study distributed rendering. Even in this
early stage, many things can be learned about new protocols
(MPEG-4) and techniques for (OpenMosix, WireGL).

It is hoped that this initial design will form a strong basis
for future, original, research into new distributed rendering
algorithms and techniques. Along with the hardware and
software setup, the process of designing and implementing
this stage will deepen the researchers’ understanding of
distributed rendering.

REFERENCES
[1] http://www.chiariglione.org/mpeg/standards/mpeg-4/mpeg-4.htm
[2] http://www.blender.org
[3] http://openmosix.sourceforge.net/
[4] http://spot.river-styx.com/viewarticle.php?id=12
[5] G. Humphreys, I. Buck, M. Eldridge, and P. Hanrahan, “Distributed

rendering for scalable displays”, SC2000: High Performance
Networking and Computing, ACM Press and IEEE Computer Society
Press, Dallas Convention Center, Dallas, TX, USA, November 4–10
2000, pp. 60-60.

[6] http://www.csm.ornl.gov/pvm/pvm_home.html
[7] http://www.python.org
[8] http://www.mesa3d.org
[9] Rudrajit Samanta, Jiannan Zheng, Thomas Funkhouser, Kai Li, and

Jaswinder Pal Singh “Load Balancing for Multi Projector Rendering
Systems”,SIGGRAPH/Eurographics Workshop on Graphics Hardware,
Los Angelos, California - August, 1999.

[10] A. Bilas, J. Fritts, and J. P. Singh. “Real-Time Parallel MPEG-2
Decoding in Software.”InProceedings of InternationalParallel
Processing Symposium, 1997.

[11] Y.Chen, C.Dubnicki, S.Damianakis, A.Bilas, and K. Li. “UTLB: A
Mechanism for Translations on Network Interface.” In Proceedings of
ACM Architectural Support for Programming Languages and Operating
Systems (ASPLOS-VIII),pp193-204, October 1998.

[12] T.W.Crockett. “An Introduction to Parallel Rendering.” Parallel
Computing,Vol 23,pp819-843, 1997.

[13] S. Upstill, The Renderman Companion, Addison-Wesley, Reading,
MA, 1989.

[14] Bengt-Olaf Schneider, Parallel Rendering on PC Workstations,
International Conference on Parallel and Distributed Processing
Techniques and Applications (PDTA98), Las Vegas, NV, 1998.

[15] M. Berekovic, P. Pirsch, "An Array Processor Architecture with Parallel
Data Cache for Image Rendering and Compositing," cgi, p. 411,
Computer Graphics International 1998 (CGI'98), 1998.

Ajay Joshi (M’04) became a Member (M) of IEEE in 2004. Author holds
a Ph.D. with specialization in advanced computer architecture, from the
Institute of Science, University of Mumbai, India in 1996.

He is currently with the department of Electrical and Cmoputer
engineering, The University of the West Indies, Trinidad and Tobago. Earlier
he has worked with the Multimedia University, Malaysia as a lecturer, prior to
this he was head of technology at the IBM advanced training center at Nasik.
His previous publications are in the field of embedded systems hardware
related to memory and parallel processing.

Dr. Joshi is a member of IEEE and acts as a member of the technical
committee for IADAT conferences. He has acted as a session chair at the
IADAT conference at Spain.

