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Abstract—A sophisticated simulator provides a cost-effective 
measure to carry out preliminary mission testing and diagnostic while 
reducing potential failures for real life at sea trials. The presented 
simulation framework covers three key areas: AUV modeling, sensor 
modeling, and environment modeling. AUV modeling mainly covers 
the area of AUV dynamics. Sensor modeling deals with physics and 
mathematical models that govern each sensor installed onto the AUV. 
Environment model incorporates the hydrostatic, hydrodynamics, and 
ocean currents that will affect the AUV in a real-time mission. Based 
on this designed simulation framework, custom scenarios provided 
by the user can be modeled and its corresponding behaviors can be 
observed. This paper focuses on the accuracy of the simulated data 
from AUV model and environmental model derived from a 
developed AUV test-bed which was jointly upgraded by DSTO and 
the University of Adelaide. The main contribution of this paper is to 
experimentally verify the accuracy of the proposed simulation 
framework.

Keywords—Autonomous Underwater Vehicle (AUV), simulator, 
framework, robotics, maritime robot, modeling. 

I. INTRODUCTION

UVS are untethered unmanned maritime robotic 
platforms which play a significant role in modern 

robotics. AUVs are involved in a number of maritime areas 
such as maritime security [9], oceanography [1] and 
submerged structure-inspection and maintenance. The main 
objective for this project is to develop a robust simulator 
capable of mimicking real-life AUV mission scenarios 
underwater. In order to achieve this, various knowledge of the 
physical aspects of the AUV such as the kinematics, 
dynamics, physical limitations, and environmental effects are 
required.  

Compared to autonomous aerial or ground vehicle projects, 
underwater domain imposes the most restriction on sensory 
devices and its hardware [28].  

Complicated and hazardous at-sea missions present many 
technical challenges to observe the AUV and also to diagnose 
the missions being carried out. Due to difficulties running a 
real-life test scenarios on the harsh ocean environment and 
resources limitations, the use of modeling and simulation for 
AUV development, trouble-shooting, and mission diagnostics 
are heavily justifiable [5][6].  

One of the benefits of building a robust AUV simulator is 
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that it provides a tool for further studies on AUV control 
systems. This is ideal for AUV control theory since it saves 
time and cost, where a designed control system can be 
observed and carried out using a simulated model rather than 
real-life mission testing. Models in this context represent the 
mathematical descriptions of the corresponding physical 
system of interest, while simulation represents the 
implementation in terms of hardware and software 
configurations. Both modeling and simulation are important to 
replicate the actual AUV system within the underwater 
environment. 

Many research groups report different integration of 
thruster model, AUV model and environmental model. 
Although most commonly used dynamic model of AUV can 
be derived from the Newton-Euler equation of motion for a 
rigid body [8][15], the difference lies in quantification of the 
forces and lumped parameters of the equation of motion. In 
[15] the author reports a simulation framework which 
combines Newton-Euler equation of motion together with a 
robust controller to predict hydrodynamic parameters. The 
author reports successful implementation of the framework 
within simulated environment. Further literature review 
regarding the model specifics will be discussed in their 
respective sections. 

The main focus of this paper is placed onto the theoretical 
analysis and the implementation of each model within the 
simulation framework and to display the integration of AUV 
model, and environmental model into the simulation 
framework and the accuracy of the simulation. This paper 
presents a generalized AUV 6DOF simulator framework and 
the accuracy of the proposed models. 

The next section describes the background of the developed 
AUV. This is followed by an introduction to the hardware 
used. Section IV describes the physics, mathematical formulae 
and assumptions made in order to model a real-time AUV. 
The modeling criteria used in this project is based on a real 
world AUV developed by DSTO and The University of 
Adelaide, School of Mechanical Engineering. Section V 
describes the experimental procedures and the comparison 
between results real-life data and simulated data. The final 
section concludes this paper and presents future work for 
simulator upgrades. 

