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Abstract—Recent advances in both the testing and verification of 
software based on formal specifications of the system to be built have 
reached a point where the ideas can be applied in a powerful way in 
the design of agent-based systems. The software engineering research 
has highlighted a number of important issues: the importance of the 
type of modeling technique used; the careful design of the model to 
enable powerful testing techniques to be used; the automated 
verification of the behavioural properties of the system; the need to 
provide a mechanism for translating the formal models into 
executable software in a simple and transparent way. This paper 
introduces the use of the X-machine formalism as a tool for modeling 
biology inspired agents proposing the use of the techniques built 
around X-machine models for the construction of effective, and 
reliable agent-based software systems. 

Keywords— Biology Inspired Agent, Formal Methods, X-
machine  

I. INTRODUCTION

GENT is an encapsulated computer system that is situated 
in some environment and that is capable of flexible, 
autonomous action in that environment in order to meet 

its design objectives [1]. There are two fundamental concepts 
associated with any dynamic or reactive system, such as an 
agent, that is situated in and reacting with some environment 
[2]. The environment itself must be defined in some precise, 
mathematical way. The agent will be responding to 
environmental changes by changing its basic parameters and 
possibly affecting the environment as well. Thus, there are 
two ways in which the agent reacts, i.e. it undergoes internal 
changes and it produces outputs that affect the environment. 

Agents, as highly dynamic systems, are concerned with three 
essential factors: 

a set of appropriate environmental stimuli or inputs, 
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a set of internal states of the agent, and 
a rule that relates the two above and determines what the 
agent state will change to if a particular input arrives 
while the agent is in a particular state. 

One of the challenges that emerge in intelligent agent 
engineering is to develop agent models and agent 
implementations that are “correct”. According to Holcombe 
and Ipate [2], the criteria for “correctness” are: 

the initial agent model should match with the 
requirements, 
the agent model should satisfy any necessary properties in 
order to meet its design objectives, and 
the implementation should pass all tests constructed using 
a complete functional test generation method. 

All the above criteria are closely related to three stages of 
agent system development, i.e. modelling, verification and 
testing.
Although agent-oriented software engineering aims to manage 
the inherent complexity of software systems [3], there is still 
no evidence to suggest that any method proposed leads 
towards “correct” systems. In the last few decades, there has 
been a strong debate on whether formal methods can achieve 
this goal. Academics and practitioners adopted extreme 
positions either for or against formal methods [4]. It is, 
however, apparent that the truth lies somewhere between and 
that there is a need for use of formal methods in software 
engineering in general [5], while there are several specific 
cases proving the applicability of formal methods in agent 
development, as we shall see in the next section. 
Software system specification has centred on the use of 
models of data types, either functional or relational models 
such as Z or VDM or axiomatic ones such as OBJ. Although 
these have led to some considerable advances in software 
design, they lack the ability to express the dynamics of the 
system. Also, transforming an implicit formal description into 
an effective working system is not straightforward.  Other 
formal methods, such as Finite State Machines or Petri Nets

capture the essential feature, which is “change”, but fail to 
describe the system completely, since there is little or no 
reference at all to the internal data and how this data is 
affected by each operation in the state transition diagram. 
Other methods, like Statecharts, capture the requirements of 
dynamic behaviour and modelling of data but are rather 
informal with respect to clarity and semantics. So far, little 
attention has been paid in formal methods that could facilitate 
all crucial stages of “correct” system development, modelling, 
verification and testing. This paper will introduce such a 
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formal method, namely X-machines, which closely suits the 
needs of agent development, while at the same time being 
intuitive and practical. 

II. MODELING REACTIVE AGENTS

A. X-machine 

A X-machine is a general computational machine 
introduced by Eilenberg [6] and extended by Holcombe [7] 
that resembles a Finite State Machine (FSM) but with two 
significant differences:  

there is memory attached to the machine, and  
the transitions are not labeled with simple inputs but with 
functions that operate on inputs and memory values.  

These differences allow the X-machines to be more 
expressive and flexible than the FSM. Other machine models 
like pushdown automata or Turing machines are too low level 
and hence of little use for specification of real systems. X-
machines employ a diagrammatic approach of modelling the 
control by extending the expressive power of the FSM. They 
are capable of modelling both the data and the control of a 
system. Data is held in memory, which is attached to the X-
machine. Transitions between states are performed through 
the application of functions, which are written in a formal 
notation and model the processing of the data. Functions 
receive input symbols and memory values, and produce output 
while modifying the memory values (Fig.1). The machine, 
depending on the current state of control and the current 
values of the memory, consumes an input symbol from the 
input stream and determines the next state, the new memory 
state and the output symbol, which will be part of the output 
stream. The formal definition of a deterministic stream X-
machine [2] is an 8-tuple M = ( , , Q, M, , F, q0, m0),
where: 

,  is the input and output finite alphabet respectively, 
Q is the finite set of states,  
M is the (possibly) infinite set called memory, 

 is the type of the machine M, a finite set of partial 
functions  that map an input and a memory state to an 
output and a new memory state, : M M
F is the next state partial function that given a state and a 
function from the type , denotes the next state. F is often 
described as a transition state diagram, F:Q Q
q0 and m0 are the initial state and memory respectively. 

