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Systematic Unit-Memory Binary Convolutional
Codes from Linear Block Codes over F2r + vF2r

John Mark Lampos and Virgilio Sison

Abstract—Two constructions of unit-memory binary convolutional
codes from linear block codes over the finite semi-local ring F2r +
vF2r , where v2 = v, are presented. In both cases, if the linear
block code is systematic, then the resulting convolutional encoder
is systematic, minimal, basic and non-catastrophic. The Hamming
free distance of the convolutional code is bounded below by the
minimum Hamming distance of the block code. New examples of
binary convolutional codes that meet the Heller upper bound for
systematic codes are given.

Keywords—Convolutional codes, semi-local ring, free distance,
Heller bound.

I. INTRODUCTION

Most of the conventional communication systems use
rate-1/n convolutional codes mainly because of the high
performance-complexity ratio of these codes which make them
well-suited for practical applications. An alternative to these
codes would be the so-called unit-memory convolutional codes
(UMC) which have a fully connected trellis that requires a
higher implementation complexity but generally possess better
distance properties. UMC’s are interesting in the sense that
their block length can be chosen to agree with the word
length of computers or microprocessors that are used in the
coding and decoding process. Lee [6] first studied binary
UMC’s and found a number of interesting examples. It was
shown that binary UMC’s always achieve the largest free
distance among all codes of the same rate and number of
encoder states. Lee also asserted that the byte-oriented nature
of short UMC’s make them attractive for use, with Viterbi
decoding, as the inner coding component of a concatenated
system. Thomessen and Justesen [13] derived bounds on the
distance profile and free distance of binary unit-memory codes.
Their results suggested that UMC’s may be expected to have
superior properties. There are already a number of methods
of searching for UMC’s such as the use of combinatorial
optimization and circulant submatrices. For a more thorough
discussion of these methods, we refer the reader to [1].

Convolutional codes can be considered as block codes. In
[10], it was shown that the free distance of a field convolutional
code is lower bounded by its minimum block distance. The
paper [7] offered methods of constructing binary convolutional
codes from certain cyclic block codes and showed that the
lower bound for the Hamming free distance is a function
of the minimum distances of the block code and its dual.
For the ring case, the paper [12] constructed quaternary
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convolutional codes from linear block codes over the Galois
ring GR(4,m). Here a systematic block encoder gives rise
to a convolutional encoder that is systematic, basic, non-
catastrophic and minimal, while the squared Euclidean free
distance is bounded below by twice the Hamming distance
of the block code. Further, a quick extension of the binary
Heller bounds to convolutional codes over finite Frobenius
rings endowed with a homogenous weight was given in [11],
both for the systematic and non-systematic cases.

Very little research has been done so far to study convo-
lutional codes with large free distances over some special
rings. In the present work, we make an investigation of
unit-memory convolutional codes over the finite semi-local
ring R = F2r + vF2r where v2 = v, and show that, in
many examples, the Heller upper bound for systematic codes
can be achieved. Two techniques of constructing systematic
unit-memory binary convolutional codes from linear block
codes over R are adopted. The advantage of considering
systematic convolutional encoders is that they always possess
trivial right inverses and are minimal, thus enabling simpler
implementation and useful application. Systematic encoders
allow for the recovery of the encoded sequence easily. This
type of encoders provide good estimates of the information
digits with the same level of reliability as that for hard-
decisioned received sequences without employing a lengthy
decoding process. Such convenience is lost in non-systematic
encoders.

We prove that the Hamming free distance of the convo-
lutional code is bounded below by the minimum Hamming
distance of the block code. Thus a UMC with large free
distance can be attained by a proper choice of block code.
The material is organized as follows: Section II gives the
preliminaries and basic definitions, while Section III explains
the two constructions. Section IV proves the lower bound
for the free distance, and Section V gives new examples
of low-complexity unit-memory binary convolutional codes
with free distances that meet the Heller upper bound for
systematic codes. These codes are among the best in the class
of systematic binary UMC’s of certain rate and number of
encoder states.