II. SYSTEM OVERVIEW

The whole simulation framework developed is based on an 
existing AUV test-bed [8], as shown in Fig. 1. The AUV 
system consists of four separate modules which can be seen 
along with their hardware in Table I. 
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TABLE I
AUV MODULES AND THEIR HARDWARE

Modules Hardware 

Inertial Navigation 
Sensors 

Seabotic HPDC1500 Thrusters 

GPS receiver 

Compass 

ADXL Accelerometer 

Pressure sensor 

Doppler Velocity Log (DVL) 

Altimeter 

Detection, Tracking 
and Identification 
Sensors 

Sonar

Stereo vision camera 

Communication 
system 

Radio Frequency (RF) air to air 
modems 

Underwater communication 
modems 

Command and 
Control system 

PC104 stack 

Fig. 1 AUV Robot test bed 

The structure of the simulation framework (Fig 2) shows the 
conversion of required trajectories to forces using inverse 
dynamics. 

Fig. 2 AUV Simulation framework 

III. MODELING

A. Model Assumptions 
In the derivation of the equations that govern AUV model 

and Environmental Model, a few assumptions were made to 
simplify the complex equations, they are: 

AUV has constant mass and inertia tensor 

The formula takes account of axes not coinciding with 
the AUV’s principal axis of inertia, therefore, the 
product of inertia is non-zero [13] 

AUV is designed to carry out missions in low-speed 
condition, hence the coupling terms can be reasonably 
neglected

AUV is buoyant while carrying out its mission 

Mission is carried out in a shallow water environment 

B. AUV Model 
The AUV dynamic model is formulated using both a body 

fixed frame and a global frame. The body fixed frame 
describes the AUV motions, both rotational and translational 

as
T

AUV
zyx vvvV ,,,,, , where yx vv ,  and zv  represent 

the accelerations in x, y, and z- axis while ,  and are the 
angular acceleration along x, y, and z-axis, as shown in Fig. 3. 

Desired
Motion 

Equation of 
Motion (EoM) 

Thruster
Force Matrix 
(TFM)

Vehicle Model 

AUV Global 
Coordinate
Updater 

Physical 
Limitations 

External
Forces 
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The motion of the AUV is comprised of both the 
translational and rotational components. Using Newton’s 
second law of motion, the translational component can be the 
motion of the AUV is comprised of both the translational and 
rotational components. Using Newton’s second law of 
motion, the translational component can be derived by 
considering the location of a body-fixed frame located at the 
AUV’s centre of mass. As for the rotational component, the 
formula was derived based on total applied moments about 
the AUV’s centre of mass. The final form of the AUV 
equation of motion can be simplified as seen in (1): 

                              (1) 
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 represents the rigid body mass matrix and  
represents the state dependent matrix containing the rigid body 
coriolis and centrifugal terms. The right hand side of (1) is the 
vector sum of forces induced by AUV thrust forces and also 
the external environmental forces and moments. These 
external forces and moments are composed of hydrostatic and 
hydrodynamic forces acting onto the AUV. 

C.Environmental Forces 
An AUV will encounter various environmental forces when 

running missions underwater. These environmental forces can 
be classified into six different forms: buoyancy, added mass 
effect, potential damping, Froude-Kriloff, viscous damping, 
and lift. However, in this paper, only the effect of added mass 
and viscous damping will be considered. This is due to the 
nature of the experiments carried out, as well as most forces 
are small and negligible. In theory, the derivation of these 
hydrodynamic parameters is costly and practically impossible.  

Conventional hydrodynamic parameter derivation methods 
involve towing tank trials of the vehicle itself [18], or scaled 

model free decay [30]. These methods provides complete 
model identification, however they are often time consuming 
and costly. As a consequence, cheaper and more robust 
method using onboard sensors are preferred. There are 
generally two commonly used hydrodynamic parameter 
identifications methods based on the usage of onboard sensors. 
One of them relies on offline parameter identification, as seen 
in [19][27][24]. While another one relies on online adaptive 
parameter identification [20][29]. In [4] the authors compared 
both on-line adaptive identification technique and off-line 
least-square method using experimental data obtained with 
John Hopkins University Remotely Operated Vehicle 
(JHUROV). The authors reported that the identification of 
hydrodynamic parameters can be obtained successfully using 
both online and offline techniques on decoupled, single degree 
of freedom dynamical plant models. In [24] the authors report 
the successful usage of offline weighted least square 
parameter identification on a decoupled plant. The authors 
report that the simulated plant velocity agrees with the 

RBM xC RB
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observed experimental velocity. In [8] the authors report the 
identification of a decoupled plant model of AUV in x-
direction using ordinary least square method. The authors 
report the inaccuracy of data obtained from acceleration 
measurement and vehicle model which leads to large mean 
square error between the simulated forces and measured 
forces. 

