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Filteristic Soft Lattice Implication Algebras
Yi Liu, Yang Xu

Abstract—Applying the idea of soft set theory to lattice impli-
cation algebras, the novel concept of (implicative) filteristic soft
lattice implication algebras which related to (implicative) filter(for
short, (IF -)F -soft lattice implication algebras) are introduced. Basic
properties of (IF -)F -soft lattice implication algebras are derived.
Two kinds of fuzzy filters (i.e.(∈,∈ ∨qk)((∈,∈ ∨ qk))-fuzzy (im-
plicative) filter) of L are introduced, which are generalizations of
fuzzy (implicative) filters. Some characterizations for a soft set to be
a (IF -)F -soft lattice implication algebra are provided. Analogously,
this idea can be used in other types of filteristic lattice implication
algebras (such as fantastic (positive implicative) filteristic soft lattice
implication algebras).

Keywords—Soft set; (implicative) filteristic lattice implication al-
gebras; fuzzy (implicative) filters; ((∈,∈ ∨qk)) (∈,∈ ∨ qk)-fuzzy
(implicative) filters.

I. INTRODUCTION

I
N In order to research the many-valued logical system

whose propositional value is given in a lattice, in 1993,

Xu[1] firstly established the lattice implication algebras by

combining lattice and implication algebras, and investigated

many useful structures[2], [3], [4]. This logical algebra has

been extensively investigated by several researchers, and many

elegant results are obtained, collected in the monograph[4].

Because of various uncertainties typical for complicated

problems in economics, engineering and environment, they

can’t be successfully solved by existing theories such as theory

of (intuitionistic) fuzzy sets, theory of vague sets, theory

of interval mathematics, and theory of rough sets. However,

all of these theories have their own difficulties which are

pointed out in [12]. Molodtsov[12] suggested that one reason

for these difficulties may be due to the inadequacy of the

parametrization tool of the theory. To overcome these difficul-

ties, Molodtsov(1999) introduced a novel concept called soft

sets as a new mathematical tools for dealing with uncertainties.

The soft set theory is free from many difficulties that has been

troubled the usual theoretical approaches. Molodtsov pointed

out several directions for the applications of soft sets. Research

works on soft sets are very active and progressing rapidly

in these years. Maji[16] discussed the application of soft set

theory to a decision-making problems. They also investigated

some operations on the theory of soft sets. In 2001, Maji[14]et

al. investigated the fuzzification of a soft set and obtained

many useful results on fuzzy soft set. Aktas and Cagman[12]

related soft sets to groups, they defined soft groups, derive

some basic properties, and showed that soft groups extended

fuzzy groups. Jun[18], [19] applied the soft set theory to
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the BCK-algebras, investigated soft BCK-subalgebras and

soft ideals, introduced the notion of ∈-soft set and q-soft

set, and gave characterizations for subalgebras and ideals.

Furthermore, Feng et al.[17] applied soft set theory to the study

of semirings and initiated the notion called soft semirings.

Zhan,et al.[22] applied soft set to BL-algebras, initiated the

notion (implicative)filteristic soft BL-algebras.

The concept of fuzzy set was introduced by Zadeh(1965)[5].

Since then this idea has been applied to other algebraic

structures such as groups, semigroups, rings, modules, vector

spaces and topologies. Some scholars[8], [20], [21] applied

this fuzzification to the filter in lattice implication algebras,

too. They further to introduce relative fuzzy filter such as

fuzzy (positive) implicative filter, fuzzy fantastic filter and

investigated some properties. The idea of fuzzy point and

’belongingness’ and ’quasi-coincidence’ with a fuzzy set were

given by Pu et al.[6]. A new type of fuzzy subgroup (viz

(∈,∈ ∨q)-fuzzy subgroup) was introduced in[9]. In fact, (∈,∈
∨q)-fuzzy subgroup is an important and useful generalization

of Rosenfeld’s fuzzy subgroup. The idea of fuzzy point and

’belongingness’ and ’quasi-coincidence’ with a fuzzy set have

been applied some important algebraic system[10], [11]. Liu

[7], [8] investigate the interval-valued (∈,∈ ∨q)-fuzzy lattice

implication subalgebras and fuzzy filters, respctively.

The aim of this paper is to apply the idea of soft set

theory to lattice implication algebras, and introduce the (im-

plicative) filteristic soft lattice implication algebras which

related to (implicative) filter(for short,(IF -) F - soft lattice

implication algebras). Basic properties of (IF -)F -soft lattice

implication algebras are investigated. We introduce the notion

of (∈,∈ ∨qk)((∈,∈ ∨ qk))-fuzzy (implicative)filters, which

are generalizations of fuzzy (implicative) filter. we provide

characterizations for a soft set to be an (IF -)F -soft lattice

implication algebra. Analogously, this idea can be used in

other types lattice implication algebras such as fantastic filter-

istic lattice implication algebras, positive implicative filteristic

soft lattice implication algebras. We hope that it will be of

great use to provide theoretical foundation to design intelligent

information processing systems.

II. BASIC RESULTS ON LATTICE IMPLICATION ALGEBRAS

Definition 2.1: [1] Let (L,∨,∧, O, I) be a bounded lattice

with an order-reversing involution ′, the greatest element I and

the smallest element O, and

→: L × L −→ L

be a mapping. L = (L,∨,∧,′ ,→, O, I) is called a lattice

implication algebra if the following conditions hold for any

x, y, z ∈ L:

(I1) x → (y → z) = y → (x → z),
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(I2) x → x = I ,

(I3) x → y = y
′

→ x
′

,

(I4) x → y = y → x = I implies x = y,

(I5) (x → y) → y = (y → x) → x,

(l1) (x ∨ y) → z = (x → z) ∧ (y → z),
(l2) (x ∧ y) → z = (x → z) ∨ (y → z).
In this paper, denote L as a lattice implication

algebra([4])(L,∨,∧,′ ,→, O, I).
Definition 2.2: [4] A non-empty subset F of a lattice im-

plication algebra L is called a filter of L if it satisfies

(F1) I ∈ F .

