
International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:11, 2007

678

Abstract—This paper presents findings from the evaluation study

carried out to review the UAE national ID card software. The paper
consults the relevant literature to explain many of the concepts and
frameworks explained herein. The findings of the evaluation work
that was primarily based on the ISO 9126 standard for system quality
measurement highlighted many practical areas that if taken into
account is argued to more likely increase the success chances of
similar system implementation projects.

Keywords—National ID system, software quality, ISO 9126.

I. INTRODUCTION
HE United Arab Emirates (UAE) have recently initiated a
national ID scheme that encompasses very modern and

sophisticated technologies. The goals and objectives of the
UAE national ID card programme go far beyond introducing a
new ID card document and homeland security [1]. To
increase its success, the government is pushing for many
innovative applications to explore ‘what can be done with the
card’. Examples of such possible applications of the card
ranges from using it as a physical identity document to prove
identity, to linking it to wide range of government services,
with the vision of replacing all existing identity documents
(e.g., driving license, labour card, health card, etc.) with this
new initiative. From such perspectives, it becomes critical
that such systems maintain a high level of quality. Quality
models can play a good role as useful tools for quality
requirements engineering as well as for quality evaluation,
since they define how quality can be measured and specified
[2]. In fact, the literature reveals that the use of quality
frameworks and models may well contribute to project
success, as it enables the early detection and addressing of
risks and issues of concern at an early stage of the project (see
for example [3],[4],[5]. This paper attempts to provide a short
evaluation of the population register software (referred to in
this paper as PRIDC – population register and ID card)
implemented part of the national ID card project in the UAE
to pinpoint areas of possible improvements.

The paper is structured as follows. The first section
provides brief background information about the concept of
software quality and measurement standards, with focus on

Manuscript received March 27, 2007.
Ali M. Al-Khouri is with Emirates Identity Authorit, Abu Dhabi, United

Arab Emirates (phone: +97150-613-7020; fax: +9712-404-6661; e-mail:
alkhouri@ emiratesid.ae).

ISO 9126 framework. The next section presents the methods
employed to obtain data based on which the system was
evaluated. The next few sections provide an overview of the
PRIDC system, its components, its development lifecycle
approach, results obtained from the previous tests, and
mapping these latter set of data to ISO 9126 quality attributes.
The paper is then concluded with some reflections on the
areas that need to be considered when pursing similar
evaluation studies with a focus on national ID systems.

II. SOFTWARE QUALITY
It is becoming a common trend for IT projects to fail. The

rate of failure in government projects is far higher than those
in the private industry. One of the main causes for such
failures was widely quoted in the literature to be related to
poor user requirements resulting in a system that does not
deliver what was expected from it (see also the statistics
presented in Fig. 1 from the recent Standish Group study).

The CHAOS survey of 8000+ projects found that of the
eight main reasons given for project failures, five are
requirements related. Getting the requirements right is
probably the single most important thing that can be done to
achieve customer satisfaction. Fig. 2 depicts further reasons
for such failures [6]. Many of these failures are argued to
could have been prevented with requirements verification and
the adoption of quality assurance frameworks [4],[7].

Using Quality Models to Evaluate National ID
systems: the Case of the UAE

Ali M. Al-Khouri

T

Standish Study Results:

51% of project failed
31% were partially successful

Failure causes:

13.1% In complete requirements
12.4% Lack of user involvement
10.6% Inadequate resources

9.9% Unrealistic user expectations
9.3% Lack of management support
8.7 % Requirements keep changing
8.1% Inadequate planning
7.5 % System no longer needed

Fig. 1 Standish group study results

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:11, 2007

679

In general terms, there are three different approaches to

system quality assurance:

1. Product Certification
An independent party (or a QA company) conduct
a limited exercise in verification, validation and /
or test of the software components.

2. Process Audit:
An independent party conduct and assessment of
the development process used to design, build and
deliver the software component.

3. User Satisfaction:
Analysis of the actual behaviour of the software.

Since the objective of the evaluation study in this paper
here is to judge whether the given implemented system has
met the requirement of product quality, the third category
approach was defined as the boundaries for the evaluation
taken place in this study.

A. Quality Measurement Standards
Software quality assessment is attracting great attention as

the global drive for systemic quality assurance continues to

gather momentum e.g., pressures of consolidations, mergers,
and downsising, emergence of new technologies [8]. Of the
very initial works conducted in the field of software quality
assessment was done by B. Boehm and associates at TRW [9]
and incorporated by McCall and others in the Rome Air
Development Center (RADC) report [10]. The quality models
at the time focused on the final product and on the
identification of the key attributes of quality from the user’s
point of view. The assessment framework was later
improved; consisting of quality attributes related to quality
factors, which were decomposed into particular quality criteria
and lead to quality measures (see Fig. 3).

Attempted standardisation work over the intervening years
resulted in the Software Product Evaluation Standard, ISO-
9126 (ISO/IEC, 1991). This model was fairly closely
patterned after the original Boehm structure, with a six
primary quality attributes that were subdivided into 27 sub-
characteristics as illustrated in Fig. 4.

Source: Adopted from Pfleeger (2001)

Fig. 2 Causes of faults during development

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:11, 2007

680

Fig. 3 Boehm quality model

However, the standard was criticised to provide very

general quality models and guidelines, and that they are very
difficult to apply to specific domains such as components and
CBSD (see for example: [11],[12]. However, this is believed
by others to be in fact one of its strengths as it is more
adaptable and can be used across many systems [13],[14]. To
solve this problem ISO/IEC 9126 has been revised to include
a new quality model which distinguishes between three
different approaches to product quality:

(1) External Quality metrics – ISO TR 9126 -1: a result of
the combined behaviour of the software and the computer
system and can be used to validate the internal quality of the
software;

(2) Internal Quality metrics – ISO TR 9126 – 3: a
quantitative scale and measurement method, which can be
used for measuring an attribute or characteristic of a software
product;

(3) Quality in use metrics – ISO TR 9126 – 4: is the
effectiveness, productivity and satisfaction of the user when

carrying out representative tasks in a realistic working
environment. It can be used to measure the degree of
excellence, and can be used to validate the extent to which the
software meets user needs. Fig. 5 depicts the relationship
between these approaches.

