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Abstract—In this paper an analytical solution is presented for 

fully developed flow in a parallel plates channel under the action of 
Lorentz force, by use of Homotopy Perturbation Method (HPM). The 
analytical results are compared with exact solution and an excellent 
agreement has been observed between them for both Couette and 
Poiseuille flows. Moreover, the effects of key parameters have been 
studied on the dimensionless velocity profile.  
 

Keywords—Lorentz Force,Porous Media, Homotopy Perturbation 
method 

I. INTRODUCTION 

ULLY developed flow in porous saturated channel is an 
important subject for researchers due to its wide 
applications in different industries such as electronic 

cooling and solar collectors. There are comprehensive 
investigations about this topic in references [1-8]. Kaviany [9] 
numerically studied laminar flow in a porous channel bounded 
by two isoflux parallel plates by use of Brinkman extended 
Darcy model. Vafai and Kim [10] using this model, 
analytically considered forced convection in thermally fully 
developed flow between two flat plates. Amiri and Vafai [11] 
numerically considered the effects of non-thermal equilibrium 
and dispersion on the fully developed flow and heat transfer 
characteristic in a channel filled with a porous medium with 
variable porosity. Hung et al. [12] considered fully developed 
forced convection in a homogeneous porous medium and 
obtained a closed form solutions for the temperature 
distributions in the transverse direction. Nield et al. [13] 
investigated forced convection in a channel filled with fluid-
saturated porous medium with isothermal or isoflux 
boundaries. Haji-Sheikh and Vafai [14] used Brinkman's 
model to analyze flow and heat transfer in porous media 
imbedded inside various-shaped ducts and presented an exact 
solution for both rectangular and circular ducts.  

At first the application of using Lorentz force for controlling 
an electrically conducting fluid over a flat plate was presented 
by Gailitisand Lielausis [15]. Recently it is an interesting topic 
for many researchers. For examples Pantokratoras [16] 
presented exact solution for clear fully developed flow. 
Pantokratoras et al [17] studied the effect of using porous 

 
a,* Islamic Azad University, Karaj branch, Iran 
e-mail: a-shirazpour@kiau.ac.ir 
b,c Islamic Azad University, Karaj branch, Young Researchers Club. Iran   
  

media in a parallel plates channel and investigated the velocity 
profile for both Poiseuille and Couette flows. Also, Magyari 
[18] discussed about their solution which has been presented 
as a comment paper. 

 Homotopy Perturbation Method (HPM) is a novel methods 
that introduced by He [19]-[20].  Recently, it has been 
implemented by many researchers to find an analytical solution 
of linear and non-linear ordinary or partial differential 
equations. For instance, Dehghan and Shakeri [21] by use of 
this method solved Partial differential equation arising in 
modeling of flow in porous media. Siddiqui et al. Ganji and 
sadighi [22] solved nonlinear heat transfer and porous media 
equations by use of HPM and variational iteration methods, 
and found a very good agreement between these two methods 
and exact solution. Biazar et al. [23] solved general form of 
porous medium equation by HPM and compared the results 
with the Adomian decomposition. They observed good 
agreement between approximate methods. For more literature 
review about HPM, an interested reader may refer to [24]-[27]. 

The aim of this paper is to present an analytical solution 
using homotopy perturbation method for fully developed flow 
in a porous saturated channel subjected to Lorentz force for 
both Couette and Poiseuille flows. 

II. GOVERNING EQUATIONS 

The fully develop flow of a viscous and incompressible 
fluid through parallel plate channel is defined as: 
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Where x denotes horizontal direction, y is the vertical 
coordinate, u is the fluid velocity, K is the permeability of the 

porous media, 
dx

dp−  is the negative pressure gradient, µ is the 

dynamic viscosity of  fluid and  effµ  denotes the effective 

viscosity of the fluid. 
 
By adding the Lorentz Force to the equation it would be 
changed as follows: 
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Where 0j  is the applied current density in the electrode, 

0M is the magnetization of the permanent magnet, a is the 

width of magnets and electrodes. 
The associated boundary conditions are u(0)=0 , u(h)=0 for 
Poiseuille and  u(0)=0 , u(h)=uw for Couette flow. 

The non-dimensional form of eq.2  by defining  
ru
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For the sake of brevity we convert the above equation and 
boundary conditions to the following form: 
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   u(0)=0 , u(1)=0    (Poiseuille flow) 
   u(0)=0 , u(1)=1   (Couette flow) 
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where the Q declares the balance between the electromagnetic 
forces and viscous forces, B is the ratio between the channel 
height (h) and the characteristic length (a/π) of the Riga plate 
and Da is the Darcy number. 
 