(F2) (∀x ∈ F )(∀y ∈ L)(x → y ∈ F ⇒ y ∈ F ).
Definition 2.3: [4] A non-empty subset F of a lattice im-

plication algebra L is called an implicative filter of L if it

satisfies

(F1) I ∈ F .

(F2) (∀x, y, z ∈ L)(x → (y → z ∈ F and x → y ∈ F ⇒
x → z ∈ F ).

A fuzzy subset of a nonempty set X is defined as a mapping

from X to [0, 1], where [0, 1] is the usual interval of real

numbers.

Definition 2.4: [2] A fuzzy subset µ of L is said to be a

fuzzy filter if, for any x, y ∈ L,

(1) µ(I) ≥ µ(x),
(2) µ(y) ≥ min{µ(x), µ(x → y)}.

Definition 2.5: [2] A fuzzy subset µ of L is said to be a

fuzzy implicative filter if, for any x, y ∈ L,

(1) µ(I) ≥ µ(x),
(2) µ(x → z) ≥ min{µ(x → (y → z)), µ(x → y)}.

A fuzzy set µ of a lattice implication algebra L of the

form: when y = x,µ(y) = t ∈ (0, 1]; in otherwise, µ(t) = 0.

This fuzzy set is said to be a fuzzy point with support x and

value t and is denoted by xt.

For a fuzzy point xt and a fuzzy set µ in L , Pu and Liu[6]

gave meaning to the symbol xtθµ, where θ ∈ {∈, q,∈ ∨q,∈
∧q}.

For a fuzzy point xt is said to be belong to (resp. be quasi-

coincident with) a fuzzy set A, written as xt ∈ µ (resp. xtqµ)

if µ(x) ≥ t (resp. µ(x) + t > 1). If xt ∈ µ or (resp. and)

xtqµ, then we write xt ∈ ∨qµ. The symbol ∈ ∨q means ∈ ∨q

doesn’t hold.

III. (IF-) F-SOFT LATTICE IMPLICATION ALGEBRAS

Molodtsov [12] defined the soft set in the following way:

Let U be an initial universe set and E be a set of parameters.

Let P(U) denote the power set of U and A ⊂ E.

Definition 3.1: [12] A pair (F, A) is called a soft set over

U , where F is a mapping F : A → P(U).
In other words, a soft set over U is a parameterized family

of subsets of the universe U . For any x ∈ A, F (x) may be

considered as the set of x-approximate elements of the soft

set (F, A).
In 2003, Maji[14] defined operations and, ∩, or ∪ which

were later termed as basic intersection, basic union, and union

by D. Pei[24]. We are taking the following definitions from

[24].

Definition 3.2: Let (F, A) and (G,B) be any two soft sets

over a lattice implication algebras L .

(1)The basic intersection of two soft sets (F, A) and (G,B)
is defined as the soft set (H, C) = (F, A) ∧ (G,B), where

C = A×B and H(a, b) = F (a)∩G(b) for any (a, b) ∈ A×B.

(2)The intersection of soft sets (F, A) and (G,B) over

a common universe U is defined as the soft set (H, C) =
(F, A)∩ (G,B), where C = A∩B, and H(c) = F (c)∩G(c)
for any c ∈ C.

(3) The union (H, C) of two soft sets (F, A) and (G,B)
is defined as the soft set (H, C) = (F, A) ∪ (G,B), where

C = A∪B and H(c) = F (c) when c ∈ A \B; H(c) = G(c)
when c ∈ B \ A; H(c) = F (c) ∪ G(c) when c ∈ A ∩ B.

Definition 3.3: Let (F, A) be a nonempty soft set over a

lattice implication algebras L = (L,∨,∧,′ ,→, O, I). Then

(1) (F, A) is a called a F -soft lattice implication algebra

if F (t) is a filter of L for any t ∈ A. For our convenience,

the empty set ∅ is regarded as a filter of L .

(2) (F, A) is a called a IF -soft lattice implication algebra

if F (t) is an implicative filter of L for any t ∈ A. For our

convenience, the empty set ∅ is regarded as an implicative

filter of L .

Example 3.1: Let L = {O, a, b, c, d, I}, the Hasse diagram

of L and its implication operator → and negation operator ′ be

defined in EXAMPLE 2.1.4 in [4] Then L = (L,∨,∧,′ ,→
, O, I) is a lattice implication algebra.

(1) Let (F, A) be a soft set over L , where A = {I, a, b}
and the set-valued function F : A → P(L) defined by F (t) =
{x ∈ L|x∨t = I}. Then F (I) = L, F (a) = {I, b, c}, F (b) =
{I, a} are all filters of L . Therefore (F, A) is a F -soft lattice

implication algebra over L .

(2) Let (F, A) be a soft set over L , where A = {c, d} and

F : A → P(L) the set-valued function defined by F (t) =
{y ∈ L |t → y ∈ {a, b}}, then F (c) = {O, a, d}, F (d) =
{O, c} aren’t filters of L . Therefore (F, A) is not a F-soft

lattice implication algebra of L .

(3) Let (F, A) be a soft set over L , where A = {c, d} and

F : A → P(L) the set-valued function defined by F (t) =
{y ∈ L |y → t ∈ {a, c, d}}, then F (c) = {a, I}, F (d) =
{b, c, I} are filters of L . Therefore (F, A) is a F-soft lattice

implication algebra of L .

Example 3.2: Let L = {O, a, b, I}, its implication opera-

tor → and negation operator ′ be defined as Table 2. Then

L = (L,∨,∧,′ ,→, O, I) is a lattice implication algebra.

