
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

150

Abstract—Recent advances in both the testing and verification of
software based on formal specifications of the system to be built have
reached a point where the ideas can be applied in a powerful way in
the design of agent-based systems. The software engineering research
has highlighted a number of important issues: the importance of the
type of modeling technique used; the careful design of the model to
enable powerful testing techniques to be used; the automated
verification of the behavioural properties of the system; the need to
provide a mechanism for translating the formal models into
executable software in a simple and transparent way. This paper
introduces the use of the X-machine formalism as a tool for modeling
biology inspired agents proposing the use of the techniques built
around X-machine models for the construction of effective, and
reliable agent-based software systems.

Keywords— Biology Inspired Agent, Formal Methods, X-
machine

I. INTRODUCTION

GENT is an encapsulated computer system that is situated
in some environment and that is capable of flexible,
autonomous action in that environment in order to meet

its design objectives [1]. There are two fundamental concepts
associated with any dynamic or reactive system, such as an
agent, that is situated in and reacting with some environment
[2]. The environment itself must be defined in some precise,
mathematical way. The agent will be responding to
environmental changes by changing its basic parameters and
possibly affecting the environment as well. Thus, there are
two ways in which the agent reacts, i.e. it undergoes internal
changes and it produces outputs that affect the environment.

Agents, as highly dynamic systems, are concerned with three
essential factors:

a set of appropriate environmental stimuli or inputs,

Manuscript received November 5, 2004.
George Eleftherakis is with the Computer Science Department, CITY

college Thessaloniki, Greece, Affiliated Institution of the University of
Sheffiled, UK (corresponding author; phone: +30-2310-275575; fax: +30-
2310-287564; e-mail: eleftherakis@city.academic.gr).

Petros Kefalas is with the Computer Science Department, CITY college
Thessaloniki, Greece, Affiliated Institution of the University of Sheffiled, UK
(e-mail: kefalas@city.academic.gr).

Anna Sotiriadou is with the Computer Science Department, CITY college
Thessaloniki, Greece, Affiliated Institution of the University of Sheffiled, UK
(e-mail: sotiriadou@city.academic.gr).

Evangelos Kehris is with the Technological Education Institute (TEI) of
Serres, Greece (e-mail: kehris@teiser.gr).

a set of internal states of the agent, and
a rule that relates the two above and determines what the
agent state will change to if a particular input arrives
while the agent is in a particular state.

One of the challenges that emerge in intelligent agent
engineering is to develop agent models and agent
implementations that are “correct”. According to Holcombe
and Ipate [2], the criteria for “correctness” are:

the initial agent model should match with the
requirements,
the agent model should satisfy any necessary properties in
order to meet its design objectives, and
the implementation should pass all tests constructed using
a complete functional test generation method.

All the above criteria are closely related to three stages of
agent system development, i.e. modelling, verification and
testing.
Although agent-oriented software engineering aims to manage
the inherent complexity of software systems [3], there is still
no evidence to suggest that any method proposed leads
towards “correct” systems. In the last few decades, there has
been a strong debate on whether formal methods can achieve
this goal. Academics and practitioners adopted extreme
positions either for or against formal methods [4]. It is,
however, apparent that the truth lies somewhere between and
that there is a need for use of formal methods in software
engineering in general [5], while there are several specific
cases proving the applicability of formal methods in agent
development, as we shall see in the next section.
Software system specification has centred on the use of
models of data types, either functional or relational models
such as Z or VDM or axiomatic ones such as OBJ. Although
these have led to some considerable advances in software
design, they lack the ability to express the dynamics of the
system. Also, transforming an implicit formal description into
an effective working system is not straightforward. Other
formal methods, such as Finite State Machines or Petri Nets

capture the essential feature, which is “change”, but fail to
describe the system completely, since there is little or no
reference at all to the internal data and how this data is
affected by each operation in the state transition diagram.
Other methods, like Statecharts, capture the requirements of
dynamic behaviour and modelling of data but are rather
informal with respect to clarity and semantics. So far, little
attention has been paid in formal methods that could facilitate
all crucial stages of “correct” system development, modelling,
verification and testing. This paper will introduce such a

Modeling Biology Inspired Reactive Agents
Using X-machines

George Eleftherakis, Petros Kefalas, Anna Sotiriadou, and Evangelos Kehris

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

151

formal method, namely X-machines, which closely suits the
needs of agent development, while at the same time being
intuitive and practical.

II. MODELING REACTIVE AGENTS

A. X-machine

A X-machine is a general computational machine
introduced by Eilenberg [6] and extended by Holcombe [7]
that resembles a Finite State Machine (FSM) but with two
significant differences:

there is memory attached to the machine, and
the transitions are not labeled with simple inputs but with
functions that operate on inputs and memory values.