Fig. 5 Relationship between internal quality,
external quality and quality in use

Suitability
Accuracy

Interoperability
Security

Functionality
compliance

Maturity

Fault tolerance
Recoverability

Reliability
Compliance

Understand

ability
Learnability
Operability

Attractiveness

Usability
Compliance

Time behaviour

Resource
utilisation

Efficiency
Compliance

Analysability
Changeability

Stability
Testability

Maintainability
Compliance

Adaptability
Installability
Co-existence
Replaceability

Portability
Compliance

Are the required

functions available
in the software?

How reliable is the

software?

Is the software
easy to use?

How efficient is
the software?

How easy is to

modify the
software?

How easy is to

transfer the
software to

another
environment?

ISO/IEC 9126

Functionality

Reliability

Usability

Efficiency

Maintainability

Portability

Fig. 4 ISO/IEC 9126 standards characteristics

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:11, 2007

681

In brief, internal metrics measure the software itself,
external metrics measure the behaviour of the computer-based
system that includes the software, and quality in use metrics
measure the effects of using the software in a specific context
of use. Appropriate internal attributes of the software are
prerequisites for achieving the required external behaviour,
whereas external behaviour is a prerequisite for achieving
quality in use (see also Fig. 6).

Fig. 6 Approaches to software product quality

It is also worth to mention that a new project was launched
called SQuaRE - Software Product Quality Requirements and
Evaluation (ISO/IEC 25000, 2005) - to replace the above but
follow the same general concepts of 9126 standard (see also
Fig. 7).

The five divisions of SQuaRE standard:

(1) Quality management division (ISO 2500n)
(2) Quality model division (ISO 2501n)
(3) Quality measurement division (ISO 2502n)
(4) Quality requirements division (ISO 2503n)
(5) Quality evaluation division (ISO 2504n)

Fig. 7 SQuaRE standard

Nonetheless, research and practical work shows that the

assessment of the quality of a software component is in
general a very broad and ambitious goal [11]. Recent research
also shows that these characteristics and sub-characteristics
covers a wide spectrum of system features and represent a
detailed model for evaluating any software system as Abran et
al. [15] explain:

“…ISO 9126 series of standards …. even though it is not exhaustive,
this series constitutes the most extensive software quality model
developed to date. The approach of its quality model… is to represent
quality as a whole set of characteristics… This ISO standard includes
the user’s view and introduces the concept of quality in use.”

III. METHODOLOGY

“If you chase two rabbits, both will escape." Chinese Proverb

ISO 9126 quality characteristics and sub-characteristics
were used to evaluate the national ID system. In this
investigation several evaluation methods were employed.
Following were the prime sources of information for the
evaluation study:

1. information gathered from the test sessions took place
during the acceptance of the project deliverables;

2. observation of the system environment (both at the
central operational and registration centres);

3. by means of recording the author’s own experience as
the Director of the Central Operations sector, and head
of the technical committee overseeing the
implementation of the programme.

In general, the evaluation was qualitative in nature. In
carrying out the evaluation and recording the findings, the
PRIDC system went through two types of testing; functional
and technical.

A. Functional Testing
This is an application level testing from business and

operational perspective. It is conducted on a complete,
integrated system to evaluate the system's compliance with its
specified requirements. Often called black box testing, this
type of tests is generally performed by QA analysts who are
concerned about the predictability of the end-user experience.
During the deliverables acceptance, the national ID system
was tested with black box testing procedures (that focuses on
testing functional requirements and does not explicitly use
knowledge of the internal structure) as per the test plan
designed by the solution provider. No change was allowed by
the vendor to the test plan as they wanted to narrow down the
scope of testing, and limit it to the test cases developed by
them.

B. Technical Testing
This is the system level testing. It tests the systems, which

are supporting or enabling to run the Functional Applications.
With general perception of QA, the COTS are not seen to be
required to test but they need to be audited for the
configuration and deployment set-up.

Generally, white-box testing (also called as glass, structural,
open box or clear box testing) was considered here by the
technical team to test the design of the system that should
allow a peek inside the ‘box’, as this approach focuses
specifically on using internal knowledge of the software to
guide the selection of test data. White-box testing requires the
source code to be produced before the tests can be planned
and is much more laborious in the determination of suitable
input data and the determination if the software is or is not
correct. It is worth mentioning that a failure of a white box
test may result in a change which requires all black-box
testing to be repeated and the re-determination of the white
box paths. For this obvious reason there was always
negligence from the vendor to initiate a white-box testing.

It must also be heeded that neither black nor white box
testing can guarantee that the complete specifications have

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:11, 2007

682

implemented and all parts of the implementation have been
tested. To fully test a software product, both black and white
box testing are required. While black-box testing was limited
by the test plan documents provided by the vendor, the white
box testing was not possible to perform since the source code
was still not handed-over to the client at the time of writing
this study. However, all the architectural component of the
national ID Sub-systems which were selected and assembled
from the COTS were assessed and audited to their
configuration and deployment set up. Having addressed the
evaluation methods, the following sections describe the details
of the work carried out in this study.

IV. PRIDC SYSTEM AS A COMPONENT-BASED SYSTEM

“For more than a decade good software development practice has
been based on a “divide and conquer” approach to software design
and implementation. Whether they are called “modules”, “packages”,
“units”, or “computer software configuration items”, the approach
has been to decompose a software system into manageable
components based on maximizing cohesion within a component and
minimizing coupling among components.” (Brown and Wallnau,
1996, p.414)

A. What is Component-Based Software (CBD)?
Component-based software development (CBD) is an

emerging discipline that promises to take software engineering
into a new era [16]. Building on the achievements of object-
oriented software construction, it aims to deliver software
engineering from a cottage industry into an industrial age for
Information Technology, wherein software can be assembled
from components, in the manner that hardware systems are
currently constructed from kits of parts (ibid).