II. PRELIMINARIES AND DEFINITIONS

A. Structure of the Ring F2r + vF2r

Let F2r be the Galois field with 2r elements. We denote by
R the finite unitary commutative ring F2r + vF2r = {a+ bv |
a, b ∈ F2r , v2 = v} with 4r elements. It has two maximal
ideals, namely (v) and (1 + v), thus R is a semi-local ring
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with |(v)| = |(1 + v)| = 2r, and is neither a finite chain ring
nor a Galois ring. A nonzero element of R is a zero divisor
if and only if it is an F2r -multiple of v or 1+ v and there are
2(2r − 1) of them. Thus, we can write (v) = {xv|x ∈ F2r}
and (1 + v) = {x(1 + v)|x ∈ F2r}. Apparently, the zero
divisors are contained in the two maximal ideals. A nonzero
element is a unit if and only if it is not an F2r -multiple of v
or 1 + v, and there are (2r − 1)2 of them. Using the Chinese
Remainder Theorem, we can show that R is isomorphic to the
product F2r ×F2r . It can also be shown that R is isomorphic
to the quotient ring F2r [x]/(x2+x) through the map a+bv �→
a+ bx+(x2 +x). In addition, R is Frobenius with generating
character χ : R→ T, χ(x+vy) = eiπ·tr(y), where tr denotes
the trace map on F2r and T is the multiplicative group of unit
complex numbers.

B. Linear Block Codes over R = F2r + vF2r

A rate-k/n linear block code of length n over R spanned by
the rows of a matrix G ∈ Rk×n is the R-submodule given by
the set B = {v ∈ Rn | v = uG, u ∈ Rk}. If no proper subset
of the rows of G generates B, then G is called a generator
matrix for B. If the columns of G contain the columns of the
k×k identity matrix, then G is said to be systematic. The code
B is systematic if it has a systematic generator matrix. The
matrix G is in standard form if, after a suitable permutation
of the coordinates, G takes the form⎛

⎝ Ik1 A C D
0 vIk2 vE vF
0 0 (1 + v)Ik3 (1 + v)H

⎞
⎠ (1)

where Iki is the ki × ki identity matrix, k = k1 + k2 + k3,
A,C, and D are matrices over R and E,F, and H are binary
matrices. In this case, we say that B is of type {k1, k2, k3}
and |B| = (p2r)k1 · (pr)k2 · (pr)k3 . The code B is a free R-
module if and only if k2 = k3 = 0, and a code over R is
called free if it is a free R-module.

C. Binary Convolutional Codes

Let F2[D] be the ring of polynomials in the delay op-
erator D with coefficients from F2. We shall consider a
rate-k/n binary convolutional code C to be an F2[D]-
submodule of F2[D]n obtained as the F2[D]-rowspan of a
matrix G(D) ∈ F2[D]k×n. The rows of G(D) are assumed
to be linearly independent. The polynomial matrix G(D) is
called a generator matrix or a convolutional encoder of C.
Polynomial encoders are feedback-free (or non-recursive), they
do not re-enter part of the output into the encoder as part
of the next input. If we denote an information sequence
by the k-vector u(D) = [u1(D), u2(D), . . . , uk(D)], the
corresponding code sequence (or codeword) is the n-vector
[v1(D), v2(D), . . . , vn(D)] which results from the product
v(D) = u(D)G(D).

Two generator matrices are said to be equivalent if they
generate the same code, they only differ in the way a code
sequence is obtained from the information space. The encoder
G(D) for C is systematic if it causes the information symbols
to appear unchanged among the code symbols, or equivalently,

if some k of its columns form the k × k identity matrix. A
generator matrix for a binary convolutional code can always
be chosen to be systematic. Moreover, G(D) is said to be
basic if it has a polynomial right inverse. The matrix G(D) is
said to be minimal if there exists a realization of G(D) that
uses the least number of encoder states required to generate
the code. The encoder state at a given instant is the contents of
the memory cells at that instant. It is known that a systematic
generator matrix is minimal.

