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Abstract—Unsteady natural convection and heat transfer in a
square cavity partially filled with porous media using a thermal
non-equilibrium model is studied in this paper. The left vertical wall is
maintained at a constant hot temperature Th and the right vertical wall
is maintained at a constant cold temperature Tc, while the horizontal
walls are adiabatic. The governing equations are obtained by applying
the Darcy model and Boussinesq approximation. COMSOL’s finite
element method is used to solve the non-dimensional governing
equations together with specified boundary conditions. The governing
parameters of this study are the Rayleigh number (Ra = 105,
and Ra = 106), Darcy namber (Da = 10−2, and Da = 10−3),
the modified thermal conductivity ratio (10−1 ≤ γ ≤ 104), the
inter-phase heat transfer coefficien (10−1 ≤ H ≤ 103) and the
time dependent (0.001 ≤ τ ≤ 0.2). The results presented for
values of the governing parameters in terms of streamlines in both
fluid/porous-layer, isotherms of fluid in fluid/porous-layer, isotherms
of solid in porous layer, and average Nusselt number.

Keywords—Unsteady natural convection, Thermal non-equilibrium

I. INTRODUCTION

NATURAL convection fluid flow and heat transfer
in porous media domains has received considerable

attention over the past few years and the importance of this
issue is back to the wide range of environmental situations or
industrial applications, such as, geothermal systems, thermal
insulation, filtration processes, ground water pollution, storage
of nuclear waste, drying processes, solidification of castings,
storage of liquefied gases, biofilm growth, fuel cells. The
problem dealing with the fluid motions in the clear region and
the porous medium has been studied for many years. Reference
[1] presented the simple situation of the boundary conditions
between a porous media and a homogeneous fluid. Meanwhile,
[2] studied natural convection flow and heat transfer between
a fluid layer and a porous layer inside a rectangular enclosure.
Natural convection heat and mass transfer in solidification
was studied by [3]. On the other hand, [4] investigated the
convective stability in a superposed fluid and porous layer
when heated from below, heat transfer and fluid flow through
fibrous insulation presented by [5]. The problem with studying
the solute exchange by convection within estuarine sediments
has been considered by [6]. Reference [7] discussed the
problem of using one- or two domain formulations for the
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conservation equations. Meanwhile, [8] studied the particular
subclass of such problems where natural convection takes
place in a confined enclosure partially filled with a porous
medium.

Most of the previous studies considered the natural
convection fluid flow and heat transfer in porous media
domains in local thermodynamic equilibrium where the fluid
temperature is equal to the solid temperature in partially
porous media. While, in case where the fluid temperature is
different to the solid temperature, we call this as the local
thermal non-equilibrium model. Many studies have considered
the thermal equilibrium model in partially porous medium,
while the non-equilibrium model has not received much
attention. Reference [9] have considered the modelling of heat
transfer by conduction in a transition region between a porous
medium and an external fluid. Reference [10] applied the
heat transfer conditions at the boundary between a porous
medium and a homogeneous fluid. Their study showed that
the jump parameters take the form of the boundary conditions
involving surface excess quantities. Reference [11] used the
concept of local thermal equilibrium model on free convection
in open-ended vertical channels partially filled with porous
material. Reference [12] analytically studied the two-step
up-scaling approach to determine the jump relations that must
be imposed at the interface between a homogeneous porous
domain and a free domain under the assumption of local
thermal equilibrium.

On the other hand, little work has been done on the local
thermal non-equilibrium model in partially porous medium.
Reference [13] investigated the effect of using the local
thermal non-equilibrium model on forced convection heat
transfer flows in a tube filled with a fluid-saturated porous
medium. Reference [14] studied numerically the effects using
local thermal non-equilibrium model on steady and unsteady
natural convection and heat transfer in a channel partially
filled with porous media. A recent problem considered
different number of equations: a two-temperature model and a
one-temperature model at a fluid-porous interface using local
thermal non-equilibrium model was studied by [15]. However,
there is not much work have been done on natural convection
fluid flow and heat transfer in porous media using local thermal
non-equilibrium model.

The aim of this study is to investigate the effect of unsteady
Darcy model on natural convection and heat transfer in a
square cavity partially filled with porous media using a thermal
non-equilibrium model.

