
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2776

Abstract—Prospective readers can quickly determine whether a

document is relevant to their information need if the significant
phrases (or keyphrases) in this document are provided. Although
keyphrases are useful, not many documents have keyphrases
assigned to them, and manually assigning keyphrases to existing
documents is costly. Therefore, there is a need for automatic
keyphrase extraction. This paper introduces a new domain
independent keyphrase extraction algorithm. The algorithm
approaches the problem of keyphrase extraction as a classification
task, and uses a combination of statistical and computational
linguistics techniques, a new set of attributes, and a new machine
learning method to distinguish keyphrases from non-keyphrases. The
experiments indicate that this algorithm performs better than other
keyphrase extraction tools and that it significantly outperforms
Microsoft Word 2000’s AutoSummarize feature. The domain
independence of this algorithm has also been confirmed in our
experiments.

Keywords—classification, keyphrase extraction, machine
learning, summarization

I. INTRODUCTION

ITH the proliferation of the Internet and the huge
numbers of documents it contains, the provision of

summaries of these documents has become more and more
important (‘document’ is regarded as being synonymous with
‘text’ in this paper). Prospective readers can quickly
determine whether a document is relevant to their information
need if the significant phrases (or keyphrases) in this
document are provided. Keyphrases give a short summary of
the document and provide supplementary information for the
readers, in addition to titles and abstracts. Even though
keyphrases are useful, only a small minority of documents
have keyphrases assigned to them, and manually assigning
keyphrases to existing documents is very costly. Therefore,
there is a need for automatic keyphrase extraction [4]-[6],
[15]-[17].

Automatic keyphrase extraction is the identification of the
most important phrases within the body of a document by
computers rather than human beings. It normally involves the
use of statistical information. There is no controlled
vocabulary list, so, in theory, any phrase within the body of
the document can be identified as a keyphrase. When authors
assign keyphrases without a controlled vocabulary list,
typically 70-90% of their keyphrases appear somewhere in
their documents [17]. Keyphrases are similar to keywords,

Manuscript received September 10, 2007.
Yuan J. Lui is with the Computing Laboratory, University of Oxford,

Oxford, OX1 3QD, UK (email: yuan.lui@st-hughs.ox.ac.uk).

except that the document is summarized by a set of phrases
rather than words.

Keyphrase extraction is a classification task: a document
can be seen as a set of phrases, and a keyphrase extraction
algorithm should correctly classify a phrase as a keyphrase or
a non-keyphrase. Machine learning techniques can automate
this task if they are provided with a set of training data
composed of both keyphrase examples and non-keyphrase
examples. The data are used to train the algorithm to
distinguish keyphrases from non-keyphrases. The resulting
algorithm can then be applied to new documents for
keyphrase extraction. Previous work shows that the training
data and the new documents need not be from the same
domain, though the performance of the algorithm can be
boosted significantly if they are [4].

This paper introduces a new domain independent keyphrase
extraction algorithm called KE. KE is not tied to a specific
domain; it is designed to summarize a given document, which
can be on any topic (excluding poetry and other similar works
of literature), in a few keyphrases automatically extracted
from the body of that document. Unlike other keyphrase
extraction algorithms, KE uses a combination of statistical and
computational linguistics techniques, a different set of
attributes, and a different machine learning method to extract
keyphrases from documents. The experiments indicate that
KE performs better than other keyphrase extraction tools and
that it significantly outperforms Microsoft Word 2000’s
AutoSummarize feature. The domain independence of this
algorithm has also been confirmed in our experiments.

Section II summarizes related work by other researchers.
Section III introduces the KE algorithm and compares it with
other keyphrase extraction algorithms. The experimental
results are presented in Section IV. Section V discusses the
results. Section VI concludes this paper and discusses future
work.

II. RELATED WORK

This section discusses two important term weights (i.e. term
frequency and inverse document frequency), two important
keyphrase extraction algorithms (i.e. GenEx and Kea) and
some recent ones. Though GenEx and Kea were introduced in
the late 1990s, they remain rather important and are reviewed
in most of the papers on keyphrase extraction.

A. TF×IDF
The vector space model [11] suggests that a document (or

query) can be represented by a vector of terms. Terms in this
model are not equally weighted: each term is associated with a

Extraction of Significant Phrases from Text
Yuan J. Lui

W

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2777

specific weight which reflects the importance of that term.
Term frequency (TF) and inverse document frequency (IDF)
are the two most important term weights in this model [11].

TF is the frequency of a term in the document. The more
often a term occurs in the document, the more likely it is to be
important for that document. The standard TF of a term T in a
document D is calculated by:

DT inofsoccurrenceofno.TFStandard = (1)
IDF is the rarity of a term across the collection. A term that

occurs in only a few documents is often more valuable than a
term that occurs in many documents. The standard IDF of a
term T is given by:

inoccursdocumentsofno.
collectionindocumentsofno.logIDFStandard

T
= (2)

TF×IDF is a common way of combining TF and IDF.
Despite the popularity of these weights, they do not have a
universal definition.