Let (F, A) be a soft set over L , where A = (0, 1] and

F : A → P(L) the set-valued function defined by F (t) = L

when t ∈ (0, 0.5]; F (t) = {I, a} when t ∈ (0.5, 0.9]; F (t) =
∅ when t ∈ (0.9, 1].

Then F (t) is an implicative filter of L for t ∈ A. Therefore,

(F, A) is an IF -soft lattice implication algebra over L .

Theorem 3.1: Let (F, A) and (G,B) be two F -soft lattice

implication algebras over L , then (F, A) ∩ (G,B)is also a

F -soft lattice implication algebra over L if A ∩ B 6= ∅.

Proof: Let (F, A) ∩ (G,B) = (H, C), where C = A ∩
B 6= ∅ and H(c) = F (c)∩G(c) for any c ∈ C. We have F (c)
and G(c) are two filters of L , hence H(c) = F (c) ∩ G(c) is

a filter of L or H(c) = ∅. That is, (H, C) = (F, A)∩ (G,B)
is a F -soft lattice implication algebra over L .

Theorem 3.2: Let (F, A) and (G,B) be two F -soft lattice

implication algebras over L , then (F, A) ∪ (G,B)is also a
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F -soft lattice implication algebra over L if A ∩ B = ∅.

Proof: Let (F, A) ∪ (G,B) = (H, C) and A ∩ B = ∅,

where C = A∩B = ∅. We have c ∈ A\B or c ∈ B\A for any

c ∈ C. If c ∈ A\B, then H(c) = F (c), it follows that H(c)
is a F -soft lattice implication algebra over L . Similarly, we

have H(c) is a F -soft lattice implication algebra over L for

any c ∈ B\A. Therefore H(c) is a F -soft lattice implication

algebra over L . That is (H, C) is a F -soft lattice implication

algebra over L .

Theorem 3.3: Let (F, A) and (G,B) be two F -soft lattice

implication algebras over L . Then (F, A) ∧ (G,B) is also a

F -soft lattice implication algebra over L .

Proof: Let (H, C) = (F, A)∧ (G,B), where C = A×B

and H(x1, x2) = F (x1) ∩ F (x2), (x1, x2) ∈ A × B. Now,

F (x1) and F (x2) are two filters of L , so F (x1) ∩ G(x2) is

also a filter of L . Hence (H, C) is a F -soft lattice implication

algebra over L .

Definition 3.4: Let (F, A) be a F -soft lattice implication

algebra over L .

(1) (F, A) is called the trivial F -soft lattice implication

algebra over L if F (x) = {I} for any x ∈ A.

(2) (F, A) is called the whole F -soft lattice implication

algebra over L if F (x) = L for any x ∈ A.

Example 3.3: In Example 3.1, let (F, A) be a soft set over

L = (L,∨,∧,′ ,→, O, I).
(1) A = {I} and F : A → P(L) the set-valued function

defined by F (x) = {y ∈ L|x ≤ y}, then F (I) = {I} is a

filter of L . Hence (F, A) is a trivial F -soft lattice implication

algebra over L .

(2) A = {I} and F : A → P(L) the set-valued function

defined by F (x) = {y ∈ L|x ∨ y = I}, then F (I) = L is a

filter of L . Hence (F, A) is a whole F -soft lattice implication

algebra over L .

Let L1 = (L1,∨,∧,′ ,→, O, I),L2 = (L2,∨,∧,′ ,→
, O, I) be two lattice implication algebras and f : L1 → L2 a

mapping of lattice implication algebras. If (F1, A) and (F2, B)
are soft set over L1 and L2, respectively. Then (f(F1), A)
is a soft set over L2, where f(F1) : A → P(L2) defined by

f(F1)(x) = f(F (x)) for any x ∈ A. And (f−1(F2), B) is a

soft set over L1, where f−1(F2) : B → P(L1) is defined by

f−1(F2)(y) = f−1(F2(y)) for any y ∈ B.

Theorem 3.4: Let L1, L2 be lattice implication algebras

and f : L1 → L2 be an lattice implication homomorphism.

If (F2, B) is a F -soft lattice implication algebra over L2, then

(f−1(F2), B) is a F -soft lattice implication algebra over L1.

Proof: Since (F2, B) is a F -soft lattice implication

algebra over L2, then F2(y) is a filter for any y ∈ B

and so f(I) = I∗ ∈ F2(y), where I and I∗ are the

greatest elements of L1 and L2, respectively. It follows that

I = f−1(I∗) ∈ f−1(F2(y)).
If x1, x1 → y1 ∈ f−1(F2)(y) for any y ∈ B, then

f(x1), f(x1 → y1) ∈ F2(y). Since F2(y) is a filter of L2 and

f is a lattice implication homomorphism, we have f(y1) ∈
F2(y), that is, y1 ∈ f−1(F2)(y). Therefore, f−1(F2)(y) is a

filter of L1 and so (f−1(F2), B) is a F -soft lattice implication

algebra over L1.

Theorem 3.5: Let f : L1 → L2 be an lattice implication

homomorphism and (F, A) and (G,B) are F -soft lattice

implication algebras over L1 and L2, respectively.

(1) If F (x) = D −Ker(f) for any x ∈ A, then (f(F ), A)
is a trivial F -soft lattice implication algebra over L2.

(2) If f is onto and (F, A) is whole, then (f(F ), A) is a

whole F -soft lattice implication algebra over L2.

(3) If G(y) = F (L1) for any y ∈ B, then (f−1(G), B) is

F -soft lattice implication algebra over L1.

(4) If f is injective and (G,B) is trivial, then (f−1(G), B)
is a trivial F -soft lattice implication algebra over L1.

Proof: (1) Assume that F (x) = D − Ker(f) for any

x ∈ A, then f(F )(x) = f(F (x)) = {I2} for any x ∈ A,

where I2 is the greatest element of L2. Obviously, f(F (x))
is a filter of L for any x ∈ A, that is (f(F ), A) is a trivial

F -soft lattice implication algebra over L2.