X-machines can be used as a core method for an integrated 
formal methodology of developing correct systems. The X-
machine integrates both the control and data processing while 
allowing them to be described separately.  

The X-machine formal method forms the basis for a 
specification/modelling language with a great potential value 
to software engineers. It is rather intuitive, while at the same 
time formal descriptions of data types and functions can be 
written in any known mathematical notation. Finally, X-
machines can be extended by adding new features to the 
original model, such as hierarchical decomposition and 

communication, which will be described later. Such features 
are particularly interesting in agent-based systems. 
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Fig. 1. An abstract example of a X-machine; i: functions 
operating on inputs and memory, Si: states. The general formal 

of functions is: ( ,m) = ( ,m’)  if condition

B. Modeling Biology Inspired Reactive Agents 

Many biological processes seem to behave like agents, as for 
example a colony of ants. Much research has been based on 
such behaviour in order to solve interesting problems [8].  An 
important task of some ants is to find food and carry it to its 
nest. This can be accomplished by searching for food at 
random or by following pheromone trails that other ants have 
left on their return back to the nest [9]. While moving, an ant 
should avoid obstacles. Once food is found, an ant should 
leave a pheromone trail while travelling back to its nest, thus 
implicitly communicating with other ants the destination of a 
source where food may be found. When the nest is found, the 
ant drops the food. Clearly, this is a reactive agent that 
receives inputs from the environment and acts upon these 
inputs according to the state in which the agent is. Such 
reactive agents can be fairly easily modelled by a FSM in a 
rather straightforward way by specifying the states and the 
inputs (percepts) to be used for state transitions (Fig.2).  
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Fig. 2: A Finite State Machine modeling an ant’s behaviour  

The FSM lacks the ability to model any non-trivial data 
structures. In more complex tasks, one can imagine that the 
actions of the agents will also be determined by the values 
stored in its memory. For example, an agent may know its 
position, remember the position of the food source or the 
position of obstacles, thus building a map of the environment 
in order to make the task eventually more efficient. Using 
FSM or variants of it [10], [11] for such agents is rather 
complicated since the number of states increases in 
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combinatorial fashion to the possible values of the memory 
structure. X-machines can facilitate modelling of agents that 
demand remembering as well as reactiveness.  Fig.3 shows the 
model of an ant that searches for food, but also remembers 
food positions in order to set up its next goals. The behaviour 
of obstacle avoidance is omitted for simplicity.  
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Fig. 3. A X-machine that models an ant

Formally, the definition of the X-machines requires all 
elements of the 8-tuple ( , , Q, M, , F, q0, m0). First of all, 
the input set consists of the percept and the x and y coordinate 
it is perceived: 

 = ({space, nest}  FOOD)  COORD  COORD 

where [FOOD] is a basic type and COORD is of type integer, 
COORD Z.
The set of outputs is defined as a set of messages: 

={“moving freely”, “moving to nest”, “dropping food”, 

…}

The states in which the agents can be are five: 

Q={At Nest, Moving Freely, At Food, Going Back To 

Nest, Looking For Food}.
The state “Moving Freely” applies to an agent that does not 
have a specific goal and searches in random for a food source. 
The state “Going Back To Nest” applies when the agent is 
carrying a food item and it is on its way back to its nest. The 
state “Looking For Food” applies when the agent has a goal, 
i.e. remembers where food is found during previous 
explorations of the terrain. 

The memory consists of three elements, i.e. what the agent 
carries, the current position of the agent, and the sequence of 
positions where food is found during its exploration:  

M = (FOOD {none})  (COORD  COORD)  seq 

(COORD  COORD) 

where none indicates that no food is carried.  

The initial memory and the initial states are respectively: 

m0 = (none, (0,0), nil) 

q0 = “At Nest” 

It is assumed that the nest is at position (0,0).  

