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Certain Estimates of Oscillatory Integrals and Extrapolation

Hussain Al-Qassem

Abstract—In this paper we study the boundedness properties of
certain oscillatory integrals with polynomial phase. We obtain sharp
estimates for these oscillatory integrals. By the virtue of these
estimates and extrapolation we obtain Lp boundedness for these
oscillatory integrals under rather weak size conditions on the kernel
function.
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I. INTRODUCTION AND STATEMENT OF RESULTS

THROUGHOUT this paper, let Rn, n ≥ 2, be the
n-dimensional Euclidean space and Sn−1 be the unit

sphere in Rn equipped with the normalized Lebesgue surface
measure dσ. Also, we let ξ′ denote ξ/ |ξ| for ξ ∈ Rn\{0} and
p′ denote the exponent conjugate to p, that is 1/p+1/p′ = 1.

Let Ω be an integrable function on Sn−1 and P(d) denote
the set of all polynomials on R which have real coefficients
and degrees not exceeding d. For P ∈ P(d) and Ω ∈
L1(Sn−1), define the oscillatory integral SΩ,P by

SΩ,P (ξ) =
∫
Sn−1

eiP (ξ·y)Ω(y)dσ(y),

where ξ ∈ Rn. When P (t) = t and dμΩ = Ωdσ, we notice
that SΩ,P (ξ) = d̂μΩ(ξ) which is the Fourier transform of
the measure dμΩ that is supported on the unit sphere with
density Ω. The behavior of SΩ,P (ξ) as |ξ| → ∞ has been
studied extensively in connection with various problems in
harmonic analysis. For example, if Ω is sufficiently smooth,
then d̂μΩ(ξ) = O(|ξ|−n−1

2 ) as |ξ| → ∞. It turns out if the
density Ω is merely in Lq(Sn−1) for some q > 1, then there
is still an average decrease of d̂μΩ(ξ) at infinity along any
ray emanating from the origin. More precisely, the following
result can be found in [7] and [16].

Theorem A. Suppose Ω ∈ Lq(Sn−1) for some q > 1. Then(
1
R

∫ R

0

∣∣∣d̂μΩ(tξ)
∣∣∣2 dt

)1/2

≤ Cε(R |ξ|)−ε ‖Ω‖Lq(Sn−1)

(1.1)
for all R > 0, ξ ∈ Rn and for any positive ε satisfying
ε < A(q) = 1

4 (1 − q−1). The constant Cε is independent of
R and ξ.

Since A(q) = 0 when q = 1, the analogue of (1.1) is
no longer meaningful. So it would be interesting to have a
substitute for (1.1). The investigation of such a problem has
attracted the attention of many authors. For relevant results
one may consult [9], [10], [1], among others. We mention
here that such estimates as in (1.1) above, (1.2) in [10], (2)
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in [9] and (1.3)–(1.4) in Theorem B below were instrumental
in obtaining the L2 boundedness of certain classes of singular
integral operators and Marcinkiewicz integral operators (see
[7], [13], [6], [1], [16]). Our main focus will be on the
following result from [1].
Theorem B. Let P ∈ P(d) for some d and let 1 ≤ λ < ∞.
Let Ω be a function on Sn−1 satisfying∫

Sn−1
Ω(y)dσ(y). (1.2)

Then there exists a constant C depends on n, p, d, but it is
independent of Ω, ξ and the coefficients of the polynomial P
such that

(a) If Ω ∈ L(log L)
1/λ

(Sn−1), then there exists a constant
C independent such that(∫ ∞

0

|SΩ,P (tξ)|λ dt

t

)1/λ

≤ C
(
1 + ‖Ω‖

L(log L)
1/λ

(Sn−1)

)
,

(1.3)
(b) If Ω ∈ B

(0, 1
λ−1)

q

(
Sn−1

)
for some q > 1, then there

exists a constant C independent Ω, ξ and the coefficients of
the polynomial P such that(∫ ∞

0

|SΩ,P (tξ)|λ dt

t

)1/λ

≤ C

(
1 + ‖Ω‖

B
(0, 1

λ
−1)

q (Sn−1)

)
.