Component-based software development (CBSD) shifts the
development emphasis from programming software to
composing software systems as it embodies the ‘buy, don’t
build’ philosophy espoused by [17]. See also Fig. 8. The
concept is also referred to in the current literature as
component-based software engineering (CBSE) [18],[19]. It
principally focuses on building large software systems by
integrating different software components and enhancing the
overall flexibility and maintainability of the systems. If
implemented appropriately, the approach is argued to have the
potential to reduce software development costs, assemble
systems rapidly, and reduce the spiraling maintenance burden
associated with the support and upgrade of large systems [20].

[21] define component-based software development as an
approach “based on the idea to develop software systems by
selecting appropriate off-the-self components and then to
assemble them with a well-defined software architecture.”
They state that a component has three main features:

1. is an independent and replaceable part of a system that
fulfils a clear functions,

2. works in the context of well-defined architecture,
3. communicates with other components by its interface.

Component
Repository

Component 1

Component 2

Component n

Software
system

select
assemble

Fig. 8 Component-based software development

According to [22] two main advances are raising the profile

of software components as the basic building blocks of
software - see also: [16],[23],[24],[25],[26],[27]:

(1) the object-oriented development approach which is
based on the development of an application system
through the extension of existing libraries of self-
contained operating units, and

(2) the economic reality that large-scale software
development must take greater advantage of existing
commercial software, reducing the amount of new code
that is required for each application.

Component-based development approach introduces
fundamental changes in the way systems are acquired,
integrated, deployed and evolved. Unlike the classic waterfall
approach to software development, component-based systems
are designed by examining existing components to see how
they meet the system requirements, followed by an iterative
process of refining requirements to integrate with the existing
components to provide the necessary functionality [22].

B. Component-Based Software Development Lifecycle
The component life cycle is similar to the life cycle of

typical applications, except in implementation and acquisition
phases where the two life cycles differ. The life cycle of
component-based software systems can be summarised as
follows:

1. Requirement analysis: a process of defining and
understanding the activities that the information system
is meant to support;

2. Software architecture design: a process of developing
detailed descriptions for the information system;

3. Component identification and customisation
(implementation): a process of formalising the design
in an executable way by acquiring complete
applications or components through purchase,
outsourcing, inhouse development, component-leasing
etc;

4. System integration: a process of adjusting the system to
fit the existing information system architecture. This

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:11, 2007

683

can include tasks such as adjusting components and
applications to their specific software surroundings,

5. System testing: a process of identifying and eliminating
nondesirable effects and errors and to verify the
information system. This can include both user-
acceptance- and application integration-tests,

6. Software maintenance: a process of keeping the
integrated information system up and running. This
can include tasks such as upgrading and replacing
applications and components in the information
system. It also includes performing consecutive
revisions of the integrated information system.

Having shortly highlighted some background information
about the concept of component-based development and
lifecycle, the next section takes a snapshot of the PRIDC
system and maps it to component-based software.

C. PRIDC System Development Life Cycle
Broadly speaking, the development of the PRIDC system in

general can be described to have incorporated the following
two approaches:

1. the development of a uniquely tailored information
system (population register) to enable the registration
of population into the system in accordance to the pre-
defined business requirements, and

2. the integration of several application/hardware package
to achieve the desired functionality requirements e.g.,
biometrics, PKI, smart cards.

For the purpose of benchmarking PRIDC system
development lifecycle, a framework proposed by [28] for
quality assurance of component-based software development
paradigm has been adopted in this study. The framework
contains eight phases relating to components and systems that
provide better control over the quality of software
development activities and processes:

1. Component requirement analysis.
2. Component development.
3. Component certification.
4. Component customisation.
5. System architecture design.
6. System integration.
7. System testing.
8. System maintenance.

The details of this benchmarking are presented in the

following tables.

TABLE I
COMPARISON OF PRIDC SYSTEM LIFECYCLE WITH COMPONENT BASED SOFTWARE APPROACH

No. Component-based Software Phases . PRIDC
System
Life
cycle

Remarks

1
Component Requirement Analysis –Component
requirement analysis is the process of discovering,
understanding, documenting, validating and managing the
requirements for the Component.

Category
A

All the PRIDC project Lots which are part of collection and analysis of user
requirements. Based on these functional requirement applications have
design.

2 Component Development- Component development is
the process of implementing the requirement for a well-
functional, high quality component with multiple interface.

Category
B

This phase is an internal process happing within the solution provider
boundary.

3 Component Certification-Component certification is the
process that involves:
1.component outsourcing,
2.component selection,
3.component testing.

Category
B This phase is an internal process happing within the solution provider

boundary. Emirates ID may request for this certification if exits.

4 Component Customisation-It is the process that involves
1) modifying the component for the specific requirement;2)
doing necessary changes to run the component on special
platform;3) upgrading the specific component to get better
performance or a higher quality.

Category
B This phase is an internal process happing within the solution provider

boundary.

5 System Architecture Design-
It is the process of evaluating, selecting and creating
software architecture of a component-based system.

Category
B This phase is an internal process happing within the solution provider

boundary.

6 System Integration-it is process of assembling
components selected into a whole system under the
designed system architecture.

Category
B This phase is an internal process happing within the solution provider

boundary.

7 System Testing-
System testing is the process of evaluating a system to : 1)
confirm that system satisfies the specified requirement; 2)
identify and correct defects in the system implementation.

Category
B and

Category
C

The solution provider must have their own framework for testing (such as
code testing and unit testing) of their product. But as a part of Project Lot in
category C (that means sub-systems installation and commissioning – Lot
12,Lot3 testing) ,this task has performed.