(2) Assume that f is onto and (F, A) is whole, then

F (x) = L1 and f(L1) = L2for any x ∈ A and so

f(F )(x) = f(F (x)) = L2. Obviously, f(F )(x) = L2 is

a filter of L2 for any x ∈ A, that is (f(F ), A) is a whole

F -soft lattice implication algebra over L2.

(3) Suppose that G(y) = f(L1) for any y ∈ B. Then

f−1(G)(y) = f−1(G(y)) = f−1(f(L1))L1 for any y ∈ B.

Hence (f−1(G), B) is F -soft lattice implication algebra over

L1.

(4) Let f is injective and (G,B) is trivial, then G(y) = I

for any y ∈ B and so f−1(G)(y) = f−1(G(y)) = f−1(I) =
D − ker(f) = {I1} for any y ∈ B. Therefore f−1(G)(y) is

a filter of L1 for any y ∈ B, where I1 is the greatest element

of L1. It follows that (f−1(G), B) is a trivial F -soft lattice

implication algebra over L1.

IV. (IF-)F-SOFT LATTICE IMPLICATION ALGEBRAS IN

FUZZY CONTEXT

In this section, firstly, we discuss the relations between (IF -

)F -soft lattice implication algebras and fuzzy (implicative)

filters. Secondly, we generalized fuzzy filters of L , initiating

the notion of (∈,∈ ∨qk)-fuzzy (implicative) filter ((∈,∈∨qk)-
fuzzy (implicative) filter) of L , their equivalent characteriza-

tions are derived. At last, we discuss the relations between

(IF -) F -soft lattice implication algebras and (∈,∈ ∨qk)-fuzzy

(implicative) filter.

Given a fuzzy set µ in a lattice implication algebra L =
(L,∨,∧,′ ,→, O, I) and A ⊆ [0, 1], consider two set-valued

functions F : A → P(L), defined by F (t) = {x ∈ L|xt ∈ µ}
and Fq : A → P(L), defined by Fq(t) = {x ∈ L|xtqµ}. Then

(F, A) and (Fq, A) are two soft set over L . In fact, (F, A) and

(Fq, A) is called ∈-soft set and q-soft set in [19], respectively.

Theorem 4.1: Let µ be a fuzzy set of L and (F, (0, 1]) be

a soft set over L . Then

(1)(F, (0, 1]) is a F -soft lattice implication algebra if and

only if µ is a fuzzy filter of L .

(2)(F, (0, 1]) is a IF -soft lattice implication algebra if and

only if µ is a fuzzy implicative filter of L .

Proof: (1) Suppose that µ is a fuzzy filter of L and

let x ∈ (0, 1]. If x ∈ F (t), then xt ∈ µ, i.e. I ∈ F (t).
Let x, x → y ∈ F (t) for any t ∈ (0, 1], then xt ∈ µ and

(x → y)t ∈ µ, i.e. µ(x) ≥ t and µ(x → y) ≥ t. It follows

that µ(y) ≥ min{µ(x), µ(x → y)} ≥ t, and so yt ∈ µ, i.e.
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y ∈ F (t). Therefore F (t) is a filter of L for any t ∈ (0, 1].
Hence (F, (0, 1]) is a F -soft lattice implication algebra over

L .

Conversely, assume that (F, (0, 1]) is a F -soft lattice im-

plication algebra over L . If there exists a ∈ L such that

µ(I) < µ(a), then we can choose t ∈ (0, 1] such that

µ(I) < t ≤ µ(a) and so It /∈ µ, i.e. I /∈ F (t), contradiction.

Thus µ(I) ≥ µ(x) for any x ∈ L. Suppose that there exist

a, b ∈ L such that µ(b) < min{µ(a → b), µ(a)}, we choose

t ∈ (0, 1] such that µ(b) < t ≤ min{µ(a → b), µ(a)}. It

follows that a → b ∈ F (t) and a ∈ F (t), but b /∈ F (t),
which contradicts with F (t) is a filter of L . Hence µ(y) ≥
min{µ(x → y), µ(x)} for any x, y ∈ L. Therefore µ is a

fuzzy filter of L .

(2) The case for (2) can be similarly proved.

Theorem 4.2: Let µ be a fuzzy set of L and (Fq, (0, 1])
be a soft set over L . Then

(1) (Fq, (0, 1])(Fq(t) 6= ∅, t ∈ (0, 1]) is a F -soft lattice

implication algebra if and only if µ is a fuzzy filter of L .

(1) (Fq, (0, 1])(Fq(t) 6= ∅, t ∈ (0, 1]) is a IF -soft lattice

implication algebra if and only if µ is a fuzzy implicative

filter of L .

Proof: (1) Assume that µ is a fuzzy filter of L and let

t ∈ (0, 1] such that Fq(t) 6= ∅. If I /∈ Fq(t), i.e. Itq̄µ and so

µ(I) + t < 1. It follows that µ(x) + t ≤ µ(I) + t < 1 for

any x ∈ L, so that Fq(t) = ∅. This is a contradiction and so

I ∈ Fq(t). Let x, y ∈ L be such that x → y ∈ Fq(t) and

x ∈ Fq(t), then (x → y)tqµ and xtqµ, i.e. µ(x → y) + t > 1
and µ(y)+ t > 1. Hence µ(y)+ t ≥ min{µ(x → y), µ(y)}+
t = min{µ(x → y) + t, µ(y) + t} > 1. We have y ∈ Fq(t)
for any t ∈ (0, 1]. Therefore Fq(t) is a filter of L for any

t ∈ (0, 1], i.e. (Fq, (0, 1]) is a F -soft lattice implication algebra

over L .