The next state partial function is depicted with the state 
diagram in Fig.3.  
The type  is a set of functions of the form: 

function_name(input_tuple, memory_tuple)
 (output, memory_tuple’), if condition.

move( (space,xs,ys), (none,(x,y),nil) ) 

("moving freely",(none,(xs,ys),nil)),   

if next(x,y,xs,ys) 

move_to_food( (space,xs,ys),(none,(x,y),<(fpx,fpy)::rest>) )

("moving to food",(none,(nx,ny),<(fpx,fpy)::rest>)),  

if next(x,y,xs,ys)  loser_to_food(fpx,fpy,xs,ys) 

move_to_nest( (space,xs,ys), (food,(x,y),foodlist) ) 

("moving to nest",(food,(nx,ny),foodlist)),  

if food  FOOD  next(x,y,xs,ys)  closer_to_nest(xs,ys) 

lift_food( (f,x,y),(none,(x,y),foodlist) ) 

("lifting food",(f,(x,y),<(x,y) :: foodlist>)), 

 if f FOOD  (x,y) foodlist 

lift_food( (f,x,y),(none,(x,y),foodlist) ) 

("lifting food",(f,(x,y),foodlist)), 

if f FOOD   (x,y) foodlist 

find_food( (f,fpx,fpy), (food,(x,y),foodlist) ) 

("more food",(food,(x,y),<(fpx,fpy)::foodlist>)),  

if f FOOD  f foodlist 

drop_food( (nest,0,0), (food,(x,y),foodlist) ) 

("dropping food",(none,(0,0),foodlist)) 

find_nest( (nest,0,0), (none,(x,y),foodlist) ) 

("found nest again",(none,(0,0),foodlist)) 

got_lost( (space,fpx,fpy), (none,(x,y),<(fpx,fpy)>)) 

("got lost",(none,(x,y),nil)), 

if next(x,y,xs,ys) 

ignore_food( (food,0,0), (none,(0,0),foodlist) ) 

("ignore food",(none,(0,0),foodlist)),  

if f FOOD 

stay_at_nest( (nest,0,0), (none,(0,0),foodlist) ) 

("staying in",(none,(0,0),foodlist)) 

where the functions next, closer_to_nest and closer_to_food

are considered as external functions, i.e. functions that are 
defined elsewhere (possibly as X-machines themselves): 
next: COORD  COORD  COORD  COORD BOOLEAN 

closer_to_nest: COORD  COORD BOOLEAN  

closer_to_food: COORD  COORD  COORD  COORD 

BOOLEAN

III. DISCUSSION 

We have demonstrated how X-machines are able to model 
both the control and the data part of a complex system and 
therefore it possesses valuable characteristics that are 
desirable to software engineering of agent systems.  

A framework for formal development of systems proposed 
in [12] uses X-machines as a formal modeling language. 
Using X-machines as the main core, the development of an 
agent can be mapped into several actions that are presented in 
the following paragraphs. 
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Developed X-machine models can be verified for desired 
properties an agent should possess, using a specifically 
designed formal verification technique to prove the validity of 
X-machine models [13]. Use of this formal verification 
technique (model checking) for X-machine models will 
increase the confidence that the proposed model has the 
desired characteristics. This technique enables the designer to 
automatically verify the developed model against temporal 
logic formulas that express the properties that the agent should 
have. 

X-machines support not only static but also dynamic 
analysis. It is possible to use the formal testing strategy 
described in [2] to test the implementation and prove its 
correctness with respect to the X-machine model. Formally 
testing the implementation against the verified model it is 
possible to assure that all desired properties of an agent hold 
in the final product, increasing the confidence in using the 
final product. 

The formalism is also enhanced with a methodology for 
building communicating systems out of existing components, 
i.e. stand-alone X-machines, which allows a disciplined 
development of large systems. The approach is practical, in 
the sense that the software engineer can separately specify the 
components and then describe the way in which these 
components communicate. Also, X-machine models can be re-
used in other systems, since the only thing that needs to be 
changed is the communication part. The major advantage is 
that the methodology also lends itself to modular testing 
strategies in which X-machines are individually tested as 
components while communication is tested separately. It is 
found that by using communicating X-machines, we can 
formally model multi-agent systems, with agents modeled as 
an aggregate of different communicating behaviours [14].  

A set of tools for X-machines exists and it is developed 
based on the X-machine Description Language (XMDL) to 
code X-machine models. With the use of tools that are built 
around the XMDL language it is possible to syntactically 
check the model and then automatically animate it [15]. 
Through this simulation it is possible for the developers to 
informally verify that the model corresponds to the actual 
system under development and also to demonstrate the model 
to the end-users aiding them to identify any misconceptions 
regarding the user requirements between them and the 
development team. 

IV. CONCLUSION

The X-machine formal method is valuable to agent 
developers since it is rather intuitive, while at the same time 
can model non-trivial data structures, offering characteristics 
desirable to agent-oriented software engineering for 
developing "correct" systems, as discussed in this paper. With 
the continuous verification and testing from the early stages, 
risks are reduced and the developer is confident of the 
correctness of the system under development throughout the 
whole process. It is worth noticing that components that have 

been verified and tested can be reused without any other 
quality check in the proposed communicating X-machine 
system supported by the methodology is based in the idea of 
reusability, thus minimising the development time without 
risking the quality of the product. 

Future work includes extension of the communicating 
system to support models with dynamic behaviour, i.e. self-
reconfigurable multi-agent systems [16].  
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