8 System Maintenance-
System maintenance is the process of providing service
and maintenance activities needed to use the software
effectively after it has delivered.

No Lot
of

PRIDC
project

matched
with this

phase

This is a one of the major phases missing in the PRIDC system life
cycle. This is one of the rigorous drawbacks in PRIDC Project contract.

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:11, 2007

684

ISO Standard for System Implementation
In 1987 ISO and IEC(International Electrotechnical Commission) established a joint Technical Committee (JCT1) on

Information Technology. In June 1989, the JCT1 initiated the development of ISO/IEC 12207, on software life cycle processes
to fill a critical need. The ISO was published August 1,1995.

Fig. 9 ISO 12207 standard

A Comparison of PRIDC System with ISO Standard
PRIDC systems Lifecycle is currently based on project implementation phases. The Project implementation is executing in

Lot-wise as framed in the contract. A comparative study of PRIDC Systems Life Cycle with ISO 12207 standard can be
presented as below:

TABLE II

COMPARISON OF PRIDC SYSTEM WITH ISO 12207 STANDARD

No ISO 12207 PRIDC System Life cycle

1 Primary life cycle processes
1.1 Acquisition process All lots of Category A.
1.2 Supply process All lots of Category D.
1.3 Development process All lot of Category B.
1.3.1 Process implementation All lots of Category C.
1.3.2 System requirement analysis All lots of Category A.
1.3.3 System architectural design All lots of Category B.
1.3.4 Software requirement analysis The solution provider internal process.
1.3.5 Software architectural design The solution provider internal process.
1.3.6 Software detail design The solution provider internal process.
1.3.7 Software coding and testing The solution provider internal process.

EIDA had done few of such testing.
1.3.8 Software integration The solution provider internal process.
1.3.9 Software Qualification testing The solution provider internal process.
1.3.10 System integration The solution provider internal process.
1.3.11 Software qualification testing The solution provider internal process.

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:11, 2007

685

1.3.12 Software installation The solution provider internal process.
1.3.13 Software acceptance Support Lot 12 and Lot3 testing
4 Operation Process Need to define.
5 Maintenance Process Need to define.
6 Supporting life cycle processes
6.1 Documentation process Done as a part Project deliverable.
6.2

Configuration management process
Done as a part Project deliverable.

6.3 Quality assurance process Not done as a part of Project contract.
6.4 Verification process

Can be considered, Lot 3 system compliance test.
6.5 Validation process

Can be considered, Lot 12 system compliance test.
6.6 Joint review process

Can be consider – program management meeting.
6.7 Audit process Need to perform.
6.8 Problem resolution process Need to perform.
7 Organizational life cycle processes
7.1 Management process EIDA needs to perform.
7.2 Infrastructure process EIDA needs to perform.
7.3 Improvement process EIDA needs to perform.
7.4 Training process

Done as a part of Lot 3 – Admin Training.

D. ISO 9126 and PRIDC Mapping
Following is a summary of the evaluation results as per the ISO 9126 quality attributes.

Functionality

the degree of existence of a set of functions that satisfy stakeholder/business implied needs and their properties. Overall, in terms
of number of changes requested on the system, as illustrated in Table 1.10, there were more than 213 modification items in the form
of 53 change requests (23 major changes) passed to the vendor to implement. This was the first functional test results with the first
version of the PRIDC system. This is a significant amount of modifications and it clearly implies that there was a big gap during the
system requirement analysis and capturing phase.

Suitability

Can software perform the tasks required? The
degree of presence of a set of functions for
specified tasks (fitness for purpose)

checked against specifications & feedback from registration centres.

Accuracy

is the result as expected? The degree of
provision of right or agreed results or effects

checked against specifications. Test cases were developed by the test team of
the vendor. Besides, there were many other cases that were not tested for
accuracy but encountered later after the release of the software.

Interoperability

Can the system interact with another system?
the degree to which the software is able to
interact with specified systems (i.e. physical
devices)

checked against specifications. However, the system was designed to be a
closed architecture, as interoperability with future systems was seen to be of big
concern.

Security

Does the software prevent unauthorised access?
a set of regulations for maintaining a certain
level of security; degree to which the software
is able to prevent unauthorised access, whether
accidental or deliberative, to programs and data
(i.e. login functions, encryption of personal
data etc).

checked against specifications and in accordance with the Information Security
Policy

The PRIDC system is a critical system for the country, thus important security
features were incorporated into the system to ensure high confidentiality,
integrity and authenticity of the data. The security is built around the following
main rules:

 • Strong authentication of the operators (each end-user will use both
password and
 fingerprint to logon onto the system),
 • Network security using Virtual Private Network (VPN) + Demilitarised
Zone (DMZ) and
 Secure Socket Layer (SSL) over Hyper Text Transfer Protocol (HTTP),
 • Strong physical protection of the Central, Disaster Recovery and Service
Points Local
 Area Networks (LAN)

The security scheme was implemented at 4 levels:

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:11, 2007

686

 1) Application level, 2) Network level, 3) System level, 4) Physical level.

The security features carried out at each of the above levels included a wide
range of advanced international security standards and measures: X509 V3
certificates, X500 directory, LDAP V2 and V3, DES, 3xDES, RC2, RC4, AES
ciphering algorithms (used by CISCO VPN), RSA (PKCS#1) signature
algorithms, MD2, MD5, SHA1, Diffie-Hellman and RSA key exchange
algorithms, pkcs#12, pkcs#7, pkcs#10, IPsec, IKE. TOO MUCH SECURITY!