Conversely, assume that (Fq, A) is a F -soft lattice impli-

cation algebra over L . If there exists a ∈ L such that

µ(I) < µ(a), then µ(I)+t ≤ 1 < µ(a)+t for some t ∈ (0, 1].
Thus atqµ and Fq(t) 6= ∅. We have Fq(t) is a filter of L for

any t ∈ (0, 1]. Hence I ∈ Fq(t) and Itqµ, i.e. µ(I)+t > 1, this

is impossible, and so µ(I) ≥ µ(x) for any x ∈ L. Suppose that

there exist a, b ∈ L such that µ(b) < min{µ(a → b), µ(a)},

then µ(a) + s ≤ 1 < min{µ(a → b), µ(a)} + s for some

s ∈ (0, 1]. It follows that (a → b)sqµ and asqµ, that is,

a → b ∈ Fq(s) and a ∈ Fq(s). It follows from Fq(s) is a

filter that b ∈ Fq(t). So µ(a)+s > 1, contradiction. Therefore

µ(y) ≥ min{µ(x → y), µ(x)} for any x, y ∈ L. Hence µ is

a fuzzy filter of L .

(2) The case for (2) can be similarly proved.

In what follows, let k denote an arbitrary element of [0, 1)
unless otherwise specified. To say xtqkµ, we mean µ(x)+ t+
k > 1. To say xt ∈ ∨qkµ, we mean xt ∈ µ or xtqkµ. For

α ∈ {∈,∈ ∨qk}, to say xtᾱµ, we mean xtαµ doesn’t hold.

Definition 4.1: A fuzzy set µ in L is said to be an (∈,∈
∨qk)-fuzzy filter of L if it satisfies the following:

(1) xt ∈ µ implies It ∈ ∨qkµ,

(2) xt ∈ µ and (x → y)r ∈ µ imply ymin{t,r} ∈ ∨qkµ, for

any x, y ∈ L and t, r ∈ (0, 1].
Definition 4.2: A fuzzy set µ in L is said to be an (∈,∈

∨qk)-fuzzy implicative filter of L if it satisfies the following:

(1) xt ∈ µ implies It ∈ ∨qkµ,

(2) (x → (y → z))t ∈ µ and (x → y)r ∈ µ imply (x →
z)min{t,r} ∈ ∨qkµ, for any x, y ∈ L and t, r ∈ (0, 1].

Example 4.1: (1) In Example 3.1, we define a fuzzy set µ

of L as following:

µ(I) = 0.45, µ(a) = 0.8, µ(b) = µ(c) = µ(d) = µ(O) = 0.3.

It is routine to verify that µ is an (∈,∈ ∨q0.2)-fuzzy filter.

But µ is neither a fuzzy filter nor an (∈,∈ ∨q)-fuzzy filter

of L since µ(I) = 0.45µ(a) = 0.8, and a ≤ I , c0.5∈µ but

I0.5∈ ∨qµ.

(2) In Example 3.1, we define a fuzzy set G of L as

following:

G(I) = G(a) = 0.7, G(b) = 0.6, G(d) = 0.3, G(O) = G(c) = 0.2.

It is routine to verify that G is an (∈,∈ ∨q0.6)-fuzzy

implicative filter.

Theorem 4.3: A fuzzy set µ in L is an (∈,∈ ∨qk)-fuzzy

filter of L if and only if it satisfies the following, for any

x, y, z ∈ L

(1) µ(I) ≥ min{µ(x), 1−k
2 }

(2) µ(y) ≥ min{µ(x → y), µ(x), 1−k
2 }.

Proof: Let µ be an (∈,∈ ∨qk)-fuzzy filter, Assume that

µ(I) < min{µ(x), 1−k
2 }. Then µ(I) < r ≤ min{µ(x), 1−k

2 }
for some r ∈ (0, 1−k

2 ]. If µ(x) < 1−k
2 , then µ(I) < r ≤ µ(x).

Hence xr ∈ µ and Ir /∈ µ. Furthermore, µ(I) + r <

r + r = 2r < 1 − k, that is, Irqkµ, thus Ir∈ ∨qkµ,

contradiction. If µ(x) ≥ 1−k
2 , then µ(I) < r ≤ 1−k

2 , hence

x 1−k

2

∈ µ, but I 1−k

2

/∈ µ. Therefore µ(I) + 1−k
2 ≤ 1− k, that

is, I 1−k

2

qkµ. Therefore, y 1−k

2

∈ ∨qkµ, contradiction. Hence

µ(I) ≥ min{µ(x), 1−k
2 } for any x, y ∈ L.

Assume that (2) doesn’t hold, then there exist x, y ∈ L

such that µ(y) < min{µ(x → y), µ(x), 1−k
2 }. If min{µ(x →

y), µ(x)} < 1−k
2 , then µ(y) < min{µ(x → y), µ(x)}. Hence

µ(y) < t ≤ min{x → y), µ(x)} for some t ∈ (0, 1−k
2 ]. It

follows that (x → y)t ∈ µ and xt ∈ µ, but yt /∈ µ. Moreover,

µ(y) + t < 2t < 1 − k and so yt∈ ∨qkµ, contradiction.

If min{µ(x → y), µ(x)} ≥ 1−k
2 , then µ(x) ≥ 1−k

2 and

µ(x → y) ≥ 1−k
2 . It follows that x 1−k

2

∈ µ and (x → y) 1−k

2

∈

µ. Since µ is an (∈,∈ ∨qk)-fuzzy filter of L , we have

y 1−k

2

∈ ∨qkµ, µ(y) < min{µ(x → y), µ(x), 1−k
2 } = 1−k

2 .

And so y 1−k

2

/∈ µ, also µ(y) + 1−k
2 < 1−k

2 × 2 = 1 − k.

That is y 1−k

2

qkµ. Hence y 1−k

2

∈ ∨qkµ, contradiction. Therefore

µ(y) ≥ min{µ(x → y), µ(x), 1−k
2 } for any x, y ∈ L.