These differences allow the X-machines to be more
expressive and flexible than the FSM. Other machine models
like pushdown automata or Turing machines are too low level
and hence of little use for specification of real systems. X-
machines employ a diagrammatic approach of modelling the
control by extending the expressive power of the FSM. They
are capable of modelling both the data and the control of a
system. Data is held in memory, which is attached to the X-
machine. Transitions between states are performed through
the application of functions, which are written in a formal
notation and model the processing of the data. Functions
receive input symbols and memory values, and produce output
while modifying the memory values (Fig.1). The machine,
depending on the current state of control and the current
values of the memory, consumes an input symbol from the
input stream and determines the next state, the new memory
state and the output symbol, which will be part of the output
stream. The formal definition of a deterministic stream X-
machine [2] is an 8-tuple M = (, , Q, M, , F, q0, m0),
where:

, is the input and output finite alphabet respectively,
Q is the finite set of states,
M is the (possibly) infinite set called memory,

 is the type of the machine M, a finite set of partial
functions that map an input and a memory state to an
output and a new memory state, : M M
F is the next state partial function that given a state and a
function from the type , denotes the next state. F is often
described as a transition state diagram, F:Q Q
q0 and m0 are the initial state and memory respectively.

X-machines can be used as a core method for an integrated
formal methodology of developing correct systems. The X-
machine integrates both the control and data processing while
allowing them to be described separately.

The X-machine formal method forms the basis for a
specification/modelling language with a great potential value
to software engineers. It is rather intuitive, while at the same
time formal descriptions of data types and functions can be
written in any known mathematical notation. Finally, X-
machines can be extended by adding new features to the
original model, such as hierarchical decomposition and

communication, which will be described later. Such features
are particularly interesting in agent-based systems.

MEMORY

input stream output stream

m’m

S1

S2

S3

S4

1

3

2

4

4

2 2

5

Fig. 1. An abstract example of a X-machine; i: functions
operating on inputs and memory, Si: states. The general formal

of functions is: (,m) = (,m’) if condition

B. Modeling Biology Inspired Reactive Agents

Many biological processes seem to behave like agents, as for
example a colony of ants. Much research has been based on
such behaviour in order to solve interesting problems [8]. An
important task of some ants is to find food and carry it to its
nest. This can be accomplished by searching for food at
random or by following pheromone trails that other ants have
left on their return back to the nest [9]. While moving, an ant
should avoid obstacles. Once food is found, an ant should
leave a pheromone trail while travelling back to its nest, thus
implicitly communicating with other ants the destination of a
source where food may be found. When the nest is found, the
ant drops the food. Clearly, this is a reactive agent that
receives inputs from the environment and acts upon these
inputs according to the state in which the agent is. Such
reactive agents can be fairly easily modelled by a FSM in a
rather straightforward way by specifying the states and the
inputs (percepts) to be used for state transitions (Fig.2).

AT NEST

FOLLOWING

TRAIL

LIFTING

FOOD

AT

OBSTACLE

MOVING

FREELY

space
space

space

pheromone

pheromone

nest
pheromone

food

space

space

obstacle obstacle

pheromone

obstacle

nest

food

pheromone

Fig. 2: A Finite State Machine modeling an ant’s behaviour

The FSM lacks the ability to model any non-trivial data
structures. In more complex tasks, one can imagine that the
actions of the agents will also be determined by the values
stored in its memory. For example, an agent may know its
position, remember the position of the food source or the
position of obstacles, thus building a map of the environment
in order to make the task eventually more efficient. Using
FSM or variants of it [10], [11] for such agents is rather
complicated since the number of states increases in

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

152

combinatorial fashion to the possible values of the memory
structure. X-machines can facilitate modelling of agents that
demand remembering as well as reactiveness. Fig.3 shows the
model of an ant that searches for food, but also remembers
food positions in order to set up its next goals. The behaviour
of obstacle avoidance is omitted for simplicity.

AT NEST

LOOKING

FOR FOOD

AT FOOD MOVING

FREELY

ignore food

move

move

find_nest

got_lost
move_to_food

lift_food

find_nest

move_to_nest

stay_at_nest

GOING

BACK TO

NEST

find_food

lift_food

move_to_nest

drop_food

move_to_food

M = (FOOD {none}) (COORD COORD) seq (COORD COORD)

Fig. 3. A X-machine that models an ant

Formally, the definition of the X-machines requires all
elements of the 8-tuple (, , Q, M, , F, q0, m0). First of all,
the input set consists of the percept and the x and y coordinate
it is perceived:

 = ({space, nest} FOOD) COORD COORD

where [FOOD] is a basic type and COORD is of type integer,
COORD Z.
The set of outputs is defined as a set of messages:

={“moving freely”, “moving to nest”, “dropping food”,

…}

The states in which the agents can be are five:

Q={At Nest, Moving Freely, At Food, Going Back To

Nest, Looking For Food}.
The state “Moving Freely” applies to an agent that does not
have a specific goal and searches in random for a food source.
The state “Going Back To Nest” applies when the agent is
carrying a food item and it is on its way back to its nest. The
state “Looking For Food” applies when the agent has a goal,
i.e. remembers where food is found during previous
explorations of the terrain.