This proposed method is advantages for a real time 
simulation purpose, computational speed is required; hence no 
CFD software is integrated within the simulation protocol. 
One can derive the added mass of an object by considering the 
hydrodynamic force acting on it as it accelerates. By 
integrating the pressure over the area projected in the x-
direction, the force caused by added-mass can be calculated. 

x

AMx

aR

dR
t

F

3

0

22

3
2

sin2cos
2
1

                 

(5) 

In this paper, the ordinary least square method is used as it 
provides a cost effective and relatively realistic evaluation of 
drag coefficients based on the dynamic model of the AUV. 
The underlying concept used consists of measuring the linear 
acceleration of the AUV in response to the applied thrust 
force, and applying a suitable numerical regression algorithm 
to obtain suitable hydrodynamic parameters: 

THQLRB FVVkVkVM ,                                         (6) 

where Lk and Qk are linear and quadratic drag coefficients 

respectively, while accounts for the modeling errors.  
A test is done by providing known thrust force, THF  over a 

given discrete time interval, Tn 1,0 to the AUV from rest. 

The resulting accelerations tVV  are measured, and its 
corresponding velocities tVV can also be obtained through 
integration. With these data, Lk and Qk  can be acquired which 

minimize the mean square error (MSE)
n t

n
MSE

0
21 .                                                                (7) 

The two basic requirements for implementing this method 
are to know the thruster outputs which provide known thrust 
forces, and to be able to measure the acceleration. Separate 
tests were conducted in a controlled environment to identify 
the thruster profile while the acceleration of the AUV is 
measured using the ADXL202 accelerometer. In the series of 
experiments carried out, data is collected from a series of input 
thrust forces over a time interval of 10s. 

TABLE V
SUMMARY OF EXPERIMENTAL DATA COLLECTED FROM HYDRODYNAMICS 

PARAMETER VALIDATION BASED ON DIFFERENT THRUST FORCES

Experiment 
Set

Input Thrust Forces 
(N) over the period of 
10s 

Lk

s
kg

Qk

m
kg

MSE

Set 1 5.61 12.24 18.86 18.57 72.24 8.24 

Set 2 5.61 18.86 31.43 19.41 73.63 10.14 

Average Term 18.99 72.94  

D.Simulation Framework 
The simulated model is created based on the known thrust 

force profile and the understanding of AUV dynamics. The 
proposed simulation framework can be simplified as shown in 
Fig. 6. 

Fig. 6 Simulation process 

The decoupled x-directional force at any instance, Fx(t) is 
calculated based on known thrust force at that instance 
subtracting projected environmental forces from previous time 
frame (in this case added mass effect, Fam and Drag Forces, 
Fdrag)

IV. HARDWARE

A. HPDC1500 Thruster 
The AUV is equipped with three pairs of HPDC1500 

thrusters from SeaBotix. These thrusters provide a maximum 
forward and backward thrust of 4.5kgf with blade speed 
running at 4500rpm. 

Fig. 7 SeaBotix HPDC1500 thruster 

Fx(t) = Fth(t) Fam(t 1)
Fdrag(t 1)

a(t) = Fx(t) / mass

v(t) = v(t 1) + a(t) * t

Fam(t) is calculated based
on calculated a(t)

Fdrag(t) is calculated based
on v(t) and OLS method
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B. Accelerometer 
A dual axis ADXL202 accelerometer produced by 

Analogue Devices is integrated into the inertial navigation 
unit. This unit can measure accelerations with a full-scale 
range of ±2 g for low g and tilt applications. The sensitivity 
for each axis measurement is typically 15%/g when used in a 
water tank with surrounding water temperature of 22°C. 
ADXL202 is chosen because it has the ability to measure both 
AC accelerations (caused by vibrations) and also DC 
accelerations (inertial force and gravity) while producing an 
analogue output which can be directly measured by a 
microprocessor counter, without an analogue-to-digital 
converter. 

