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Abstract—This paper presents the application of discrete-time 
variable structure control with sliding mode based on the ‘reaching 
law’ method for robust control of a ‘simple inverted pendulum on 
moving cart’ - a standard nonlinear benchmark system. The 
controllers designed using the above techniques are completely 
insensitive to parametric uncertainty and external disturbance. The 
controller design is carried out using pole placement technique to find 
state feedback gain matrix , which decides the dynamic behavior 
of the system during sliding mode. This is followed by feedback gain 
realization using the control law which is synthesized from ‘Gao’s 
reaching law’.  The model of a single inverted pendulum and the 
discrete variable structure control controller are developed, simulated 
in MATLAB-SIMULINK and results are presented. The response of 
this simulation is compared with that of the discrete linear quadratic 
regulator (DLQR) and the advantages of sliding mode controller over 
DLQR are also presented 

Keywords—Inverted pendulum, Variable Structure, Sliding mode 
control, Discrete-time systems, Nonlinear systems. 

I. INTRODUCTION

HE single inverted pendulum on moving cart (SIPMC) is 
often used as a benchmark problem for a class of control 
systems. This inherently open-loop unstable system is 

highly nonlinear and hence controlling the system is difficult.  
The objective is to bring the cart to a desired position while 
balancing the pendulum, so that it is always in up-right 
equilibrium point. The single inverted pendulum consists of 
rod of negligible weight and a mass mounted on the top, 
making its centre of gravity to lie on the top and pivoted at the 
bottom on a freely moving motor driven cart. On a stationary 
cart if the rod is exactly centered and if there is no disturbance 
then it will remain balanced infinitely, which is practically 
unachievable. Any disturbance that shifts the rod from the 
equilibrium point will further push it down and finally rest it 
on the ground. Hence, the control task is to maintain the 
pendulum on up-right equilibrium point along with bringing 
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the cart to the set reference point by moving the cart back and 
forth within the limit at required speed. 

The controllers based on PID techniques, Neural networks, 
Fuzzy logic, linear quadratic optimal controllers are available, 
but they are found to be less robust for parameter 
perturbations and external disturbances. In this paper a more 
robust controller, based on discrete variable structures and 
sliding mode is considered.  

Variable Structures with sliding mode Control, simply 
called as Variable Structure Control (VSC) or Sliding Mode 
Control (SMC), is a type of robust control technique that is 
applicable to linear, nonlinear, MIMO, discrete-time and 
stochastic systems. The theory of variable structure systems 
has been developed in 1950s by Emelyanov et.al, and further 
by Utkin [1]. The detailed survey and fundamental 
developments on variable structure control with sliding mode 
can be found in [2] and [3]. A novel approach on the 
continuous control of nonlinear systems was suggested by Gao 
et.al in [4]. The concepts of discrete SMC (DSMC) were dealt 
by Gao et.al and the conditions for the existence of quasi-
sliding mode (QSM) control were also proposed [6]. The 
comprehensive guide on sliding mode control for control 
engineers is given in [5]. 

The paper has been organized into six Sections. Section 2 
gives a complete overview of variable structures and sliding 
mode control along with its discrete counterpart. Section 3 
explains the, reaching law method established by GAO. 
Section 4 presents mathematical model of the inverted 
pendulum. Design of discrete-time sliding mode controller for 
inverted pendulum model using reaching law approach has 
been discussed in Chapter 5. The responses of the simulated 
model with the sliding mode controller under different initial 
conditions are discussed in section 5 and Section 6 provides 
the conclusion and future work. 

II. OVERVIEW OF VARIABLE STRUCTURES AND
SLIDING MODE CONTROL

In variable structure control the system is allowed to vary 
its structure by properly changing the sign and / or magnitude 
of the input, so that it is made to move towards sliding mode 
in finite time. The desired dynamics of the system during the 
sliding mode are achieved by pole placement technique.  
Hence, once the system enters in to the sliding surface it will 
definitely reach the steady state, the inherent phenomenon of 
the variable structures with sliding mode control. The 
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controller based on the above technique is simulated using 
MATLAB-Simulink and the simulation results are presented. 
The performance of sliding mode controller is compared with 
that of a linear quadratic controller and the robustness of the 
former is also observed. 

The main advantage of SMC is its insensitivity to parameter 
variations, external disturbances and modeling errors [3]. In 
this technique the structure of the system to be controlled is 
deliberately changed with a discontinuous control which 
drives the phase trajectory to a stable manifold or switching 
surface from any initial condition. The new useful properties 
thus achieved are not present in any of the structures used [2]. 
The switching surface decides the closed loop dynamics of the 
system and easily controlled by the designer. 