Compliance

the degree to which the software adheres to
application-related standards or conventions or
regulations in laws and similar prescriptions

checked against specifications

Reliability

the capability of the software to maintain its level of performance under stated conditions for a stated period of time (This is
assessed based on the number of failures encountered per release)

Maturity

Have most of the faults in the software been
eliminated over time? the frequency of failure by
faults in the software

If looked at the number of sub versions released of the PRIDC system (ie., ver
1.5,ver 1.6 and ver3.0) as depicted in Table 1.7, the evolution of these
versions was unplanned (i.e., previously not specified) versions of the system,
which signifies that the immaturity of the system in terms of business
requirements and needs. At the time of carrying out this evaluation, the
software was still seen to require further modifications before the system can
be finally accepted.

Fault tolerance

is the software capable of handling errors? the
ability to maintain a specified level of
performance in cases of software faults or of
infringement of its specified interface; is the
property that enables a system to continue
operating properly in the event of the failure of
some of its components.

Although the system had a centralised architecture, its architecture allowed the
different systems to continue operation in the cases of failure of the central
system through replication and redundant systems.

Recoverability

Can the software resume working and restore lost
data after failure? the capability of software to
re-establish its level of performance and recover
the data directly affected in case of a failure

Databases were continuously replicated on the Disaster Recovery site. The
system insured that no more than one hour of work would be lost following a
database crash/failure. However, in case of a major disaster that would lead to
the loss of the operational capacity of the main data centre, the PRIDC system
was planned to be restarted within 24 hours.

Usability

the effort needed for the use by a stated or implied set of users.

Understandability

does the user comprehend how to use the
system easily? evaluates the attributes of
software that bear on the users' effort for
recognizing the underlain concept of the
software. This effort could be decreased by the
existence of demonstrations

Usability testing uncovered many difficulties, such as operators having difficulty
understanding system interface, business logic and processes. With the lack of
on-line help function, the GUI interface of the system did not seem to follow any
clear standard, as operators started guessing what different buttons may mean.
For example, two registration centre’s' operators deleted the files of all
registered applicants on one day when they pressed the button 'Abort' to cancel
an operation, where the system was performing the action of 'Delete' with the
'Abort' button. In general, Interface functions (e.g., menus, controls) were no
easy to understand.

Learnability

can the user learn to use the system easily?
evaluates the attributes of software that bear on
the users' the user's effort for learning how to
use the software

User documentation and help were not complete at the time of carrying out this
evaluation. The system was not easy to learn as users had to repeat the training
sessions many times as the cases of data entry errors was raising when post-audit
procedures for data quality check were implemented.

Operability

can the user use the system without much
effort? evaluates the attributes of software that
bear on the users' effort for operation and
operation control (e.g. function keys, mouse
support, shortcuts e.t.c.)

The interface actions and elements were sometimes found to be inconsistent -
error messages were not clear and led to more confusion and resulted in
operators guessing and attempts to rectify problems which in turn led to deeper
problems as the system was not designed to handle user play-around cases (i.e.,
to handle unexceptional errors). Some important functions such as deletion was
being performed with prompt to confirmation.

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:11, 2007

687

Attractiveness

does the interface look good? evaluates how
attractive is the interface to the user?

the system design and screen layout and colour was not so appealing

Efficiency

Have functions been optimised for speed? Have repeatedly used blocks of code been formed into sub-routines?

Time Behaviour

how quickly does the system respond?
evaluates the time it takes for an operation to
complete; software's response and processing
times and throughput rates in performing its
function

To be checked against specification. However, the full testing of this
characteristic was not possible at the time of carrying out this study since the
daily enrolment throughput was around 1200 people a day, subsequently the
same figures for the card production.

From a database capacity view point, the PRIDC system was dimensioned to
manage records of 5 Million persons. Whereas the throughput
of the system was as follows:

 • allows for up to 7,000 enrolments per day.
 • able to produce up to 7,000 ID Cards per day.
 • The Biometric Sub-System is able to perform up to 7,000 person
identification (TP/TP)
 searches per day.

The processing operations was designed as follows:

 • New enrolment: 20 minutes
 • Card collection: 3.5 minutes
 • Card Renewal: 8 minutes
 • PR Functions: 8.5 minutes
 • Civil investigation: 11 minutes
 • Biometric subsystem: Within 22 hours

Resource Utilisation

does the system utilise resources efficiently? is
the process of making code as efficient as
possible; the amount of resources and the
duration of such use in performing the
software's function

This task was not possible at the time of carrying out the evaluation, since the
source code was still not handed over to the client.

Maintainability

the effort needed to make specified modifications

Analysability

can faults be easily diagnosed? the effort
needed for diagnosis of inefficiencies or causes
of failure or for identification of parts to be
modified

During system installation and with the release of the software (also during
business operations), undocumented defects and deficiencies were discovered by
the users of the software. Those encountered faults were very difficult to
analyse and diagnose even by the vendor technical team and encountered
software inefficiencies usually took long time to fix, as problems were usually
passed to the development team in France for investigation and response.

Changeability

can the software be easily modified?
Changeability is the effort needed for
modification, fault removal or for
environmental change

The system architecture was so complex, as the word 'change to the system'
meant a nightmare to the vendor. The vendor always tried to avoid changes all
the time with the justification: 'the system in the current form, allows you to
enrol the population and produce ID cards for them'. The client concern was that
the software in its current version opens doors for many errors from user entry
errors to incomplete business functions that were not captured during the phase
of requirement specifications.

it is worth also to mention that changes to the system when agreed was taking so
long to implement. For example, adding a field to the system (job title) took a
work of 1 month to implement with an amazing amount bill.

Stability

can the software continue functioning if
changes are made? the risk of unexpected
effects of modifications

as mentioned above, the system complex architecture implied that a change in
one place would almost affect many parts of the system. A change in one part of
the system, would normally cause unexpected effects as a result of the
modification.

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:11, 2007

688

Testability

can the software be tested easily? the effort
needed for validating the modified software.

in general, system (business) processes and functions were tested against
specifications. However from a technical perspective, the complex
architecture of the system made it impossible to test many areas of the
software. The vendor was pushing for the system to be accepted from a
functional perspective (including the network setup).