(1.4)
We notice that the constant C depends on the degree d of

the polynomial P and it is independent of its coefficients. One
of the main issues of concern in this paper is to determine the
the optimal dependence of the constant C on the parameter
d. Also, we present a unified approach different from the one
employed in [1]. This approach will mainly rely on obtaining
some a delicate estimate and the results in Theorem B are
obtained by applying an extrapolation argument. Let us now
state our main results.
Theorem 1.1. Let P ∈ P(d) for some d and let 1 ≤ λ <
∞. Let Ω be a function on Sn−1 satisfying (1.2) with Ω ∈
Lq(Sn−1) for some 1 < q ≤ 2. Then there exists a constant
C independent Ω, ξ and the coefficients of the polynomial P
such that (∫ ∞

0

|SΩ,P (tξ)|λ dt

t

)1/λ

≤ C(q − 1)−
1
λ (log d + 1) ‖Ω‖q . (1.5)

Moreover, for P (t) = t, the exponent − 1
λ is the best possible

in the case λ = 1 or 2.
By the estimate (1.5) and extrapolation we get the following.

Theorem 1.2. Let P ∈ P(d) for some d and let 1 ≤ λ < ∞.
Let Ω be a function on Sn−1 satisfying (1.2). Then there exists
a constant C depends on n, p but it is independent of Ω, ξ
and the coefficients of the polynomial P such that
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(a) If Ω ∈ L(log L)
1/λ

(Sn−1), then there exists a constant
C independent such that(∫ ∞

0

|SΩ,P (tξ)|λ dt

t

)1/λ

≤ C(log d + 1)
(
1 + ‖Ω‖

L(log L)
1/λ

(Sn−1)

)
, (1.6)

(b) If Ω ∈ B
(0, 1

λ−1)
q

(
Sn−1

)
for some q > 1,then there

exists a constant C independent Ω, ξ and the coefficients of
the polynomial P such that(∫ ∞

0

|SΩ,P (tξ)|λ dt

t

)1/λ

≤ C(log d + 1)
(

1 + ‖Ω‖
B

(0, 1
λ

−1)
q (Sn−1)

)
. (1.7)

It is worth mentioning that in addition to the condition
Ω ∈ H1(Sn−1), the conditions Ω ∈ B

(0,υ−1)
q (Sn−1) and

Ω ∈ L(log+ L)
υ

(Sn−1) (for υ > 0) had received the most
amount of attention with respect to the study of the Lp

mapping properties of singular integral operators, maximal
integral operators and Marcinkiewicz integral operators.

We remark that on Sn−1, for any q > 1, the following
inclusions hold and are proper:

Lq(Sn−1) ⊂ L(log L)(Sn−1) ⊂ H1(Sn−1) ⊂ L1(Sn−1),
(1.8)⋃

r>1

Lr(Sn−1) ⊂ B(0,υ)
q (Sn−1) for any − 1 < υ, (1.9)

L(log L)
β

(Sn−1) ⊂ L(log L)
α

(Sn−1) if 0 < α < β, (1.10)

L(log L)
α

(Sn−1) ⊂ H1(Sn−1) for all α ≥ 1, while (1.11)

L(log+ L)
α

(Sn−1) � H1(Sn−1) � L(log L)
α

(Sn−1)
(1.12)

for all 0 < α < 1. With regard to the relationship between
B

(0,υ−1)
q (Sn−1) and L(log+ L)

υ

(Sn−1) (for υ > 0) remains

open.
We remark that when (q > 1) the condition Ω ∈

L(log L)
1/λ

(Sn−1)∪B
(0, 1

λ−1)
q

(
Sn−1

)
is replaced the weaker

condition Ω ∈ L1(Sn−1), the above statements in (1.6)
and (1.7) become false. Also, when L(log+ L)

1/λ

(Sn−1) (or
B

(0, 1
λ−1)

q (Sn−1)) (for a given 1 ≤ λ < ∞) is replaced by

Lq(Sn−1) for some q > 1, it follows from (1.8)–(1.9) that the
inequalities (1.6)–(1.7) remain valid.

Throughout the rest of the paper, we always use the letter C
to denote a positive constant that may vary at each occurrence
but it is independent of the essential variables.