The memory consists of three elements, i.e. what the agent
carries, the current position of the agent, and the sequence of
positions where food is found during its exploration:

M = (FOOD {none}) (COORD COORD) seq

(COORD COORD)

where none indicates that no food is carried.

The initial memory and the initial states are respectively:

m0 = (none, (0,0), nil)

q0 = “At Nest”

It is assumed that the nest is at position (0,0).

The next state partial function is depicted with the state
diagram in Fig.3.
The type is a set of functions of the form:

function_name(input_tuple, memory_tuple)
 (output, memory_tuple’), if condition.

move((space,xs,ys), (none,(x,y),nil))

("moving freely",(none,(xs,ys),nil)),

if next(x,y,xs,ys)

move_to_food((space,xs,ys),(none,(x,y),<(fpx,fpy)::rest>))

("moving to food",(none,(nx,ny),<(fpx,fpy)::rest>)),

if next(x,y,xs,ys) loser_to_food(fpx,fpy,xs,ys)

move_to_nest((space,xs,ys), (food,(x,y),foodlist))

("moving to nest",(food,(nx,ny),foodlist)),

if food FOOD next(x,y,xs,ys) closer_to_nest(xs,ys)

lift_food((f,x,y),(none,(x,y),foodlist))

("lifting food",(f,(x,y),<(x,y) :: foodlist>)),

 if f FOOD (x,y) foodlist

lift_food((f,x,y),(none,(x,y),foodlist))

("lifting food",(f,(x,y),foodlist)),

if f FOOD (x,y) foodlist

find_food((f,fpx,fpy), (food,(x,y),foodlist))

("more food",(food,(x,y),<(fpx,fpy)::foodlist>)),

if f FOOD f foodlist

drop_food((nest,0,0), (food,(x,y),foodlist))

("dropping food",(none,(0,0),foodlist))

find_nest((nest,0,0), (none,(x,y),foodlist))

("found nest again",(none,(0,0),foodlist))

got_lost((space,fpx,fpy), (none,(x,y),<(fpx,fpy)>))

("got lost",(none,(x,y),nil)),

if next(x,y,xs,ys)

ignore_food((food,0,0), (none,(0,0),foodlist))

("ignore food",(none,(0,0),foodlist)),

if f FOOD

stay_at_nest((nest,0,0), (none,(0,0),foodlist))

("staying in",(none,(0,0),foodlist))

where the functions next, closer_to_nest and closer_to_food

are considered as external functions, i.e. functions that are
defined elsewhere (possibly as X-machines themselves):
next: COORD COORD COORD COORD BOOLEAN

closer_to_nest: COORD COORD BOOLEAN

closer_to_food: COORD COORD COORD COORD

BOOLEAN

III. DISCUSSION

We have demonstrated how X-machines are able to model
both the control and the data part of a complex system and
therefore it possesses valuable characteristics that are
desirable to software engineering of agent systems.

A framework for formal development of systems proposed
in [12] uses X-machines as a formal modeling language.
Using X-machines as the main core, the development of an
agent can be mapped into several actions that are presented in
the following paragraphs.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:1, 2007

153

Developed X-machine models can be verified for desired
properties an agent should possess, using a specifically
designed formal verification technique to prove the validity of
X-machine models [13]. Use of this formal verification
technique (model checking) for X-machine models will
increase the confidence that the proposed model has the
desired characteristics. This technique enables the designer to
automatically verify the developed model against temporal
logic formulas that express the properties that the agent should
have.

X-machines support not only static but also dynamic
analysis. It is possible to use the formal testing strategy
described in [2] to test the implementation and prove its
correctness with respect to the X-machine model. Formally
testing the implementation against the verified model it is
possible to assure that all desired properties of an agent hold
in the final product, increasing the confidence in using the
final product.

The formalism is also enhanced with a methodology for
building communicating systems out of existing components,
i.e. stand-alone X-machines, which allows a disciplined
development of large systems. The approach is practical, in
the sense that the software engineer can separately specify the
components and then describe the way in which these
components communicate. Also, X-machine models can be re-
used in other systems, since the only thing that needs to be
changed is the communication part. The major advantage is
that the methodology also lends itself to modular testing
strategies in which X-machines are individually tested as
components while communication is tested separately. It is
found that by using communicating X-machines, we can
formally model multi-agent systems, with agents modeled as
an aggregate of different communicating behaviours [14].