Portability

A set of attributes that bear on the ability of software to be transferred from one environment to another

Adaptability

can the software be moved to another
environments? the software's opportunity for
adaptation to different environments(e.g. other
hardware/OS platforms

The software was designed and coded to operate within a unique environment
of databases, operating systems and hardware. Most of the hardware used
proprietary APIs' (Programming Applications Interface) to interface with the
system. This automatically locked the system to only use the specified set of
hardware but not otherwise.

Installability

can the software be installed easily? the effort
needed to install the software in a specified
environment

Though installation files and guides were available, the software architecture
was not clear at all. All attempts made by the technical members failed in this
regard. Despite the several requests, the vendor felt that the system should not
be installed other than the vendor himself.

Co-existence

does the software comply with portability
standards? Conformance is the degree to which
the software adheres to standards or conventions
related to portability

the system did not comply with any portability standards other than the
vendor's own.

Replaceability

does the software easily replace other software?
the opportunity and effort of using the software
in the place of specified older software.

The PRIDC software was expected to take over the current population register
database maintained part of the immigration system in the Ministry of Interior.
However, this was a long-term objective. The software needed to go under
several revolutions, before it can achieve this objective.

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:11, 2007

689

V. REFLECTION

“Some problems are so complex that you have to be highly
intelligent and well-informed just to be undecided about them.”

Laurence J. Peter

Many researchers and practitioners argue that measurement
is an essential issue in project and process management and
improvement from the logic that it is not possible to control
what is not understood and it is not possible to scientifically
understand what is not measured [4]. Using measurement
practices may well increase the rate of project success to a
higher level, statistically [30]. In the real world, however, this
may be argued to be a valid issue at the organisation level not
at the individual project level. This is to say that projects
usually have very short term strategies with very tight
deadlines and tend to be the result of an opportunistic
behaviour; where applying such measurement strategies may
not be seen to add value, bearing in mind the time and cost
associated with such measurement analysis activities.

As the UAE national ID system will become the most
critical system in the country as the main central hub for
population identity cross checking and service eligibility (i.e.,
online with 24/7 availability requirement), it becomes
important that the software goes under a thorough quality
check. Taking into consideration the CBS nature of the
system, some components were viewed to be more critical to
go under a through quality checks as a failure in different
software components may lead to everything from public
frustration to complete chaos when the card becomes ‘the
means’ to accessing services.

The evaluation study carried out here attempted to provide
a short but thorough overview of the PRIDC system, and
measure the system quality against ISO 9126 standard. Many
limitations had been encountered that will help greatly the
project team to address before the final acceptance of the
system from the vendor.

From the evaluation, the system was found to have been
developed as a component-based software system, but most
importantly was observed to be a closed system. This closed
architecture—although it was promised to work as prescribed
in the specification documents— was viewed to likely cause
the following major drawbacks in the short and long run:

1. the system supported only a few hardware vendors, as
this was seen to result in the system loosing certain
amount of autonomy and promoting it to acquire
additional dependencies when integrating COTS
components;

2. system evolution was not a simple plug-and-play
approach. Replacing one component was more
typically to have rippling affects throughout the
system, especially where many of the components in
the system were black box components; and

3. the system architecture forced the client to return again
and again to the original vendor for additional
functionality or capacity.

The closed architecture with the different proprietary
platforms it incorporated were altogether more likely to
slowdown the pace of organisational business and process
excellence as changes to the system would be expensive and
extremely difficult to maintain. The literature has not been
kind to the closed system architectures as research show that
such systems have proven to be too slow and too expensive to
meet the rapidly changing market needs, as it restricts the
level of quality that can be achieved [30],[31],[32],[33].
However, some vendors and service providers strongly
advocate standardised systems via closed architectures. Their
argument is that such architectures are so necessary in their
system standards efforts and that the openness of the
component-based approach leads to a chaos of choices and
integration headaches, and that such architectures to address
the ‘security’ needs.

Moreover, over the long-term life of a system, additional
challenges may well arise, including inserting of COTS
components that correspond to new functionality and
"consolidation engineering" wherein several components may
be replaced by one "integrated" component. Following are
further reflections on the major ISO 9126 quality attributes:

A. Functionality
The functionality factors were mainly checked against the

system specification documents. However, it was discovered
on the release of the first version of the software that many
business functions were not covered in the specifications,
resulting in the need for subsequent releases to address and fill
the operational gaps. However, the evaluated software
version in this study was not at an acceptable state, as it
required additional enhancements to cover some of the
additional business functions and rectify identified
deficiencies, errors and bugs. It is also worth to mention that
the overemphasis of security requirements during the
specification phase contributed exponentially to the existing
high complexity of the overall system, and its interoperability
with other sub-systems.

The fundamental problem concerning software
development is defined as to try to understand the customer’s
sometimes unspoken needs and requirements and translate
these into a tangible software solution. The literature shows
that one of the principle causes of information system failure
is when the designed system fails to capture the business
requirements or improve the organisational performance.
Researchers argue that such failures were because many
organisations tend to use rule-of-thump and rely on previous
experiences [35]. The vendor adopted the waterfall system
development approach when it came to user requirements
analysis and system implementation. The vendor was reluctant
to make any modification to the developed system, and was
presenting high cost impact on each change to it even if it was
a change to modify labels of text fields on user screens. The

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:11, 2007

690

common response of the vendor was that ‘the system is
developed according to the agreed specification, and any
deviation from that is probably to have a cost impact.’

This attitude of the vendor opened doors for long
discussion meetings and arguments around this area, and
slowed down the progress of the project, as changes got
parked for long periods as some got buried and lost into the
huge project documents and long meeting minutes. However,
system functionality is a temporary matter that can be resolved
once attended to. The most critical items that needed to be
addressed along with the functionality concerns were the areas
discussed next.