Conversely, let µ be a fuzzy set in L satisfying two

conditions. Let x, y ∈ L and t, r ∈ (0, 1−k
2 ] be such that

xt ∈ µ, then µ(x) ≥ t and so µ(I) ≥ min{µ(x), 1−k
2 } ≥

min{t, 1−k
2 }. If t ≤ 1−k

2 , then µ(x) ≥ t and It ∈ µ. If t >
1−k
2 , then µ(I) ≤ k−1

2 and so µ(I)+ t > 1−k
2 + 1−k

2 = 1−k.

Hence µ(I) + k + t > 1, i.e. Itqkµ, we have It ∈ ∨qkµ.

Let µ satisfying µ(y) ≥ min{µ(x → y), µ(x), 1−k
2 } for

any x, y ∈ L. Let x, y ∈ L and t, r ∈ (0, 1−k
2 ] be such that

xt ∈ µ and (x → y)r ∈ µ, then µ(x) ≥ t, µ(x → y) ≥ r. We

have µ(y) ≥ min{µ(x → y), µ(x), 1−k
2 } ≥ min{t, r, 1−k

2 }.

If min{t, r} ≤ 1−k
2 , then µ(y) ≥ min{t, r}, it follows that

ymin{t,r} ∈ µ and so ymin{t,r} ∈ ∨qkµ. If min{t, r} > 1−k
2 ,
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i.e. t ≥ 1−k
2 and r ≥ k−1

2 , we have µ(y) > 1−k
2 , µ(y) +

min{t, r} > 1−k
2 + 1−k

2 = 1 − k. It follows that ymin{t,r} ∈
∨qkµ. Therefore µ is an (∈,∈ ∨qk)-fuzzy filter of L .

Corollary 4.1: (see [21]) Let µ be a fuzzy subset of L .

Then µ is an (∈,∈ ∨q)-fuzzy filter of L if and only µ satisfies

following

(1)(∀x ∈ L)(µ(I) ≥ min{µ(x), 0.5}),
(2)(∀x, y ∈ L)(µ(y) ≥ min{µ(x), µ(x → y), 0.5}.

Theorem 4.4: A fuzzy set µ in L is an (∈,∈ ∨qk)-fuzzy

implicative filter of L if and only if it satisfies the following,

for any x, y, z ∈ L

(1) µ(I) ≥ min{µ(x), 1−k
2 }

(2) µ(x → z) ≥ min{µ(x → (y → z)), µ(x → y), 1−k
2 }.

Proof: It is similarly proved as Theorem 4.3.

Corollary 4.2: (see [21]) Let µ be a fuzzy subset of L .

Then µ is an (∈,∈ ∨q)-fuzzy implicative filter of L if and

only µ satisfies following

(1)(∀x ∈ L)(µ(I) ≥ min{µ(x), 0.5}),
(2)(∀x, y ∈ L)(µ(x → y) ≥ min{µ(x → (y → z)), µ(x →

y), 0.5}.

Theorem 4.5: Let µ be a fuzzy set of L and (F, (0, 1−k
2 ])

be a soft set. Then (F, (0, 1−k
2 ]) is a F -soft lattice implication

algebra over L is and only if µ is an (∈,∈ ∨qk)-fuzzy filter

of L .

Proof: Let µ be an (∈,∈ ∨qk)-fuzzy filter of L . For

any t ∈ (0, 1−k
2 ], we have µ(I) ≥ min{µ(x), 1−k

2 } for any

x ∈ F (t) by Theorem 4.3. Hence µ(I) ≥ min{µ(x), 1−k
2 } ≥

min{t, 1−k
2 } = t, which implies It ∈ µ and so I ∈ F (t). If

x → y ∈ F (t), x ∈ F (t). That is µ(x → y) ≥ t, µ(x) ≥ t.

Therefore, we have µ(y) ≥ min{µ(x → y), µ(x), 1−k
2 } = t,

i.e. yt ∈ µ, y ∈ F (t). Therefore F (t) is a filter of L for any

t ∈ (0, 1−k
2 ]), i.e. (F, (0, 1−k

2 ]) is a F -soft lattice implication

algebra over L .

Conversely, assume that (F, (0, 1−k
2 ]) is a F -soft impli-

cation algebra over L . If there exist a ∈ L such that

µ(I) < min{µ(a), k−1
2 }, then µ(I) < t ≤ min{µ(a), 1−k

2 }
for some t ∈ (0, 1−k

2 ]. It follows that It /∈ µ, i.e. I /∈ F (t),
which contradicts with F (t) is a filter of L . Hence µ(I) ≥
min{µ(x), 1−k

2 } for any x ∈ L. If there exists a, b ∈ L

such that µ(b) < min{µ(x → y), µ(a), 1−k
2 }, then there exist

t ∈ (0, 1−k
2 ] such that µ(b) < t ≤ min{µ(a → b), µ(a), 1−k

2 }
which implies a → b ∈ F (t) and a ∈ F (t), it follows that

b ∈ F (t), i.e µ(b) ≥ t, but µ(b) < t, contradiction. Therefore,

µ(y) ≥ min{µ(x → y), µ(x), 1−k
2 } hold for any x, y ∈ L.

And so µ is an (∈,∈ ∨qk)-fuzzy filterL .

Corollary 4.3: Let µ be a fuzzy set of L and (F, (0, 0.5])
be a soft set. Then (F, (0, 0.5]) is a F -soft lattice implication

algebra over L is and only if µ is an (∈,∈ ∨q)-fuzzy filter

of L .

Theorem 4.6: Let µ be a fuzzy set of L and (F, (0, 1−k
2 ])

be a soft set. Then (F, (0, 1−k
2 ]) is a IF -soft lattice implication

algebra over L is and only if µ is an (∈,∈ ∨qk)-fuzzy

implicative filter of L .