Unsteady Natural Convection in a Square Cavity
Partially Filled with Porous Media sing a Thermal

Non-Equilibrium Model

model, Darcy model.
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II. MATHEMATICAL FORMULATION

Consider the unsteady, two-dimensional natural convection
flow and heat transfer in a square cavity partially filled with
porous media as shown in Fig. 1. It is assumed that the left
vertical wall of the cavity is maintained at a constant hot
temperature Th and the right vertical wall is maintained at
a constant cold temperature Tc, while the horizontal walls
are adiabatic. A square cavity with horizontal range of the
fluid layer denoted by length S, while the total dimensions
of the square cavity is L. The fluid and the solid matrix have
different temperatures by assuming the convective fluid and the
porous medium are not in a local thermodynamic equilibrium.
According to the Boussinesq approximation, the fluid physical
properties are constant except for the density. By considering
these assumptions, the conservation equations for mass, Darcy
and energy equations for unsteady natural convection for the
fluid and the porous layer will be considered separately. For
the fluid layer we have:

∂uf
∂x

+
∂vf
∂y

= 0, (1)

∂uf
∂t

+ uf
∂uf
∂x

+ vf
∂uf
∂y

= − 1

ρf

∂pf
∂x

+ν

(
∂2uf
∂x2

+
∂2uf
∂y2

)
, (2)

∂vf
∂t

+ uf
∂vf
∂x

+ vf
∂vf
∂y

= − 1

ρf

∂pf
∂x

+ν

(
∂2vf
∂x2

+
∂2vf
∂y2

)
+ ρgβ (Tf − Tc) , (3)

∂Tf
∂t

+ uf
∂Tf
∂x

+ vf
∂Tf
∂y

=

(
∂2Tf
∂x2

+
∂2Tf
∂y2

)

+
Kf

ρfCf
(Tf − Tp) , (4)

The conservation equations for mass, Darcy and energy
equations for the homogenous porous layer are:

∂up
∂x

+
∂vp
∂y

= 0, (5)

up = −Kp

μ

∂pp
∂x

, (6)

vp = −Kp

μ

∂pp
∂x

+
Kpβg

ν
(Tp − Tc) , (7)

ϕp (ρCp)p + (ρCp)p

(
up
∂Tp
∂x

+ vp
∂Tp
∂y

)
= ϕkp

×
(
∂2Tp
∂x2

+
∂2Tp
∂y2

)
+

μp

(ρCp)p

(
u2p + v2p

)

+h (Ts − Tp) , (8)

s

Adiabatic

Adiabatic

Porous LayerFluid Layer

L

L

g

(1− ϕp) (ρCp)s
∂Ts
∂t

+ (1− ϕp) ks

(
∂2Ts
∂x2

+
∂2Ts
∂y2

)

= h (Ts − Tp) . (9)

where x and y are the cartesian coordinates measured in the
horizontal and vertical directions respectively, uf , up, vf and
vp are the velocity components in the x and y directions for
the fluid and porous layers respectively, Kp is the permeability
of the porous medium and g is the acceleration due to gravity.

The values of the velocities are zero on the walls. The
boundary conditions for both the fluid and the porous layer
at interface are:

T |x=s−= T |x=s+ , (10)

U |x=s−= Up |x=s+ , V |x=s−= Vp |x=s+ . (11)

In terms of the stream function ψ defined in the usual way
as u = ∂ψ/∂y and v = −∂ψ/∂x together with the following
non-dimensional variables:

Ψ =
ψ

αmϕL
, θp =

Tp − Tc
Th − Tc

,

θs =
Ts − Tc
Th − Tc

, θf =
Tf − Tc
Th − Tc

,

t =
αm

L2
t′, X =

x

L
, Y =

y

L
. (12)

The governing equations for the fluid layer can be written
as:

Uf
∂Uf

∂X
+ Vf

∂Uf

∂Y
= −∂Pf

∂X
+

(
∂2Uf

∂X2
+
∂2Uf

∂Y 2

)
, (13)

Fig. 1. Physical model with coordinate system of convection in a square
porous cavity
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Uf
∂Vf
∂X

+ Vf
∂Vf
∂Y

= −∂Pf

∂Y
+

(
∂2Vf
∂X2

+
∂2Vf
∂Y 2

)
+
Ra

Pr
θ, (14)

Uf
∂θf
∂X

+ Vf
∂θf
∂Y

=
1

Pr

(
∂2θf
∂X2

+
∂2θf
∂Y 2

)
, (15)

The governing equations for the porous layer can be written
as:

∂2Ψp

∂X2
+
∂2Ψp

∂Y 2
= −Ra∂θp

∂X
, (16)

∂θp
∂t

+
∂Ψp

∂Y

∂θp
∂X

− ∂Ψ

∂X

∂θp
∂Y

=
∂2θp
∂X2

+
∂2θp
∂Y 2

+Hp (θs − θp) , (17)

∂θs
∂t

=
1

Γp

(
∂2θs
∂X2

+
∂2θs
∂Y 2

)
+ γpHp (θs − θp) , (18)

where the parameters H , γ and Γ are defined as:

H =
hL2

ϕkp
, γ =

ϕkp
(1− ϕ) ks

, Γ =
αp

αs
, (19)

and αp and αs are the thermal diffusivities of the fluid and
solid phases in porous layer, respectively, Ra = gβ(Th −
Tc)L

3/(αfνf ) is the Rayleigh number for both the fluid and
the porous layer, Pr = νf/αf is the Prandtl number for the
fluid layer.