B. Reliability
Software reliability is the probability that a software system

will not cause the failure of the system for a specified time
under specified conditions. The different tests carried out
during the deliverables acceptance relied on systematic
software testing strategies, techniques, and process, and
software inspection and review against specifications.
However, and during this study, it was found very useful to
incorporate less systematic testing approaches to explore the
ability of the system to perform under adverse conditions.

C. Usability
The software seemed to have many usability concerns as

system users struggled to understand system processes and
functions, as minimal user documentation were available that
also did not cover the areas users needed most. Extensive
training was required to educate the users on the system, as
much effort was required from the registration centre
supervisors to support the users. The system was required to
go through a major review to evaluate its usability. It also
needed to be enhanced to follow a standard GUI methodology
overall.

D. Efficiency
System processes and functions were checked against the

time indicated in the specifications from a functional
perspective. Nonetheless, code review was not possible
because the source code was not handed over to the client at
the time of carrying out this evaluation. Overall, the technical
team had concerns about the capability of the system to
provide acceptable performance in terms of speed and
resource usage.

E. Maintainability
The complex architecture of the system made the analysis

and diagnoses of discovered system faults and their
maintenance so difficult where problems were usually passed
to the development team in another country for investigation
and preparation of bug-fix patches. Besides, the complex
architecture acted also as a huge barrier to making urgent
changes to the system as it required long analysis to evaluate
the impact on the different components of the software,
associated with an unrealistic cost impact of implementing
such changes claimed by the vendor.

F. Portability
The system had many proprietary API’s to interface with

the different components of the system, locking the system to
use a specified set of hardware but not otherwise. Installation
files and guides did not enable the reinstallation of the system.
Overall, the system was observed not to comply with any
portability standards other than the vendor’s own, which can
be carried out only by the vendor himself. The vendor was
asked to add APIs to the system to allow the plug-in of new
components to the system both data and hardware wise.

VI. CONCLUSION

“You don't drown by falling in the water; you drown by staying
there.”

Edwin Louis Cole

As widely quoted in the literature, the application of
software metrics has proven to be an effective technique for
improving the quality of software and the productivity of the
development process i.e the use of a software metrics program
will provide assistance to assessing, monitoring and
identifying improvement actions for achieving quality goals
(see for example: [3],[4],[5],[6],[8],[9],[12],[14],[29],[35],
[36],[37]. In this study, the author attempted to use the ISO
9126 quality model to evaluate the PRIDC system; mainly
from a product quality angle. See also Fig. 10.

Fig. 10 software quality metrics framework - Source: [37]

The study presented in this paper contributed to a great

extent in spotting some of the system deficiencies that were
addressed prior to the final acceptance and handover of the
system. It was also the author’s observation that the project
team, with the workload and responsibilities put on them,
seemed to be overloaded and to have a scattered vision of how
things be done and achieved. Everybody wanted the project
to conclude as quickly as possible as everybody seemed also
to be confident of the work produced by the vendor. The use
of quality framework showed in this study can be a very

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:11, 2007

691

useful and supportive methodological approach for going
about software quality assessment. ISO 9126 framework can
act as a comprehensive analytical tool as it can move beyond
superficial evaluation to achieve a more thorough view of the
system’s strengths and weaknesses than can be provided by
less systematic approaches.

When implementing big projects such as National ID
schemes, project management and technical teams should use
quality models for evaluating the overall architecture prior to
the final acceptance of the system. As such and if used as a
guide in an early stage of the project it can arguably provide a
basis for informed and rational decision making and have the
potential to increase the project success rate.

From a technical view point, the ISO software quality
metrics may also be extended throughout the phases of
software development life cycle. The framework is designed
to address the wide range of quality characteristics for the
software products and processes enabling better description of
software quality aspects and its importance.

ACKNOWLEDGMENT
The author would like to thank Mr. Naorem Nilkumar for his

contribution and the technical input that improved the overall
work presented in this paper.

REFERENCES
[1] A.M. Al-Khouri, “UAE National ID Programme Case Study,”

International Journal Of Social Sciences, vol. 1, no. 2, pp.62-69, 2007.
[2] E. Folmer & J. Bosch (2006) “A Pattern Framework for Software

Quality Assessment and Tradeoff analysis,” International Journal of
Software Engineering and Knowledge Engineering, 2006 [Online].
Available: http://www.eelke.com/research/literature/SQTRF.pdf.

[3] S.N. Bhatti, “Why Quality? ISO 9126 Software Quality Metrics
(Functionality) Support by UML,” ACM SIGSOFT Software
Engineering Notes, vol. 30, no. 2, 2005.

[4] E.J. Garrity & G.L. Sanders, “Introduction to Information Systems
Success Measurement,” in E.J. Garrity & G.L. Sanders (editors)
Information System Success Measurement. Idea Group Publishing, pp.1-
11, 1998.

[5] R.B. Grady, “Practical results from measuring software quality,”
Communications of the ACM, vol. 36, no. 11, pp.63-68, 1993.

[6] S. Hastie (2002) “Software Quality: the missing X-Factor,’ Wellington,
New Zealand: Software Education [Online]. Available:
http://softed.com/Resources/WhitePapers/SoftQual_XF-actor.aspx.

[7] S.L. Pfleeger, Software Engineering Theory & Practice. Upper Saddle
River, New Jersey: Prentice Hall, 2001.

[8] R.A. Martin & L.H. Shafer (1996) “Providing a Framework for Effective
Software Quality Assessment - Making a Science of Risk Assessment,”
6th Annual International symposium of International council on Systems
Engineering (INCOSE), Systems Engineering: Practices and Tools,
Bedford, Massachuestts [Online]. Available: http://www.mitre.org/wor-
k/tech_transfer/pdf/risk_assessment.pdf.

[9] B.W. Boehm, J.R. Brown, H. Kaspar, M. Lipow, G.J. MacLeod, G.J. &
M.J. Merritt, “Characteristics of Software Quality.” TRW Software
Series - TRW-SS-73-09, December, 1973.