III. IMPLEMENTING OF THE HPM 

The first step to solve Eq(4) is to define the linear operator 
which is the linear part of the Eq(4) 

Da
dY

d
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Where ζ  is an auxiliary function. 

The second step is to guess an arbitrary initial approximation 
which satisfies the boundary condition as follows: 
   YYYU ini −= 3)(                                                                  (6)                                                           

Where subscript ini refers to an initial approximation of Eq(4). 
According Eq. (4), (6) and HPM the following Homotopy 
equation would be constructed as: 
                          (7)                         
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So, by applying the perturbation technique we obtain a system 
of equations with n+1 differential equations to be solved 
simultaneously when n is the order of p. So we have: 
 
Zeroth-order:             
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First order: 
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And the boundary conditions are: 
 ( ) ( ) 001,00 ≥== igg ii

 poiseuille flow 

( ) ( ) ( ) ( ) 001,00011,00 figgandigg iiii =====  Couette flow 

Solving Eqs. (8a-b) with corresponding boundary conditions, 
the following functions can be obtained successively. 
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Finally, by summing up the results, and 1→p  we write the  

velocity profile as: 
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Equation (10) is the analytical solution of the problem by use 
of Homotopy perturbation method. 
    

IV. RESULTS 
The results consist of two parts. At first as a cross-check for 

the analysis, HPM results are compared with the exact solution 
and then the effect of some key parameter have been 
investigated on the velocity profile for both Couette and 
Poiseuille flow. 

Figures 1 and 2 show the effect of B on the dimensionless 
velocity for Couette and Poiseuille flows respectively. It is 
clear from the figure that variation of B has a significant 
influence on the velocity profile. Also it can be seen that by 
decreasing the value of B the impact of Lorentz Force 
increases which is owing to an exponentially decrease with y. 
 
 

 
Fig.1. Effect of B on velocity profile when Da=30, A=0, Q=50; solid 

line HPM results; circles exact results for Couette flow 
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Fig. 2 Effect of B on velocity profile when Da=30, A=1, Q=50; solid 

line HPM results; circles exact results for Poiseuille flow 
 

Figures 3 and 4 illustrate the effect of Chandrasekhar 
number (Q) on velocity profile when Darcy number is constant 
and equal to 100, the parameters B=π and A=0,1 where A=0 
denotes pure Couette and A=1 for Poiseuille flows 
respectively. The figures depict that value of velocity increases 
by increasing Q. More over it is obvious that velocity capes 
tend to bottom wall of the channel which would be more 
intensively by growing the Lorentz force. 
 

 
Fig. 3 Effect of Q on the velocity profile when Da=100 and A=0,      
B= π; solid line HPM results; circles exact results for Couette flow 

 
 

 
 

Fig. 4 Effect of Q on the velocity profile when Da=100 and A=1,    
B= π; solid line HPM results; circles exact results for Poiseuille flow 
 

In figures 5 and 6 the influence of Darcy number is 
considered for. The velocity shape exemplifies that the 
maximum value of velocity falls by rising Da. It shows that the 
summit of velocity shoots up when Da increase tends to clear 
fluid. It means that reduction of the permeability of the porous 
medium leads to decreasing fluid velocity through the channel. 
Also it can be seen that the maximum value of velocity for the 
same values of Da, Q, B, and A, is much more in the Couette 
flow. 
 

 
Fig.5 Effect of Da on velocity profile when and A=0 Q=50 B= π;     

solid line HPM results; circles exact results for Couette flow 
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Fig.6 Effect of Da on velocity profile when and A=1 Q=50 B= π; 
solid line HPM results; circles exact results for Poiseuille flow 

V. CONCLUSION 

In the present work the application of Homotopy 
perturbation method as a novel method for solving differential 
equations has been considered to obtain velocity profile in a 
porous saturated parallel plats channel under the influence of 
horizontal Lorentz force and spectacular consent between 
exact and HPM results is observed. In addition the effect of all 
existed parameters in Eq.4 including Q, Da, and B has been 
investigated in the presence of constant pressure gradient. The 
most important conclusions can be drawn 

 
• HPM is a reliable method for solving the equation and 

a remarkable agreement is obtained.  

• The summit of the velocity profile for Couette is higher 
than Poiseuille flow in all cases. 

• Increasing the effect of Lorentz force leads to 
increasing the velocity maxima in both types of flows. 
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