The maximum degree of the components in the ith row
of G(D) is called the ith constraint length. The sum of
the k constraint lengths, denoted by ν, is called the overall
constraint length or the state complexity of the code. A
basic generator matrix is said to be minimal-basic if the
overall constraint length ν is minimal over all equivalent basic
generator matrices. Minimal-basicity implies minimality, and
ν gives the smallest number of encoder states used, which is
equal to 2ν for the controller canonical realization of G(D).

The maximum among the k constraint lengths is the memory
of C denoted by μ. If μ = 1, then C is referred to as a
unit-memory convolutional code (UMC). Hence, for UMC’s,
the state complexity is merely the number of rows in the
convolutional encoder, which is k.

We equip F2[D]n with the Hamming weight on F2. Given
x(D) = [x1(D), x2(D), . . . , xn(D)] ∈ F2[D]n, the serial
weight of xi(D) is the number of nonzero coefficients of
xi(D). The serial weight of x(D) is the sum of the serial
weights of the xi(D)’s. The free distance of C, denoted
by df , is the minimum among the serial weights of the
nonzero codewords of C. A convolutional encoder is said to
be non-catastrophic if it does not map an input sequence
with infinitely many nonzero symbols into a code sequence
of finite serial weight. Note that a basic generator matrix is
always non-catastrophic, and a minimal generator matrix is
non-catastrophic. The block weight of x(D) is the number
of nonzero components in x(D). The block distance dB of
C is the minimum among the block weights of the nonzero
codewords of C. From [10] the block distance and the free
distance of C satisfy

dB ≤ df . (2)

It was proved in [9] that, for a rate-k/n binary convolutional
code generated by a minimal-basic encoder with overall con-
straint length ν, the (Hamming) free distance df satisfies

df ≤ (n− k) (�ν/k� + 1) + ν + 1. (3)

which is referred to as the generalized Singleton bound.
On the other hand, the Heller upper bound for the free

distance df of a rate ρ = k/n binary convolutional code with
a systematic encoder of memory μ is given by

df ≤ min
L≥1

{⌊
(μ(1 − ρ) + L)n

2(1 − 2−kL)

⌋}
. (4)

It is worth noting that the Hamming weight on the Galois field
F2r , which is Frobenius, is homogeneous with average value
Γ = (2r − 1)/2r. For the binary case, the average value is
1/2 which can be seen in (4).
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D. The 2r-ary Image

Let B2 = {v1, v2} be a basis of R over F2r and w =
av1 + bv2 ∈ R where a, b ∈ F2r . Define the mapping

ψ : R→ F
2
2r , av1 + bv2 �→ (a, b). (5)

Then ψ is an F2r -module isomorphism. We extend ψ to Rn

coordinate-wise. If c = (c1, c2, . . . , cn) ∈ Rn and ci = aiv1 +
biv2, then ψ(c) = (a1, b1, a2, b2, . . . , an, bn) ∈ F

2n
2r . Let B

be a linear block code of length n over R. The image set
ψ(B) = {ψ(c)| c ∈ B} will be called the 2r-ary image of B
under ψ with respect to B2. Clearly we have |B| = |ψ(B)|.
Further, it can be shown that ψ(B) is a linear block code over
F2r with length 2n.

III. TWO CONSTRUCTIONS

A. Construction I

Let B be a systematic linear block code over R2 = F2+vF2

with generator matrix G. We can view each z ∈ R2 as a
polynomial pz(v) in v with coefficients in F2 with degree at
most 1. Let G(D) be exactly the generator matrix G with
every entry z ∈ R2 in G replaced by pz(D). Clearly, the
rows of G(D) are still linearly independent, thus G(D) is a
systematic polynomial matrix over F2[D] that generates a rate-
k/n binary convolutional code, which we denote by C(B,G).
We formalize this in a theorem.

Theorem 3.1: Let B be a linear block code over R2 with a
k×n generator matrix G. If G is systematic, then the resulting
matrix G(D) is a systematic generator matrix for C(B,G).

It follows immediately that G(D) is minimal [8, Theorem
3], basic [4, Theorem 3], and non-catastrophic [5, Theorem
2.15 and Corollary 2.19].