Proof: Let µ be an (∈,∈ ∨qk)-fuzzy implicative filter of

L . For any t ∈ (0, 1−k
2 ], we have µ(I) ≥ min{µ(x), 1−k

2 }
for any x ∈ F (t). Hence µ(I) ≥ min{µ(x), 1−k

2 } ≥
min{t, 1−k

2 } = t, which implies It ∈ µ and so I ∈ F (t).
If x → (y → z) ∈ F (t), x → y ∈ F (t). That is

µ(x → (y → z) ≥ t, µ(x → y) ≥ t. Therefore, we have

µ(x → z) ≥ min{µ(x → (y → z), µ(x → y), 1−k
2 } = t, and

so (x → z)t ∈ µ i.e. x → z ∈ F (t). Therefore F (t) is an

implicative filter of L for any t ∈ (0, 1−k
2 ]), i.e. (F, (0, 1−k

2 ])
is a IF -soft lattice implication algebra over L .

Conversely, assume that (F, (0, 1−k
2 ]) is an IF -soft im-

plication algebra over L . If there exist a ∈ L such that

µ(I) < min{µ(a), k−1
2 }, then µ(I) < t ≤ min{µ(a), 1−k

2 }
for some t ∈ (0, 1−k

2 ]. It follows that It /∈ µ, i.e. I /∈ F (t),
which contradicts with F (t) is an implicative filter of L .

Hence µ(I) ≥ min{µ(x), 1−k
2 } for any x ∈ L. If there

exists a, b, c ∈ L such that µ(a → c) < min{µ(a → (b →
c)), µ(a → b), 1−k

2 }, then there exist t ∈ (0, 1−k
2 ] such that

µ(a → c) < t ≤ min{µ(a → (b → c)), µ(a → b), 1−k
2 }

which implies a → (b → c) ∈ F (t) and a → b ∈ F (t),
it follows that a → c ∈ F (t), i.e µ(a → c) ≥ t, but

µ(a → c) < t, contradiction. Therefore, µ(x → z) ≥
min{µ(x → (y → z)), µ(x → y), 1−k

2 } hold for any

x, y, z ∈ L. And so µ is an (∈,∈ ∨qk)-fuzzy implicative

filter of L .

Corollary 4.4: Let µ be a fuzzy set of L and (F, (0, 0.5])
be a soft set. Then (F, (0, 0.5]) is a IF -soft lattice implication

algebra over L is and only if µ is an (∈,∈ ∨qk)-fuzzy

implicative filter of L .

Definition 4.3: A fuzzy subset µ on L is said to be an

(∈,∈ ∨ qk)-fuzzy filter, if it satisfies, for any x, y ∈ L, t, r ∈
( 1−k

2 , 1]:
(1) It∈µ implies xt∈ ∨ qkµ,

(2) if ymin{t,r}∈µ, then xt∈ ∨ qkµ or (x → y)r∈ ∨ qkµ.

Definition 4.4: A fuzzy subset µ on L is said to be an

(∈,∈∨qk)-fuzzy implicative filter, if it satisfies, for any x, y ∈
L, t, r ∈ ( 1−k

2 , 1]:
(1) It∈µ implies xt∈ ∨ qkµ,

(2) if (x → z)min{t,r}∈µ, then (x → (y → z)t∈ ∨ qkµ or

(x → y)r∈ ∨ qkµ.

Example 4.2: In Example 3.1, we define a fuzzy set µ as

follows:

µ(O) = 0.4, µ(I) = µ(b) = µ(c) = 0.9, µ(a) = µ(d) = 0.3.

It is routine to verify µ is an (∈,∈∨ q0.2)-fuzzy (implicative)

filter of L .

Theorem 4.7: Let µ be a fuzzy subset of L , then µ is an

(∈,∈ ∨ qk)-fuzzy filter of L if and only if for any x, y ∈ L,

(1)max{µ(I), 1−k
2 } ≥ µ(x),

(2)max{µ(y), 1−k
2 } ≥ min{µ(x), µ(x → y)}.

Proof: Assume that there exists x ∈ L such that

max{µ(I), 1−k
2 } < µ(x) = t. Then t ∈ ( 1−k

2 , 1] and It∈µ. It

follows that xt∈∨qkµ. Hence µ(x) < t or µ(x)+t+k ≤< 1,

we have t ≤ 1−k
2 for µ(x) = t, contradiction. Therefore,

max{µ(I), 1−k
2 } ≥ µ(x), (1) is valid.

Assume that there exist x, y ∈ L such that

max{µ(y), 1−k
2 } < min{µ(x), µ(x → y)} = t, then

µ(y) < t and t ∈ ( 1−k
2 , 1]. It follows that yt∈µ and

so xt∈ ∨ qkµ or (x → y)t∈ ∨ qkµ. But xt ∈ µ and

(x → y)t ∈ µ. Hence xtqkµ or (x → y)tqkµ. It follows

that µ(x) ≥ t and µ(x) + t + k ≤ 1, µ(x → y) = t and

µ(x → y) + t + k ≤ 1, we have that t ≤ 1−k
2 , contradiction.

Therefore, (2) holds.
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Conversely, assume that there exist x ∈ L and t, r ∈
( 1−k

2 , 1] such that It∈µ, but xt∈ ∨ qkµ, then µ(I) < t, µ(x) ≥
t and µ(x) + t + k ≥ 1. Therefore, µ(x) ≥ 1−k

2 . Thus

max{µ(I), 1−k
2 } < max{t, 1−k

2 } ≤ max{µ(x), t} = µ(x),
contradiction. That is, It∈µ implies xt∈ ∨ qkµ.

Assume (2) holds and let ymin{t,r}∈µ, then µ(y) <

min{t, r}. There are two cases to be discussed.

(a) If µ(y) ≥ min{µ(x), µ(x → y)}, then min{t, r} >

min{µ(x), µ(x → y)}. It follows that µ(x) < t or µ(x →
y) < r, that is, xt∈µ or (x → y)r∈µ. Of course, xt∈ ∨ qkµ

or (x → y)r∈ ∨ qkµ.