In discrete sliding mode (DSM) the control input is also 
discrete and hence it is applied only at certain sampling 
instants. Hence, when the states reach the switching surface, 
the subsequent control would be unable to keep the states to be 
confined to the surface. As a result, DSM can undergo only 
quasi-sliding mode, i.e., the system states would approach the 
sliding surface but would generally be unable to stay on it [3].  

GAO introduced a new ‘reaching law approach’ to design 
the controller for a discrete time system. This approach is 
found satisfactory when compared to the other method 
proposed in [8]. The required constrains of Discrete-time 
Variable Structure Control (DVSC) are satisfied in this 
method and the switching function )(ks is effectively 
controlled to meet the required dynamics. This followed by 
the derivation of the control law in conjunction with the 
known plant model and parameter variations. 

Chattering phenomenon is a major disadvantage of SMC, 
which is due to the discontinuous switching control applied to 
the plant, which excites the unmodelled high frequency 
dynamics of the system. This problem may be minimized by 
two approaches, viz., the continuous method and the reaching 
law method [4]. Out of these the reaching law method is 
simpler and directly deals with the reaching process and 
makes it easy to obtain the control law. 

III. GAO’S REACHING LAW

Consider a discrete-time system specified by the standard 
format 

               )()()( kukxk bAx                      (1) 
where the matrices A  and b are of appropriate dimensions. 
For the above mentioned system to reach and remain in the 
steady state it should posses the following attributes [6]. 
a1. Starting from any initial state, the trajectory will move 

monotonically toward the switching plane and cross it in 
finite time.                                         

a2. Once the trajectory has crossed the switching plane the 
first time, it will cross the plane again in every successive 
sampling period, resulting in a zigzag motion about the 
switching plane.   

a3. The size of each successive zigzagging step is non-
increasing and the trajectory stays within a specified band. 

A.  Reaching law 
The reaching law for a continuous VSC is [6] 

)(sgn)( tqststs
where .0,0 q

Similarly, for a VSC of a discrete system, an equivalent 
form of the reaching law is 

ksTkqTsksks sgn1
                               (2) 

 where, 0T  is the sampling period, 0,0 q  are 
constants and ,  

Attribute a1 is satisfied if the inequality for  holds and 
hence restricted. The signum i.e. sign of ks  term guarantees 
attributes a2 and a3.

The dynamics of a discrete VSC system which satisfies the 
attributes a1 and a2 is called as quasi-sliding mode (QSM) 
and the band that contains the QSM is known as quasi-sliding 
mode band (QSMB) and given by  

xsx |  , 
where 2  is the width of the band. Obviously for an ideal 
case the bandwidth 0 . If a discrete system posses all the 
three attributes a1, a2 and a3 then it is said to satisfy the 
reaching condition. 

B.  Merits of reaching law  

1) All the three attributes a1 to a3 are satisfied. 
2) With the proper choice of k  and q  a desirable reaching 

mode response can be achieved. 
3) The width of the quasi-sliding mode band (QSMB) can 

conveniently be calculated. 
4) As  is one of the parameters of the reaching law, the effect 

of it on VSC may easily be calculated. 
5) It is easier to extend the control law for MIMO systems 

using (2). 
6) The control laws is in equality form as (2) is also in the 

same format 

C. Design of switching function 
Consider a linear switching plane 

       0xCTxs                                              (3) 
Upon extending this to ideal discrete quasi-sliding, mode 

the same is represented as  
,0)(1 ksks            ....2,1,0k       (4) 

From (4), (3), and (1),  
0)()()( kskuk TT bCxC

Solving for , an equivalent control signal is given by 
)()( 1 keu TT AxCbC                            (5) 

where 0bCT  has been assumed, implying the 
controllability of the VSC system. In fact, 1bCT which 
can easily be proved [7]. As the control (5) is linear in x , the
dynamical equation of the quasi-sliding mode is also linear 
and given by 
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)(])[)1( 1 kk TT AxCbb(CIx

0)(kxC                                                       (6) 

D.  Alternative approach 
Using linear transformation system (1) is transformed in to 

normal form, which leads to a more direct way to analyze the 
sliding mode dynamics. This approach also provides a 
convenient way for designing the vector C of the switching 
function. 
Let the system (1) be in normal form in which 

A
AA

A ,     
2

1

x
x

x

1,0,....,0Tb  ,      ]1,[
TT CC              (7) 

 The dimensions of ,)()(11 mnmnA       

1)(12 mnA , )(121 mnA , and 2x  are scalars. 
Then when the dynamics of (1) are restricted on the surface 

0)(ks  it can be expressed as 

)()(

)()()1(

12

2121111

kk

kkk
T

xCx

xAxAx

 (8) 
Eliminating 2x  gives  

)(][)1( 112111 kk
T

xCAAx            (9) 
This is the equation of ideal quasi-sliding mode. It can 

easily be proved that if the pair b)(A,  is controllable then 

),( 1211 AA is also controllable. Then this becomes regulator 

problem and hence TC can be obtained by arbitrarily 

assigning the poles of the ][ 1211
T

CAA , such that the 
system is stable.  