The dimensionless boundary conditions of (16)–(15) are:

Ψ = 0, θp = θs = 1, at X = 0,

Ψ = 0, θp = θs = 0, at X = 1,

Ψ = 0,
∂θf
∂Y

=
∂θs
∂Y

= 0, at Y = 0, 1, (20)

and at the interface by using the matching conditions
proposed by [1]

θ |X=s−= θ |X=s+ ,
∂u

∂X
= α(u− − v+)/

√
Da, (21)

kf
∂T

∂X
s− = kp

∂T

∂X
s+. (22)

where in our study the value of α fix at 1.
The local Nusselt number:

Nu (Y ) = −
(
∂θp,s
∂X

)
X=0,1

. (23)

TABLE I
COMPARISON OF Nu FOR DIFFERENT VALUES OF S WHEN Ra = 105 AND

Pr = 0.71 WITH SOME PREVIOUS NUMERICAL

S present result [16] [17]
0.25 3.103 3.083 3.101
0.50 3.350 3.321 3.348
0.75 3.605 3.600 3.604

Finally, the average Nusselt number at the left vertical wall
for the fluid and solid phases in porous layer are given by:

Nup =

∫ 1

0

Nu (Y ) dX, (24)

Nus =

∫ 1

0

Nu (Y ) dX. (25)

III. NUMERICAL METHOD AND VALIDATION

Based on the Galerkin finite element method (GFEM),
the governing equations subject to the boundary conditions
are solved numerically using the CFD software package
COMSOL Multiphysics, a general-application solver and
simulation of interconnected partial differential equation. This
flexible platform contains the art numerical algorithms and
visualization tools bundled together with an easy to use
interface. The COMSOL’s finite element method was applied
to solve (16), the momentum equation in fluid layer (13), the
heat transfer in fluids equation in porous layer (17), the heat
transfer in solids equation in porous layer (18) and the heat
transfer in fluids equation in fluid layer (15) subject to the
boundary conditions (20).

In this investigation, mesh generation on oblique cavity is
made by using graph grid. By considering both of the accuracy
and the time, finer, extra fine and extremely fine mesh sizes
were selected for all the computations done in this study. As
a validation, we compared our results with those presented
by [16] and [17] by calculating average Nusselt number with
various values of dimensionless fluid layer thickness as shown
in Table I. A very good agreement was found between our
results and the existing results. To confirm the validity of the
results, we compared our figure with what was presented by
[18] as shown in Fig. 2. Fig. 2 shows the comparison between
present result and result presented by [18] for Ra = 103,
γ = 1 and S = 0.

IV. RESULTS AND DISCUSSION

In this section, we present numerical results for the
streamlines of porous layer, streamlines of fluid layer,
isotherms of fluid and isotherms of solid porous layer and
isotherms of fluid layer for various values of Darcy namber
(10−2 and 10−3), the modified thermal conductivity ratio
(10−1 ≤ γ ≤ 104), the inter-phase heat transfer coefficien
(10−1 ≤ H ≤ 103), the time independent (0.001 ≤ τ ≤ 0.2),
Rayleigh number (Ra = 105 and 106) and Prandtl number
Pr = 6.2. The values of the average Nusselt number have
been calculated for various values of γ.
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Fig. 2. Streamlines [18] (a), present study (b) for Ra = 103, γ = 1 and
S = 0

In terms of the streamlines and isotherms of fluid in
fluid/porous-layer and isotherms of solid in porous layer, Fig.
3 shows the changes of the flow motion and the distribution
of heat transfer for high value of Rayleigh number, Ra = 106,
with different values of the modified thermal conductivity
ratio, γ = 0.1, 10, 100 and 1000. The values of Darcy number,
inter-phase heat transfer coefficient, fluid layer thickness and
time independent were fixed at 10−3, H = 1, S = 0.5 and
τ = 0.1, respectively. Fig. 3 (a) presents the streamlines of
the fluid/porous-layer and the isotherm patterns at low value
of the modified thermal conductivity ratio, (γ = 0.1). The
temperature of the left wall is higher than the flow temperature
inside the fluid partition, and when the temperature starts to
rises, the flow starts to move from the left wall (hot) to the
interface and through the interface the flow start to leave the
fluid partition and infiltrate in the porous layer to the right wall
(cold) and falling along the right wall, then rising again at the
hot wall, creating a clockwise rotating cell inside the fluid
partition approaching to the interface. The isotherms appear
with bend upwards when the flow infiltrate to the porous layer.
The streamlines circulate as vortices in clockwise direction
(negative sign of Ψ) it will present by Ψmin. The fact that
the fluid layer is higher effective thermal conductivity than
the porous layer, so most of the temperature drop takes place
in the fluid partition. The distortion of the isotherms of solid
in the porous layer appears with curved lines to the top. The
streamlines inside the fluid partition nearing to the interface as
shown in Fig. 3 (b) and c clearly show that the streamlines cell
tend to decrease by increasing γ, by increasing γ, the Ψmin