B. Construction II

Consider a systematic linear block code B over R with a
k×n generator matrix G. Let Gψ denote the generator matrix
of the 2r-ary image of B under ψ with respect to the basis
{1, v}. Hence, the entries of Gψ are elements of F2r , and it
follows that Gψ ∈ F

2k×2n
2r .

Consider the additive representation of each z ∈ F2r .
Hence, every z ∈ F2r can be viewed as polynomial pz(ω)
in ω with coefficients in F2 with degree at most r − 1 where
ω is a root of a monic irreducible polynomial h(x) ∈ F2[x].
Now, let G(D) be exactly the generator matrix Gψ with every
entry z ∈ F2r replaced by pz(D). After some permutation
of the columns, we have ψ(Ik1) = (Ik1 0). Hence, we are
assured that G(D) contains the 2k×2k identity matrix. Thus,
G(D) is a 2k × 2n systematic polynomial matrix over F2[D]
that generates a binary convolutional code with memory at
most r − 1, denoted by C(ψ(B), h,Gψ). Thus, we have the
following theorem.

Theorem 3.2: Let B be a linear block code over R with
a k × n generator matrix G. Moreover, let Gψ denote the
2k × 2n generator matrix of the 2r-ary image of B under ψ
with respect to the basis {1, v}. If G is systematic, then the
resulting matrix G(D) for C(ψ(B), h,Gψ) is systematic.

As in Construction I, since G(D) is systematic, it follows
that G(D) is also minimal, basic, and non-catastrophic.

IV. FREE DISTANCE BOUNDS

We can bound the free distance of the convolutional code
from Construction I by the minimum distance of the block
code.

Theorem 4.1: If d is the minimum Hamming distance of
B and df is the free distance of C(B,G), then

d ≤ df . (6)

Proof: Let z(D) be a nonzero codeword of
C(B,G) such that z(D) = [z1(D), z2(D), . . . , zn(D)] ∈
C(B,G) and z(D) = u(D)G(D) where u(D) =
[u1(D), u2(D), . . . , uk(D)] ∈ F2[D]k. Note that, we
can also view F2 + vF2 as the quotient ring F2[x]/(x2 + x).
Now, let h(D) = D2 + D. Denote by z(v) the codeword
in B that resulted from reducing z(D) mod h(D) with
D replaced by v. Suppose z(v) �= 0. Denoting the
Hamming weight by wH , we have wH(z(v)) ≥ d. Since
deg(ri(D)) ≤ deg(zi(D)) and some ri(D) may be 0, then
wH(z(D)) ≥ wH(z(v)) ≥ d. Thus, df ≥ d. Now, suppose
z(v) = 0. Thus, zi(D) = qi(D)h(D)ai for each 1 ≤ i ≤ n,
where ai ≥ 1 are integers and qi(D) ∈ F2[D] are assumed
to be no longer divisible by h(D). Let h(D)at be the
smallest power of h(D) occurring in a zi(D). Dividing
each zi(D) by h(D)at , we get the codeword z′(D) =
[q1(D)h(D)b1 , q2(D)h(D)b2 , . . . , qn(D)h(D)bn ], bi =
ai − at that results from the input vector u′(D) =
[qi1(D)h(D)bi1 , qi2(D)h(D)bi2 , . . . , qin(D)h(D)bik ] where
i1 < i2 < . . . < ik indicate the k positions in z′(D) where
the components of the input vector occur. The input vector is
part of the output vector since C(B,G) is systematic. Since
h(D) is not a zero divisor, then wH(z(D)) = wH(z′(D)).
In addition, since at least one of the bi’s will be zero, then
there will be at least one zi(D) = qi(D). Since qi(D) are
no longer divisible by h(D), then reducing z′(D) mod h(D)
will never be zero. Thus, we can now apply what we did in
the case when z(v) �= 0 and get the same result.

We can also bound the free distance of the convolutional
code from Construction II by the minimum distance of the
block code, as suggested by the next theorem.