II. DEFINITIONS AND LEMMAS

Let L(log L)α(Sn−1) (α > 0) denote the class of all
functions Ω which satisfy

‖Ω‖L(log L)α (Sn−1)

=
∫
Sn−1

|Ω(x)| log
α

(2 + |Ω(x)|)dσ(x) < ∞.

Now, let us recall the definition of the block space
B

(0,υ)
q (Sn−1). This space was introduced by Jiang and Lu

(see [12]) and can be traced back to M. H. Taibleson and
G. Weiss on their work on the convergence of the Fourier
series in connection with the developments of the real Hardy
spaces [17]. The space B

(0,υ)
q (Sn−1) is defined as follows:

A q-block on Sn−1 is an Lq (1 < q ≤ ∞) function b(x)
that satisfies the following two conditions: (i) supp(b) ⊂ I;
(ii) ‖b‖Lq ≤ |I|−1/q′

, where |I| = σ(I), and I =
B(x′

0, θ0) = {x′ ∈ Sn−1 : |x′ − x′
0| < θ0} is a cap on

Sn−1 for some x′
0 ∈ Sn−1 and θ0 ∈ (0, 1]. The block space

B
(0,υ)
q (Sn−1) is defined by

B(0,υ)
q (Sn−1)

=

{
Ω ∈ L1(Sn−1): Ω =

∞∑
μ=1

λμbμ ,M (0,υ)
q

({λ
μ}
)

< ∞
}

,

where each λ
μ is a complex number; each bμ is a q−block

supported on a cap I
μ on Sn−1, υ > −1 and

M (0,υ)
q

({λ
μ}
)

=
∞∑

μ=1

∣∣λ
μ

∣∣ {1 + log(υ+1)(
∣∣Iμ

∣∣−1)
}

.

Let ‖Ω‖
B

(0,υ)
q (Sn−1)

= inf{M (0,υ)
q

({λ
μ}
)
: Ω =

∑∞
μ=1 λμbμ

and each bμ is a q-block function supported on a cap Iμ

on Sn−1}. Then ‖·‖
B

(0,υ)
q (Sn−1)

is a norm on the space

B
(0,υ)
q (Sn−1) and (B(0,υ)

q (Sn−1), ‖·‖
B

(0,υ)
q (Sn−1)

) is a Banach
space.

We need the following result from [4].
Lemma 2.2. Let h(t) = b0 + b1t + · · · + bdt

d be a real
polynomial of degree at most d and let ψ ∈ C1[a, b]. Then
for any j0 with 1 ≤ j0 ≤ d, there exists a positive constant
C independent of a, b, the coefficients of b0, · · · , bd and also
independent of d such that∣∣∣∣∣∣

b∫
a

eih(t)ψ(t)dt

∣∣∣∣∣∣
≤ C |bj0 |−

1
d

⎧⎨⎩ sup
a≤t≤b

|ψ(t)| +
b∫

a

|ψ′(t)| dt

⎫⎬⎭
holds for 0 < a < b ≤ 1.

III. PROOF OF MAIN RESULTS

Proof of Theorem 1.1. Assume that Ω ∈ Lq(Sn−1) for
some 1 < q ≤ 2 and satisfies (1.2). Before starting the proof
we need some preparation. We may assume without loss of
generality that P (t) does not have a constant term. Write
P (t) =

∑d
s=1 ast

s. Let Q be given by Q(t) =
∑d/2

s=1 ast
s.

By a dilation in t we may assume, without loss of generality,
that max d

2 <j≤d |aj | = 1. Also, there is d
2 < j0 ≤ d so that

|aj0 | = 1. Let

Ad = Ad(Ω, ξ, λ) = sup
0<ε<R,
P∈P(d)

|Iε,R(P )| ,
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where

Iε,R(Ω, P, λ, ξ) =

(∫ R

ε

|SΩ,P (tξ)|λ dt

t

)1/λ

.