Salton and Buckley [10] review the use of statistical
information for weighting document terms and query terms,
and discuss various ways of defining and combining TF and
IDF. A total of 1,800 different term weighting combinations
were used in their experiments, and 287 were found to be
distinct. They make recommendations on the best combination
in different situations. For technical documents (like the ones
used in our experiments), they recommend using the
normalized TF and the standard IDF. The normalized TF is
calculated by normalizing the standard TF factor by the
maximum TF in the vector (with the result in the range of 0.5
to 1.0):

TFmax
TF5.05.0TFNormalized += (3)

B. GenEx
Turney [16] proposes a keyphrase extraction algorithm

called GenEx which consists of a set of parameterized
heuristic rules that are fine-tuned by a genetic algorithm.
During training, the genetic algorithm adjusts the rules’
parameters to maximize the match between the output
keyphrases and the target keyphrases. Table I shows the
parameters used in GenEx.

GenEx has been trained on a set of journal articles and
tested on a different set of journal articles, web pages and
email messages. The experiments show that machine learning
techniques can be used for keyphrase extraction and that
GenEx generalizes well across collections. While GenEx is
trained on a collection of journal articles, it successfully
extracts keyphrases from web pages on different topics (by
‘successfully’, we mean the algorithm is capable of extracting
at least one correct keyphrase from the document).

C. Kea
Frank et al. [4] discuss another keyphrase extraction

algorithm called Kea which is based on a naïve Bayes learning
technique. The basic model of Kea involves two attributes:
TF×IDF and distance.

The standard TF is used, but the IDF is defined differently.

They calculate the IDF of a term T in a document D by (the
counters start with one to avoid taking the logarithm of zero):

)excluding,contain
 that collectionindocumentsofno.log(IDFsKea'

DT
−=

 (4)

The distance attribute is the position where a term first
appears in the document. A term that occurs at the beginning
of the document is often more valuable than a term that occurs
at the end of that document. The distance of a term T in a
document D is given by:

D
T

in wordsofno.
ofappearancefirstbefore wordsofno.Distance = (5)

Kea uses the same set of training and testing documents as
GenEx so that its performance can be directly compared with
GenEx. The experiments indicate that GenEx and Kea
perform at roughly the same level, measured by the average
number of matches between author-assigned keyphrases and
machine-extracted keyphrases [17].

D. LAKE
D’Avanzo et al. [1], [2] propose a keyphrase extraction

algorithm called LAKE. The algorithm uses two attributes,
TF×IDF and first occurrence (same as distance), and some
computational linguistics techniques to select candidate
phrases.

LAKE selects candidate phrases in several steps: 1) Tag the
input document. 2) Group sequences of words which are
considered a single lexical unit together, e.g. ‘Christmas’ and
‘tree’ are combined into ‘Christmas tree’. 3) Identify all the
named entities in the document, e.g. ‘London’, ‘IBM’. 4)
Select candidate phrases from the document if they match one
of the many manually predefined linguistics-based patterns,
e.g. noun + verb + adjective + noun (‘+’ denotes ‘followed
by’).

The experiments suggest that this algorithm works.
Nevertheless, since LAKE uses a different set of training and
testing documents, it is not certain if it is better than GenEx
and Kea as it is not possible to directly compare their results.
It is also because of this reason, LAKE has not been used as a
standard of comparison for evaluating the performance of KE.
All the keyphrase extraction tools in our experiments have
been trained and tested on the same corpus so that direct
comparison is possible.

E. KPSpotter
Song et al. [12] discuss a keyphrase extraction system

called KPSpotter. The system can process various formats of
input data such as XML, HTML, and unstructured text data,
and generate an XML file as output. It involves two attributes:
TF×IDF and Distance from First Occurrence (same as
distance). These numeric attributes are discretized into ranges
and the resulting nominal attributes are used to calculate the
information gain of each candidate phrase. The candidate
phrases are then ranked in order of information gain.

KPSpotter has been trained and tested on a set of abstracts
(rather than full documents) of technical reports. The same
data have been used to train and test Kea so that the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2778

performance of KPSpotter can be directly compared with Kea.
The experiments show that KPSpotter and Kea give similar
results. Nevertheless, since KPSpotter uses a different set of
training and testing data (i.e. a collection of abstracts rather
than documents), it is not possible to directly compare its
results with ours. Therefore, KPSpotter has not been used as a
standard of comparison in our experiments.