Theorem 4.2: If δ is the minimum distance of ψ(B) and
df is the free distance of C(ψ(B), h,Gψ), then

δ ≤ df . (7)

Proof: Let z(D) be a nonzero codeword such that

z(D) = [z1(D), z2(D), . . . , zn(D)] = u(D)G(D)

where u(D) = [u1(D), u2(D), . . . , uk(D)] ∈ F2[D]k. We
denote by h(D) the monic irreducible polynomial h(x) over
F2 of degree r we used in the Galois extension of the field F2r

where x is replaced by D. Also, denote by z(ω) the codeword
in ψ(B) that resulted from reducing z(D) mod h(D). The
same technique in the proof of Theorem 4.1 is applied to prove
the statement.

V. EXAMPLES

For the following examples, MAGMA routines are created
to construct linear block codes over F2r+vF2r , and to compute
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for the distance d of the given block code, the block distance
dB and free distance df of the resulting binary convolutional
code. The first four codes give free distances that meet the
Heller bound for systematic codes. Observe that d ≤ dB which
can be proved generally. The distances and bounds of these
codes are summarized in Table I. We also give the number of
states St of G(D).

Example 5.1: Consider the rate-2/3 systematic linear
block code over F2 + vF2 generated by the matrix

G =
(

1 0 1 + v
0 1 1 + v

)

with Hamming distance d = 1. Construction I yields

G(D) =
(

1 0 1 +D
0 1 1 +D

)

which generates a rate-2/3 systematic UMC with df = 2 that
meets the Heller bound in (4).

Example 5.2: Consider the rate-2/4 self-dual linear block
code over F2 + vF2 generated by the matrix

G =
(

1 0 v 1 + v
0 1 1 + v v

)

with Hamming distance d = 2. Construction I yields the
matrix

G(D) =
(

1 0 D 1 +D
0 1 1 +D D

)

which generates a rate-2/4 systematic self-dual binary UMC
with df = 4 that meets the Heller bound in (4).

Example 5.3: Given a rate-2/6 2-quasi cyclic systematic
linear block code over F2 + vF2 whose generator matrix is
given by

G =
(

1 0 1 + v v 1 v
0 1 v 1 + v v 1

)

with minimum Hamming distance d = 3. The resulting
convolutional encoder from Contruction I gives

G(D) =
(

1 0 1 +D D 1 D
0 1 D 1 +D D 1

)

which is systematic and generates a Heller-optimal UMC with
df = 6.

Example 5.4: Given the rate-2/8 systematic linear block
code over F2 + vF2 generated by

G =
(

1 0 v v 1 1 + v 1 + v v
0 1 1 1 + v v v 1 + v 1 + v

)

with minimum Hamming distance d = 4. Using Construction
I, we have

G(D) =
(

1 0 D D 1 1 +D 1 +D D
0 1 1 1 +D D D 1 +D 1 +D

)

which generates a systematic Heller-optimal UMC with df =
9.

Example 5.5: Suppose B is a rate-2/4 systematic linear
block code over F4 + vF4, v

2 = v whose generator matrix is
given by

G =
(

1 0 ω 1 + vω2

0 1 0 ω + vω2

)

TABLE I
SYSTEMATIC HELLER-OPTIMAL UNIT-MEMORY BINARY

CONVOLUTIONAL CODES

Code n k d St dB df Heller Singleton

Example 5.1 3 2 1 4 2 2 2 5

Example 5.2 4 2 2 4 3 4 4 7

Example 5.3 6 2 3 4 5 6 6 11

Example 5.4 8 2 4 4 6 9 9 13

Then ψ(B) is a rate-4/8 systematic linear block code over F4

whose generator matrix is given by

Gψ =

⎛
⎜⎜⎝

1 0 0 0 ω 0 1 1 + ω
0 0 1 0 0 0 ω 1 + ω
0 1 0 0 0 ω 0 ω
0 0 0 1 0 0 0 1

⎞
⎟⎟⎠

with Hamming distance δ = 2. The resulting systematic
convolutional encoder is

G(D) =

⎛
⎜⎜⎝

1 0 0 0 D 0 1 1 +D
0 0 1 0 0 0 D 1 +D
0 1 0 0 0 D 0 D
0 0 0 1 0 0 0 1

⎞
⎟⎟⎠

which gives a free distance df = 2.
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