E. Derivation of Control Law 
From (3), 

)()1()()1( kkksks TT xCxC

)()()( kkuk TTT xCbCAxC
     (10) 

Referring the equations (2) and (10),  
)())(sgn()()1( kqTsksTksks

)()()( kkuk TTT xCbCAxC
     (11) 

Solving (11) for )(ku  the control law is given by 

)()()([)()( 1 kqTkkku TTTT xCxCAxCbC

            ))](sgn( kT T xC                                                  
(12)                      

Substituting (12) into (1) gives the response of the discrete 
VSC system as 

[))()1( 1bb(CAxx Tkk )()( kk TT xCAxC

))](sgn()( kTkqT TT xCxC
                                (13)            

F. Control Law for Robust Control 
With parameter variation A and external disturbance f(k) ,

the system represented by (1) is rewritten as  
)()()()()1( kkukkk fbAxAxx

                                                              (14) 

The standard matching conditions 
~
AbA  and bff

~
 is 

assumed here where A  is a row vector and 
~
f is a scalar. 

Rearranging (14)  

)]()()([)()1( kkkukk
~
fx

~
AbAxx

                                                                    (15) 
It can be easily proved that the ideal quasi-sliding mode (9) 

is unchanged [6]. Hence the system is free from the effect of 
parameter variation or external disturbance. But, the control 
becomes 

xCAxCbC )()()[)(()( 1 kkku TTT

              + )]()())(sgn()( kkkTkqT TT
~
fx

~
AxCxC

       (16) 
Substituting (16) in (15) 

)()([1))()1( kkkk TTT xCAxCbb(CAxx     

                          + ))(sgn()( kTkqT TT xCxC
which is similar to (13) excluding the negative terms of the 
disturbances 

G. The Quasi-sliding Mode Band 
To determine the bandwidth 2 within which the trajectory 

stays in once it enters into the band, multiply both sides of 
(13) by TC and from (3)  

0)1(),(sgn()()1()1( qTksTksqTks
     (17) 

This ensures that the sign of the first term on the left side of 
(17) is that of )(ks  and the sign of second term is the 

negation of sign of )(ks . It is clear that the signs of )1(ks
and )(ks  are opposite to each other and thus the region of 
QSMB is given by 

qT

T
s

1
)(| xx

and hence, the width of QSMB is 

qT

T

1
22

                                                                                              (18) 
It is clear from (18) that the width of the band decreases with 
higher sampling frequencies. 
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IV. INVERTED PENDULUM MODELING

The schematic diagram of a SIPMC is shown in fig.1. The 
SIPMC is unstable in that it may fall over any time in any 
direction unless a suitable control force is applied to the cart. 
The objective of this paper is to design a discrete sliding mode 
controller such that, given any initial conditions (caused by the 
disturbances), the pendulum can be brought back to the 
reference position 0 as quickly as possible and without 
overshoot. 

Using the equations of motions the dynamics of SIPMC are 
represented by the following mathematical model [9], [10]. 

ugMMlM pcc )(                       (19)                                          

                gMuxM pc                        (20) 
where  

cM    mass of the cart, 
l       length of the pendulum rod, 

pM   mass of the pendulum rod, 
   rotation of the pendulum rod about  

       the point P, 
g     center of gravity, 
u      control force applied to the cart. 

On defining the state variables 1x , 2x , xx3 and

xx4 , the state model of the system described by (19) and 
(20) may be written as                                                                     

c

c

C

p

g

pc

M

lM

g
M

M

g
lM

MM

x
x
x
x

x
x
x
x
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                                                                 (21)  

        0001y

4

3

2

1

x
x
x
x

                        (22) 

V. SIMULATION OF DSMC FOR AN SIPMC

The parameters of the inverted pendulum considered for 
simulation are ml 5.0 , kgM c 2  and kgM p 1.0 . By 

substituting the given numerical values for cM , pM  and l  in 

the equation (3), it becomes 

)(

5.0
0
1

0

)(

0004905.0
1000
000601.20
0010

)( tutt xx

                                                                           (23) 
Discretizing the system with zero-order hold and a sampling 
period of  sec1.0T  gives 