We need to show that

Ad ≤ C(log d + 1) (q − 1)−1/λ ‖Ω‖Lq(Sn−1) (3.1)

for some absolute positive constant C. We shall first prove
(3.1) for the case d = 2m for some integer m ≥ 0 and then the
general case will be an immediate consequence. Let 0 < ε <
R and ξ ∈ Rn be arbitrary. Without loss of generality we may
assume that ε < |ξ|−1

< R. By the fact that (a + b)p ≤ ap+bp

if a, b ≥ 0 and 0 < p ≤ 1 we have

Iε,R(Ω, P, λ, ξ) ≤(∫ |ξ|−1

ε

|SΩ,P (tξ)|λ dt

t

)1/λ

+

(∫ R

|ξ|−1
|SΩ,P (tξ)|λ dt

t

)1/λ

:= I
(0)
ε,R(Ω, P, λ, ξ) + I

(1)
ε,R(Ω, P, λ, ξ). (3.2)

We start with I
(0)
ε,R(Ω, P, λ, ξ). By Minkowski’s inequality we

have
I
(0)
ε,R(Ω, P, λ, ξ) ≤

≤
(∫ |ξ|−1

ε

|SΩ,P (tξ) − SΩ,Q(tξ)|λ dt

t

)1/λ

+ I0(Ω, Q, λ, ξ).

Since deg(Q) ≤ d
2 , by induction and generalized Minkowski’s

inequality we get

I
(0)
ε,R(Ω, Q, λ, ξ) ≤

‖Ω‖L1(Sn−1)

⎛⎜⎝∫ |ξ|−1

ε

⎛⎝ ∑
d
2 <j≤d

|aj | |ξ|j tj

⎞⎠λ

dt

t

⎞⎟⎠
1/λ

+A(
d

2
)

≤ C ‖Ω‖Lq(Sn−1)

∑
d
2 <j≤d

|aj | |ξ|j
(∫ |ξ|−1

0

tjλ−1dt

)1/λ

+A(
d

2
)

≤ C ‖Ω‖Lq(Sn−1)

∑
d
2 <j≤d

1
jλ

+ A(
d

2
)

≤ C ‖Ω‖Lq(Sn−1)

∑
d
2 <j≤d

1
j

+ A(
d

2
)

≤ C ‖Ω‖Lq(Sn−1) + A(
d

2
). (3.3)

Now we turn to estimate I
(1)
ε,R(Ω, P, λ, ξ). Let θ = 2q′

. By a
change of variable we have

I
(1)
ε,R(Ω, P, λ, ξ) =

(∫ R|ξ|

1

|SΩ,P (tξ′)|λ dt

t

)1/λ

.

Since R |ξ| > 1, there exists a unique k0 ∈ Z+ such that
θk0−1 ≤ R |ξ| < θk0 . Hence

I
(1)
ε,R(Ω, P, λ, ξ) ≤ sup

k0∈Z+

(∫ θk0

θk0−1
|SΩ,P (tξ′)|λ dt

t

)1/λ

+

sup
k0∈Z+

∞∑
k=k0+1

(∫ θk

θk−1
|SΩ,P (tξ′)|λ dt

t

)1/λ

= J1 + J2. (3.4)

It is easy to see that

J1 ≤ (log θ)
1
λ ‖Ω‖Lq(Sn−1) . (3.5)

Therefore, it remains to estimate J2. To this end, we proceed
as follows. We claim that there exists a positive constant C
independent of d, ξ, and k0 such that(∫ θk

θk−1
|SΩ,P (tξ′)|λ dt

t

)1/λ

≤ C log θ)1/γ
(
θkj0

)− 1
2λdq′ .

(3.6)
We start proving (3.6) for the case λ = 2. By a change of
variable we get(∫ θk

θk−1
|SΩ,P (tξ)|2 dt

t

)1/2

= E(ξ′, k),

where

E(ξ′, k) =
(∫ 1

θ−1

∣∣SΩ,P (tθkξ′)
∣∣2 dt

t

)1/2

.

Then
|E(ξ′, k)| =∫

Sn−1×Sn−1
Xk(x, y, ξ′)Ω(x)Ω(y)dσ(y)dσ(x),

where

Xk(x, y, ξ′)

=
∫ 1

θ−1
ei(P (tθkξ′·x)−P (t|ξ|−1θkξ′·y)) dt

t
.

By invoking Lemma 2.1 we get

|Xk(x, y, ξ′)| ≤ Cθ
∣∣aj0θ

kj0
∣∣− 1

d
∣∣(ξ′ · x)j0 − (ξ′ · y)j0

∣∣− 1
d .