Fig. 8 ADXL202 dual-axis accelerometer

C.Compass 
An electronic magneto-inductive compass is installed on-

board the AUV. This compass is used to accurately detect the 
AUV heading with an accuracy of up to ±0.1° when leveled. 
This electronic compass is properly calibrated with respect to 
the true north before conducting the experiments. 

Fig. 9 Electronic compass 

V. EXPERIMENT

In this section the experimental setup used for testing the 
accuracy of the models presented above is reported. The 
experimental setup consists of the AUV equipped with 
specified navigation system and a test-tank at DSTO. 

Due to the nature of this experiment, the AUV is set to 
propel forward and backward progressively at seven different 
set speeds, with its corresponding thrust forces (see Table VI). 
Since the robot is symmetrical and remained buoyant, the roll, 
pitch and yaw movements caused by couplings are neglected. 

TABLE VI 
THRUSTER SPEED LEVEL AND CORRESPONDING THRUST FORCES

Direction Speed Level Thrust Force (N) 

Forward +3 18.86 

Forward +2 12.24 

Forward +1 5.61 

Stop 0 0 

Backward -1 -5.61 

Backward -2 -12.24 

Backward -3 -18.86 

Fig. 10 Shows the thruster step command used in the experiment 
based on the tabulated thrust forces 

The experiment is carried out in a test-tank located at the 
DSTO lab. The test-tank has a dimension of 7m x 5m x 6m 
(Length x Width x Depth) (see Fig 10). The AUV is set to 
navigate forward with progressive known thrust force from the 
two horizontal thrusters, halt, and then exert reverse thrust 
with the same speed in a reversed order. Fig. 11 shows the 
thruster force profile of the AUV moving in a stepped order. 

A median filter for rejecting unwanted noise was applied to 
the acceleration data produced by the ADXL202. The median 
filter is configured to have length of 10 and width of 
0.003m/s². 

Fig. 11 Experimental trial within test tank 
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VI. RESULTS AND DISCUSSIONS

In this section, the comparative results between the 
simulation and the real experiment are presented. First the 
result obtained from the ADXL202 accelerometer is extracted. 
Using these values, the corresponding forces and acceleration 
profile can be generated. Direct integration technique is 
applied to obtain velocity.  

Based on the physical parameters of the AUV which can be 
computed using Table II and applying Equations 1, 2, 3 and 4, 
the simulated forces are acquired and used for comparison, see 
Fig. 12. 

Fig. 12 Comparison of x-acceleration profile between experimental 
data and simulated data. First plot shows the numerical simulation 

acceleration and experimental acceleration versus time. Second plot 
shows the error between the two. 

Fig. 13 Comparison of x-velocity and x-displacement profile between 
experimental data and simulated data. These graphs are obtained 

using direct integration method. 

The experiments were conducted repetitively for eight times 
to minimise random errors caused by the accelerometer 
readings. Throughout the eight trials, five were validated and 
three were discarded due to external interferences which 
distorted the sensor readings. These external interferences 
mainly consist of uncleared buffer within the AUV thruster 
controller where both horizontal thrusters did not initiate 
forward thrust at the same time, causing much variation in the 
data. It is to be noted that, minimal control algorithms were 
used to maintain forward and backward thrust during the 
experiments. Among the 5 successful trials, no significant 
variations were observed. The difference between 
experimental data and the simulated forces is compared for 
each successful experimental trial. These force mean errors 
and absolute error are presented in Fig. 13. Experiment 1 has 
been chosen to compare graphically the results obtained with 
experimental data and the simulated data using direct 
integration techniques. The average standard deviation,  is 
calculated to be 0.095. 

Fig. 14 Force Mean errors and standard deviations of five succesful 
trials 
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