[10] J.A. McCall, P.K. Richards & G.F. Walters, “Factors in Software
Quality,” volumes I, II, and III, US. Rome Air Development Center
Reports NTIS AD/A-049 014, NTIS AD/A-049 015 and NTIS AD/A-
049 016, U. S. Department of Commerce, 1977.

[11] M.F. Bertoa, J.M. Troya & A. Vallecillo, “Measuring the Usability of
Software Components,” Journal of Systems and Software, Vol. 79, No.
3, pp. 427-439, 2006.

[12] S. Valenti, A. Cucchiarelli, & M. Panti, “Computer Based Assessment
Systems Evaluation via the ISO9126 Quality Model,” Journal of
Information Technology Education, vol. 1, no. 3, pp. 157-175, 2002.

[13] R. Black (2003) “Quality Risk Analysis,” USA: Rex Black Consulting
Services [Online] Available:
http://www.rexblackconsulting.com/publications/Quality%20Risk%20A
nalysis1.pdf.

[14] G.G. Schulmeyer & J.I, Mcmanus, “The Handbook of Software Quality
Assurance” (3rd edition). Upper Saddle River, New Jersey: Prentice
Hall, 1999.

[15] A. Abran, Al-Qutaish, E. Rafa, J.M. Desharnais, & N. Habra, “An
Information Model for Software Quality Measurement with ISO
Standards,” in SWEDC-REK, International Conference on Software
Development, Reykjavik, Islande , University of Iceland, pp. 104-116,
2005.

[16] K.-K. Lau, (editor) ‘Component-based Software Development: Case
Studies,’ World Scientific (Series on Component-Based Software
Development), vol. 1, 2004.

[17] F.P. Brooks, “No Silver Bullet: Essence and Accidents of Software
Engineering,” Computer, vol. 20, no. 4 , pp. 10-9, 1987.

[18] A.W. Brown, “Preface: Foundations for Component-Based Software
Engineering,” Component-Based Software Engineering: Selected Papers
from the Software Engineering Institute. Los Alamitos, CA: IEEE
Computer Society Press, pp. vii-x, 1996.

[19] A. Brown & K. Wallnau “Engineering of Component-Based Systems,”
Proceedings of the Second International IEEE Conference on
Engineering of Complex Computer Systems, Montreal, Canada, 1996.

[20] C. Szyperski, Component Software: Beyond Object-Oriented
Programming. New York, NY.: Addison- Wesley, 1997.

[21] X. Cai, M.R. Lyu & K. Wong(2000) “Component-Based Software
Engineering: Technologies, Development Frameworks and Quality
Assurance Schemes,” in Proceedings APSEC 2000, Seventh Asia-
Pacific Software Engineering Conference, Singapore, December 2000,
pp372-379 [Online]. Available:
http://www.cse.cuhk.edu.hk/~lyu/paper_pdf/apsec.pdf.

[22] A.W. Brown & K.C. Wallnau, “The Current State of CBSE,” IEEE
Software, vol. 155, pp. 37– 46, 1998.

[23] M. Kirtland, Designing Component-Based Applications. Redmond,
Washington: Microsoft Press, 1999.

[24] G.T. Heineman & W.T. Councill (editors) Component Based Software
Engineering: Putting the Pieces Together. Boston, MA: Addis on-
Wesley, 2001.

[25] G.T. Leavnesn & M. Sitaraman, Foundations of Component-Based
Systems. New York: Cambridge University Press, 2000.

[26] R. Richardson, “Components Battling Component,” Byte, vol. 22, no.
11, 1997.

[27] R. Veryard, The Component-Based Business: Plug and Play. London:
Springer-Verla, 2001.

[28] G. Pour, “Component-Based Software Development Approach: New
Opportunities and Challenges,” in Proceedings Technology of Object-
Oriented Languages, TOOLS 26, pp. 375-383, 1998.

[29] N.S. Godbole, Software Quality Assurance: Principles and Practice.
Oxford, UK: Alpha Science International, 2004.

[30] L. Bass, P. Clements & R. Kazman, Software Architecture in Practice.
Reading MA.: Addison Wesley, 1998.

[31] J. Bosch, Design and use of Software Architectures: Adopting and
evolving a product line approach. Harlow: Pearson Education (Addison-
Wesley and ACM Press), 2000.

[32] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, & M. Stal,
Pattern-Oriented Software Architecture: A System of Patterns. New
York: John Wiley and Son Ltd, 1996.

[33] M. Shaw, and D. Garlan, Software Architecture: Perspectives on an
Emerging Discipline. New Jersey: Prentice Hall, 1996.

[34] P.B. Crosby, Quality Is Free: The Art of Making Quality Certain. New
York: McGraw-Hill, 1979.

[35] R.G. Dromey, “A model for software product quality,” IEEE
Transactions on Software Engineering, vol. 21, no. 2, pp. 146-162, 1995.

[36] J.T. McCabe, (1976) “A Complexity Measure,” IEEE Transactions on
Software Engineering, vol. SE2, no. 4, pp. 308-320, 1976.

[37] K.H. Möller & D.J. Paulish, Software Metrics. London: Chapman &
Hall Computing, 1993.

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:1, No:11, 2007

692

Ali M. Al-Khouri, has been involved in
the UAE national ID card project since it
early developments as a member of the
technical executive steering committee,
and he was later appointment as the head
of the technical committee when Emirates
Identity Authority (a federal government
organisation formed to oversee the
management and implementation of
national ID card system rollout in the
United Arab Emirates) was established.
He received his Bachelor’s and Master’s
degrees in Business IT Management with

honors and distinction from Manchester and Lancaster Universities in the UK,
and currently doing his doctorate degree in the field of engineering
management and advanced technologies. His research interests are in
leadership & management, e-government and the applications of advanced
technologies in large contexts. Email: alkhouri@emiratesid.ae