By combining the last estimate with the trivial estimate

|Xk(x, y, ξ′)| ≤ C log θ

we get
|Xk(x, y, ξ′)| ≤

C (log θ)
∣∣aj0θ

kj0
∣∣− 1

2dq′
∣∣(ξ′ · x)j0 − (ξ′ · y)j0

∣∣− 1
2dq′ . (3.7)

Thus, by Hölder’s, (3.7) and since |aj0 | = 1 we get

|E(ξ′, k)|2 ≤ C (log θ) ‖Ω‖2
Lq(Sn−1)

∣∣θkj0
∣∣− 1

2dq′ ×
(∫

Sn−1×Sn−1

∣∣(ξ′ · x)j0 − (ξ′ · y)j0
∣∣− 1

2d dσ(x)dσ(y)
) 1

q′
.

Since the last integral is finite we get

|E(ξ′, k)| ≤ C (log θ)
1
2 ‖Ω‖Lq(Sn−1)

∣∣θkj0
∣∣− 1

4dq′
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which proves (3.6) for the case λ = 2. Now if 1 < λ ≤ 2, by
Hölder’s inequality we have(∫ θk

θk−1
|SΩ,P (tξ′)|λ dt

t

)1/λ

≤ (log θ)
2−γ
2γ

(∫ θk

θk−1
|SΩ,P (tξ′)|2 dt

t

)1/2

.

By the last inequality and (3.6) in the case λ = 2 we get (3.6)
for the case 1 < λ < 2. Finally we prove (3.6) for the case
λ > 1. Since |SΩ,P (tξ)| ≤ ‖Ω‖Lq(Sn−1) we have(∫ θk

θk−1
|SΩ,P (tξ′)|λ dt

t

)1/λ

≤ ‖Ω‖
γ−2

γ

Lq(Sn−1)

(∫ θk

θk−1
|SΩ,P (tξ′)|2 dt

t

)1/λ

.

By the last inequality and (3.6) for the case λ = 2 we get
(3.6) for the case λ > 1. This completes the proof of (3.6).
Now, by (3.6) we have

J2 ≤ C log θ)1/λ sup
k0∈Z+

∞∑
k=k0+1

(
θkj0

)− 1
λdq′

≤ C log θ)1/λ. (3.8)

By (3.2)–(3.5) and (3.8) we obtain

Ad ≤ C (q − 1)−
1
λ ‖Ω‖Lq(Sn−1) + Ad/2. (3.9)

Since d = 2m, we get

A2m ≤ C (q − 1)−
1
λ ‖Ω‖Lq(Sn−1) + A2m−1 ,

and hence by induction on m we have

A2m ≤ Cm (q − 1)−
1
λ ‖Ω‖Lq(Sn−1) + A1. (3.10)

Now, we need to estimate A1. To this end, we notice that
any P ∈ P(1) with a non constant term will be of the form
P (t) = at for some a ∈ R. By a dilation in t we may assume,
without loss of generality, that |a| = 1. By following a similar
(but easier) argument as that employed in the proof of (3.9)
we get

A1 ≤ C (q − 1)−
1
λ ‖Ω‖Lq(Sn−1) . (3.11)

Hence, by (3.10)–(3.11) we obtain

A2m ≤ C(m + 1) (q − 1)−
1
λ ‖Ω‖Lq(Sn−1) . (3.12)

The case now for the general d is easy. Choose a positive
integer m so that 2m−1 < d ≤ 2m. By definition of Ad and
since P(n; d) ⊂ P(n; 2m) we have

Ad ≤ A2m ≤ C(m + 1) (q − 1)−
1
λ ‖Ω‖Lq(Sn−1)

≤ C(log d + 1) (q − 1)−
1
λ ‖Ω‖Lq(Sn−1) ,

which completes the proof of Theorem 1.1.
Proof of Theorem 1.2 (a). We follow the extrapolation

method of Yano (see [18] and [19]) and we follow a similar

argument as in [3] and [15]. Let λ ≥ 1 be fixed. Assume
Ω ∈ L(log L)1/λ

(
Sn−1

)
and satisfies (1.2). Let

T (Ω) = sup
P∈P(d)

(∫ ∞

0

|SΩ,P (tξ)|λ dt

t

)1/λ

.