(b) If µ(y) < min{µ(x), µ(x → y)}, then 1−k
2 ≥

min{µ(x), µ(x → y)}. Assume that xt∈ ∨ qkµ and (x →
y)r∈ ∨ qkµ, then µ(x) ≥ r and µ(x) + r + k > 1, µ(x →
y) ≥ r and µ(x → y)+r+k > 1. It follows that µ(x) > 1−k

2

and µ(x → y) > 1−k
2 . Hence min{µ(x), µ(x → y)} > 1−k

2 ,

which contradicts with min{µ(x), µ(x → y)} ≤ 1−k
2 .

Therefore, xt∈ ∨ qkµ or (x → y)r∈ ∨ qkµ.

Theorem 4.8: Let µ be a fuzzy subset of L , then µ is an

(∈,∈∨qk)-fuzzy implicative filter of L if and only if for any

x, y ∈ L,

(1)max{µ(I), 1−k
2 } ≥ µ(x),

(2)max{µ(x → z), 1−k
2 } ≥ min{µ(x → (y → z)), µ(x →

y)}.

Proof: It is similarly proved as Theorem 4.7.

Corollary 4.5: Let µ be a fuzzy subset of L , then µ is an

(∈,∈∨ q)-fuzzy implicative filter of L if and only if for any

x, y ∈ L,

(1)max{µ(I), 0.5} ≥ µ(x),
(2)max{µ(x → z), 0.5} ≥ min{µ(x → (y → z)), µ(x →

y)}.

Theorem 4.9: Let µ be a fuzzy set of L and (F, ( 1−k
2 , 1])

be a soft set. Then (F, ( 1−k
2 , 1]) is a F -soft lattice implication

algebra over L if and only if µ is an (∈,∈ ∨ qk)-fuzzy filter

of L .

Proof: Let (F, ( 1−k
2 , 1]) is a F -soft lattice implication

algebra over L for any t ∈ ( 1−k
2 , 1]. If there exists a ∈ L

such that µ(a) > max{µ(I), 1−k
2 }, then µ(a) ≥ t >

max{µ(I), 1−k
2 } for some t ∈ ( 1−k

2 , 1] and so µ(I) < t,

i.e. I /∈ F (t), contradiction. Hence max{µ(I), 1−k
2 } ≥ µ(x)

for any x ∈ L. If there exist a, b ∈ L such that min{µ(a →
b), µ(a) ≥ t > max{µ(b), 1−k

2 } for some t ∈ ( 1−k
2 , 1]. Thus

(a → b)t ∈ µ and at ∈ µ, i.e. a → b ∈ F (t) and a ∈ F (t),
it follows that b ∈ F (t), but µ(b) < t, i.e. b 6∈ F (t), contra-

diction. Therefore max{µ(y), 1−k
2 } ≥ min{µ(x), µ(x → y)}

for any x, y ∈ L. That is µ is an (∈,∈ ∨ qk)-fuzzy filter of

L .

Conversely, let µ be an (∈,∈∨qk)-fuzzy filter of L . For any

t ∈ ( 1−k
2 , 1], we have µ(x) ≤ max{µ(I), 1−k

2 } for x ∈ F (t).
Therefore µ(x) ≥ t > 1−k

2 , t ≤ µ(x) ≤ max{µ(I), 1−k
2 } =

µ(I) and so It ∈ µ, i.e. I ∈ F (t). Let x, t ∈ L be such that

x → y ∈ F (t) and x ∈ F (t), then (x → y)t ∈ µ and xt ∈ µ,

i.e. µ(x → y) ≥ t and µ(x) ≥ t. It follows from (2) that
1−k
2 < t ≤ min{µ(x → y), µ(x)} ≤ max{µ(y), 1−k

2 }, we

have max{µ(y), 1−k
2 } = µ(y), which implies t ≤ µ(y), i.e.

y ∈ F (t). Therefore F (t) is a filter for any t ∈ ( 1−k
2 , 1] and

so (F, ( 1−k
2 , 1]) is a F -soft lattice implication algebra over L .

Corollary 4.6: Let µ be a fuzzy set of L and (F, (0.5, 1])
be a soft set. Then (F, (0.5, 1]) is a F -soft implication algebra

over L is and only if µ is an (∈,∈ ∨ q)-fuzzy filter of L .

Theorem 4.10: Let µ be a fuzzy set of L and (F, ( 1−k
2 , 1])

be a soft set. Then (F, ( 1−k
2 , 1]) is a IF -soft lattice implication

algebra over L if and only if µ is an (∈,∈ ∨ qk)-fuzzy

implicative filter of L .

Proof: It is similarly proved as Theorem 4.9.

Corollary 4.7: Let µ be a fuzzy set of L and (F, (0.5, 1])
be a soft set. Then (F, (0.5, 1]) is a IF -soft implication algebra

over L is and only if µ is an (∈,∈∨q)-fuzzy implicative filter

of L .

V. CONCLUSION

Soft sets are related to fuzzy sets and rough sets. It applied

to some algebraic structures. In this paper, we introduce the

(implicative) filteristic soft lattice implication algebras which

related with (implicative) filter(for short, (IF -) F - soft lattice

implication algebras). Basic properties of (IF -)F -soft lattice

implication algebras are investigated. We introduce the notion

of (∈,∈ ∨qk)((∈,∈ ∨ qk))-fuzzy (implicative) filters, which

are generalizations of fuzzy (implicative) filter. we provide

characterizations for a soft set to be a (IF -)F -soft lattice

implication algebra. Analogously, this idea can be applied

in other structures (such as positive implicative filters, ultra-

filter, fantastic filter, and so on), analogously. It will be of

great use to provide theoretical foundation to design intelligent

information processing systems.
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