)(

0501.0
0025.0
1035,0
0051.0

)(

000025.00508.0
1.010001.00025.0

001048.11316.2
001035.01408.1

)1( kutk xx

                                                                            (24) 
Transforming the system (24) to a controllable canonical 

form and rearranging using (7) gives 

,
000
100
010

11A
0
0
0

12A ,

4191.62096.4121A , 2096.4A 22

By choosing 3.0,2.0,1.0  as desired eigen-values in 
such a way that they are restricted inside unit circle for 
stability, and using pole placement technique, the C  matrix is 

6.011.0006.0
T

C and 16.011.0006.0TC
Hence, the system is represented as 

)(
0
0
0

)(
000
100
010

)1( 211 kkk xxx

)()(2096.4)(4191.62096.41)1( 212 kukkk xxx
                                         (25) 

Fig. 1 Schematic model of SIPMC  
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By using the transformation matrix  

12 TT
C

I

and (25) becomes 

)(
1
0
0

)(1
6.011.0006.0

100
010

)1(1 kskxkx

)()(8096.4)(11949.96865.30289.1)1( kukskxks

         (26) 
when 0)(ks first equation of (26) becomes 

)(
6.011.0006.0

100
010

)1( 11 kk xx

Equating (17) and the second equation of (26) and solving for 
)(ku  the control law obtained is 

)())(sgn()([)( kqTsksTksku

   )](8906.4)(1]1949.96865.30289.1[ kskx

               (27) 
The parameters T  and qT are chosen as  005.0  and 
5.0 respectively for the control law to implement the DSMC 

for SIPMC and simulated using MATLAB – Simulink with 
different initial conditions and with disturbance.  The 
responses of all the four states with respect to time are given 
in fig.2 to fig.5.  

VI. RESULTS AND DISCUSSION

The responses of the SIPMC controlled by DSMC and 
DLQR are shown in fig.2 to fig.5. From fig.2 with no initial 
movement of the cart, i.e. ,04x it is observed that the 
settling time of all the four states with the DSMC is far better 
than that of the DLQR. Though the pendulum angle has 
higher overshoot with DSMC as observed from fig.2, the 
settling time is better than DLQR. It is observed from fig.2 
that there in no overshoot in the remaining three states where 
as all these states overshoot in case of DLQR.  

With initial movement in the cart i.e. ,04x  it is found 
that the DLQR gives lesser overshoot for all the four states but 
for the states x  and x , there exist a steady state error, which 
is undesirable. The settling time is better for all the states in 
DSMC in spite of the initial overshoots. This can be observed 
from fig.3 and fig.4 for two different initial movements of the 
cart. In the first case the cart movement is towards the left-side 
and in the second case the cart moves towards the right-side, 
form the desired position.  

The dynamics discussed above are under the assumption 
that there is no disturbance. In the presence of the disturbance 
the dynamics of the two controllers plotted in fig.5. It is found 
that the DSMC is insensitive to the disturbance and hence, the 

robustness of the DSMC is ensured. But, though very small, 
there is a definite jolt in the responses in all the states and 
there is a steady state error in state 3x in case of DLQR.  

Further, it may be noticed that for DSMC the width of the 
QSMB reduces with the reduction in T [6] and the parameters 
q and k  decide the transient response of the controller. Due to 
the high-frequency switching of the control signal the 
presence of chattering is unavoidable on the sliding surface, 
the inherent phenomenon of SMC. 

VII. CONCLUSION

The DSMC is designed for SIPMC and the dynamics of it 
under differrent environments have been studied. The ensured 
robustness of the SMC is well utilized for this benchmark 
problem. A simple pendulum is considered in this paper and 
the design technique may be extended for other types of 
problems like double inverted pendulum, mobile inverted 
pendulum etc. As the design is for the known perturbations, it 
may be extended so that the controller is made robust even for 
unknown disturbances. 
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Fig. 2. Response of the SIPMC for DSMC and DLQR 
with ]005.01.0[0x , i.e. without initial 
movement of the cart and without disturbance. 

Fig. 3. Response of the SIPMC for DSMC and 
DLQR with ]5.005.01.0[0x , i.e. with 
initial movement of the cart on the left-hand side 
and without disturbance 
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Fig. 5. Response of the SIPMC with disturbance 
d(k) for DSMC and DLQR with  

]005.01.0[0x

Fig. 4. Response of the SIPMC for DSMC and 
DLQR with ]5.005.01.0[0x , with 
initial movement of the cart on the right-hand side 
and without disturbance