tends to decrease(see Ψmin values). As the modified thermal
conductivity ratio increases, the distortion of the isotherms of
solid in the porous layer decreases. By increasing the modified
thermal conductivity ratio to (γ = 1000) the isotherms of solid
are almost the same as the isotherms of fluid in the porous
layer as shown in Fig. 3 (d).

Fig. 4 shows the unsteady results on the streamlines and
isotherms of fluid in the fluid/porous-layer and isotherms of
solid in porous layer for Ra = 106, Da = 10−3, Pr = 6.2,
γ = 10, H = 10 and S = 0.5. Early time after the start of
heating (0.005 ≤ τ ≤ 0.01) in the unsteady, the streamlines
cell near to hot wall (fluid partition) start to decreases and
tends to take the elliptical shape with moving near to the hot
wall. The Ψmin decreases by increasing the time (see Ψmin
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Fig. 3. Unsteady streamlines (left), isotherms for fluid phase (middle) and
isotherms for solid phase (right) evolution by modified thermal conductivity
ratio for Ra = 106, Da = 10−3, H = 1, S = 0.5 and τ = 0.1.

vales). After the start of heating, the distortion of the isotherms
of fluid in the fluid/porous-layer appears with vertical lines
near to the hot wall (fluid partition), near to interface the
heat lines tend to become diagonal, while the distortion of
the isotherms near to right wall (porous partition) appears
with horizontal lines by increasing time. The distortion of the
isotherms of solid in the porous layer appears from the top
of the interface with diagonal lines. By increasing the time
to τ = 0.05 as shown in Fig. 4 (c), the streamlines cell near
to the hot wall decreasing constantly. By increasing the time
to τ = 0.2 as shown in Fig. 4 (d), the steady state has been
reached, the streamline cell near to hot wall disappear. The
Ψmin constantly decreases by increasing the time (see Ψmin

vales).
The variations of the steady average Nusselt number of the

fluid (a) and the solid (b) with modified thermal conductivity
ratio for different H at Ra = 105, Da = 10−2 and S = 0.5
are shown in Fig. 5. Fig. 5 (a) clearly shows that the average
Nusselt number of the fluid in the porous layer decreases as
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Fig. 4. Unsteady streamlines (left), isotherms for fluid phase (middle) and
isotherms for solid phase (right) evolution by time for Ra = 106, Da =
10−3, γ = 1, H = 1 and S = 0.5.

modified thermal conductivity ratio increases. The significant
decreasing of the average Nusselt number occurs for high
values of H , (H = 100, 1000) by increasing modified thermal
conductivity ratio. Fig. 5 (b) clearly shows that the average
Nusselt number of the solid in the porous layer decreases as
modified thermal conductivity ratio increases. The significant
increase of the average Nusselt number occurs for high values
of H , (H = 100, 1000).

V. CONCLUSION

The present numerical simulation considered the effects of
unsteady Darcy model on natural convection and heat transfer
in a square cavity partially filled with porous media using
a Thermal non-equilibrium model. The COMSOL’s finite
element method was used to solve the dimensionless form
of the governing equations. Detailed computational results for
flow, temperature field in both fluid/porous layer in the cavity
and the average Nusselt number of the fluid and the solid in
the porous layer have been presented in the graphical form.
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Fig. 5. Variation of the steady average Nusselt number of fluid (a) and
solid (b) interfaces with γ for different H at Ra = 105, Da = 10−2, and
S = 0.5.

The main conclusions of the present study are as follows:
1) The unsteady strength of the flow circulation decreases

by increasing the modified thermal conductivity ratio.
As γ increases, the distortion of the isotherms appear
with bend upwards when the flow infiltrate to the porous
layer, whereas the distortion of the isotherms of solid in
the porous layer increases and becomes almost the same
as the isotherms of fluid in the porous layer by increasing
the modified thermal conductivity ratio.

2) The unsteady strength of the flow circulation decreases
by increasing the time. By increasing the time to τ =
0.2, the steady state has been reached. The distortion of
the isotherms of fluid in the porous/fluid-layer increases
by increasing the time.

3) The steady average Nusselt number of the fluid in the
porous layer decreases as modified thermal conductivity
ratio increases. The significant decreasing of the average
Nusselt number occurs for high values of H . The
steady average Nusselt number of the solid decreases
as γ increases. The significant increasing of the average
Nusselt number occurs for high values of H .
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