A set of tools for X-machines exists and it is developed
based on the X-machine Description Language (XMDL) to
code X-machine models. With the use of tools that are built
around the XMDL language it is possible to syntactically
check the model and then automatically animate it [15].
Through this simulation it is possible for the developers to
informally verify that the model corresponds to the actual
system under development and also to demonstrate the model
to the end-users aiding them to identify any misconceptions
regarding the user requirements between them and the
development team.

IV. CONCLUSION

The X-machine formal method is valuable to agent
developers since it is rather intuitive, while at the same time
can model non-trivial data structures, offering characteristics
desirable to agent-oriented software engineering for
developing "correct" systems, as discussed in this paper. With
the continuous verification and testing from the early stages,
risks are reduced and the developer is confident of the
correctness of the system under development throughout the
whole process. It is worth noticing that components that have

been verified and tested can be reused without any other
quality check in the proposed communicating X-machine
system supported by the methodology is based in the idea of
reusability, thus minimising the development time without
risking the quality of the product.

Future work includes extension of the communicating
system to support models with dynamic behaviour, i.e. self-
reconfigurable multi-agent systems [16].

ACKNOWLEDGMENT

We would like to thank Prof Mike Holcombe for his
valuable comments on our work over the last years.

REFERENCES

[1] N.R. Jennings, “On agent-based software engineering”, Artificial

Intelligence, vol. 117, pp.277-296, 2000.
[2] M. Holcombe and F. Ipate, Correct systems: Building a business process

Solution. Springer Verlag, London, 1998.
[3] M. Wooldridge and P. Ciancarini, “Agent-oriented software engineering:

The state of the art”, in Proc. First Int. Workshop on Agent-Oriented

Software Engineering, pp.1-28, 2000.
[4] W. D. Young, “Formal Methods versus Software Engineering: Is There a

Conflict?”, In Proceedings of the Fourth Testing, Analysis, and

Verification Symposium, pp. 188-899, 1991.
[5] E. Clarke and J. M. Wing, “Formal Methods: State of the Art and Future

Directions”, ACM Computing Surveys, vol. 28, no.4, pp.626-643, 1996.
[6] S. Eilenberg. Automata, Machines and Languages. Vol. A. Academic

Press, 1974.
[7] M. Holcombe, “X-machines as a basis for dynamic system

specification”, Software Engineering Journal, vol. 3, no.2, pp. 69-76,
1988.

[8] M. Dorigo and G. Di Caro, “The ant colony optimization meta-
heuristic”, In D. Corne, M.Dorigo, & F. Glover (Eds.), New Ideas in
Optimization, pp.11-32, McGraw-Hill, 1999.

[9] J. L. Deneubourg, S. Aron, S. Goss, and J.M. Pasteels, “The self-
organizing exploratory pattern of the Argentine ant”, Journal of Insect

Behavior, vol. 3, pp. 159-68, 1990.
[10] R. A. Brooks, “A robust layered control system for a mobile robot”,

IEEE Journal of Robotics Automation., vol. 2, no. 7, pp.14-23, 1986.
[11] S.R. Rosenschein and L.P. Kaebling, “A situated view of representation

and control”, Artificial Intelligence, vol.73, no.1-2, pp 149-173, 1995.
[12] G. Eleftherakis and A.J. Cowling, “An Agile Formal Development

Methodology”, In 1st South Eastern European workshop on Formal

Methods (SEEFM 03), pp. 36-47, Thessaloniki, November 2003.
[13] G. Eleftherakis, P. Kefalas, and A. Sotiriadou, “Formal Verification of

Agent Models”, In I.P.Vlahavas and C.D.Spyropoulos (eds),
Proceedings of the 2nd Hellenic Conference on AI (SETN02), pp.425-
435, 2002.

[14] P. Kefalas, G. Eleftherakis, and E. Kehris, “Communicating X-
machines: a practical approach for formal and modular specification of
large systems”, Information and Software Technology, vol. 45, no.5,
pp.269-280, April 2003.

[15] P. Kefalas, G. Eleftherakis, and A. Sotiriadou, “Developing Tools for
Formal Methods”, In 9th Panhellenic Conference on Informatics, pp.
625-639, Thessaloniki, November 2003.

[16] P. Kefalas, G. Eleftherakis, M. Holcombe, I. Stamatopoulou, "Formal
Modelling of the Dynamic Behaviour of Biology-Inspired Agent-Based
Systems", in Molecular Computation Models: Unconventional

Approaches, M.Gheorghe (ed), Idea Publishing Group (IDG), 2005.