Then we have T (Ω1 + Ω2) ≤ T (Ω1) + T (Ω2). Now, we
decompose Ω as follows: For m ∈ N, let Em = {x ∈ Sn−1 :
2m ≤ |Ω (x)| < 2m+1}. For m ∈ N, set bm = Ωχ

Em
,

where χ
A

is the characteristic function of a set A. Set
E(Ω) =

{
m ∈ N : ‖bm‖1 ≥ 2−4m

}
and define the sequence

of functions {Ω
m}m∈E(Ω)∪{0} by

Ω
m(x) =

‖b
m‖1

−1

(
bm(x) −

∫
Sn−1

bm(x)dσ(x)
)

for m ∈ E(Ω), and

Ω0(x) = Ω(x) −
∑

m∈E(Ω)

‖bm‖1 Ωm(x).

It is easy to verify that the following hold for all m ∈ E(Ω)∪
{0} and for some positive constant C:∑

m∈E(Ω)

m1/λ ‖bm‖1 ≤ C ‖Ω‖L( log L)1/λ(Sn−1) ; (3.13)

∫
Sn−1

Ωm (u) dσ (u) = 0; (3.14)

‖Ωm‖1+ 1
m

≤ 26 for m ∈ E(Ω) and ‖Ω0‖2 ≤ 22. (3.15)

Therefore,

T (Ω) ≤ T (Ω0) +
∑

m∈E(Ω)

‖bm‖1 T (Ωm)

≤ C (log d + 1) ×⎛⎝‖Ω0‖L2(Sn−1) +
∑

m∈E(Ω)

m1/λ ‖bm‖1 ‖Ωm‖1+ 1
m

⎞⎠
≤ C (log d + 1)

(
1 + ‖Ω‖L(log L)1/λ(Sn−1)

)
.

Proof of Theorem 1.2 (b). Assume that Ω ∈
B

(0,1/λ−1)
q (Sn−1) for some q > 1 and satisfies (1.2).

Without loss of generality we may assume 1 < q ≤ 2. Since
Ω ∈ B

(0,1/λ−1)
q (Sn−1), we can write Ω as Ω =

∑∞
μ=1 λμbμ ,

where λμ ∈ C, bμ is a q-block supported on a cap Iμ on
Sn−1 and M

(0,1/λ−1)
q

({λ
μ}
)

< ∞. To each block function

bμ
(·), let Ω̃

μ
(·) be a function defined by

Ω̃
μ(x) = bμ(x) −

∫
Sn−1

bμ(u)dσ(u).

Let K =
{

μ ∈ N :
∣∣Iμ

∣∣ < e−(q−1)−1
}

and let Ω̃0 = Ω−∑∞
μ∈K λ

μ
Ω̃

μ
. Also, for μ ∈ K we let αμ = log(

∣∣I
μ

∣∣−1) and
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β =
∑∞

μ=1

∣∣λ
μ

∣∣ . Then it is easy to see that∫
Sn−1

Ω̃
μ (u) dσ (u) = 0 for all μ ∈ K ∪ {0}; (3.16)∥∥∥Ω̃0

∥∥∥
q

≤ βe
1
q ; (3.17)∥∥∥Ω̃μ

∥∥∥
1+ 1

αμ

≤ 4 for all μ ∈ K. (3.18)

By (3.16)–(3.18) and invoking Theorem 1.1 we get

T (Ω) ≤ T (Ω̃0) +
∑
μ∈K

∣∣λμ

∣∣T (Ω̃μ)

≤ C (log d + 1) ×
(

(q − 1)−
1
λ

∥∥∥Ω̃0

∥∥∥
q
+

∑
μ∈K

∣∣λ
μ

∣∣ (log
∣∣I

μ

∣∣−1
)1/λ ∥∥∥Ω̃μ

∥∥∥
1+ 1

αμ

⎞⎠
≤ C (log d + 1) ×⎛⎝βe

1
q (q − 1)−

1
λ + 4

∑
μ∈K

∣∣λ
μ

∣∣ (log
∣∣I

μ

∣∣−1
)1/λ

⎞⎠
≤ C (log d + 1)

(
1 + ‖Ω‖

B
(0,1/λ−1)
q (Sn−1)

)
.
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