TABLE I
PARAMETERS USED IN GENEX

Parameter Description
NUM_PHRASES Length of the output list,

i.e. the number of
keyphrases to be output

NUM_WORKING Length of the working list,
i.e. only words ranked
higher than this are
considered as candidate
phrases

FACTOR_TWO_ONE Reward for two-word
phrases

FACTOR_THREE_ONE Reward for three-word
phrases

MIN_LENGTH_LOW_RANK Low rank words must be
longer than this; if not, they
might be removed from the
output list

MIN_RANK_LOW_LENGTH Short words must be ranked
higher than this; if not, they
might be removed from the
output list

FIRST_LOW_THRESH Definition of early
occurrence; words which
first occur before this
position are rewarded by
FIRST_LOW_FACTOR

FIRST_HIGH_THRESH Definition of late
occurrence; words which
first occur after this
position are penalized by
FIRST_HIGH_FACTOR

FIRST_LOW_FACTOR Reward for early
occurrence

FIRST_HIGH_FACTOR Penalty for late occurrence
STEM_LENGTH Maximum characters for

fixed length stemming
SUPPRESS_PROPER Flag for suppressing proper

nouns

F. Kea++
Medelyan and Witten [8] propose a new method of

improving the quality of the output keyphrases called Kea++.
Kea++ is based on Kea, but differs from it in two ways:
Kea++ uses a domain dependent thesaurus and a different set
of attributes. Non-descriptors in the document are first
replaced by their equivalent descriptors using semantic
information about terms and phrases in the thesaurus.
Descriptors and non-descriptors are synonyms. Descriptors

refer to the ‘preferred’ terms, and non-descriptors refer to the
‘less preferred’ terms, e.g. ‘love’ is a descriptor and
‘affection’ is a non-descriptor. Candidate phrases are then
measured by four attributes: TF×IDF, distance, node degree,
and the length of a candidate phrase in words. The first two
attributes are used in Kea. The node degree attribute is the
number of thesaurus links that connect a candidate phrase to
other candidate phrases.

Kea++ has been test on a set of documents on food and
agriculture. The experiments indicate that Kea++ significantly
outperforms Kea. Nevertheless, Kea++ has not been used as a
standard of comparison in our experiments. Kea++ uses a
controlled vocabulary list and is tied to a specific domain,
whereas KE is a domain independent algorithm. In addition,
Kea++ uses a different set of training and testing documents,
so it is not possible to directly compare its results with ours.

G. W3SS
Zhang et al. [19] introduce a new approach to automatic

summarization of web sites called W3SS. The output summary
is based on keywords and keyphrases extracted from the web
site and is generated in several steps: 1) Get a set of web
pages from a given site. 2) Remove all the tags and scripts in
those pages and get a set of plain text. 3) Use the number of
words in a paragraph and the part-of-speech of the words in a
paragraph to extract narrative paragraphs from the plain text.
4) Use the part-of-speech of a word and the number of
occurrences of a word in the narrative text, anchor text (e.g.
hyperlinks) and special text (e.g. italic text) to extract
keywords. 5) Use the keywords, the part-of-speech of a phrase
and the number of occurrences of a phrase in the narrative
text, anchor text and special text to extract keyphrases. 6) Use
the extracted keywords and keyphrases to extract key
sentences. 7) Provide the extracted keywords, keyphrases and
key sentences as a summary of that site.

W3SS has been tested on a set of web sites. Human
assessors are divided into a few groups and asked to answer
questions about those sites (e.g. the purpose of a site). The
experiments show that the group that read the manual
summaries give the best results, followed by the group that
read the generated summaries. Despite being interesting,
W3SS has not been used as a standard of comparison in our
experiments. All the documents used in our experiments are
plain text, i.e. there is no anchor text and special text. The aim
of W3SS is also different from ours: W3SS aims at
summarizing a collection of web documents (i.e. web site),
whereas KE aims at summarizing a single document.

III. KEYPHRASE EXTRACTION

This section introduces the attributes used in the KE
algorithm, gives an overview of KE, and compares KE with
GenEx and Kea.

A. Attributes
The selection of relevant attributes is probably the most

important factor in determining the effectiveness of a

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2779

keyphrase extraction algorithm. Many attributes have been
evaluated in our experiments, e.g. the length of a document,
the number of characters in a term, the number of occurrences
of a term in the collection, etc. However, only five of them
have been found useful for keyphrase extraction:

• The TF×IDF attribute has already been discussed; see
Section II-A for details.

• The position attribute is the same as Kea’s distance;
see Section II-C for details.

• The title attribute is a flag that indicates if a term
appears in the title of the document. A term that occurs
in the title of the document is often more valuable than
a term that does not. Titles may not provide enough
information on their own, but they may contain some
important words. In fact, it has been reported that the
use of abstracts in addition to titles brings substantial
advantages in retrieval effectiveness and that the
additional utilization of the full texts of the documents
appears to produce little improvement over titles and
abstracts alone in most subject areas [11]. If a term is
found in the title, title is set to 1; otherwise, it is set to
0.

• The proper noun attribute is a flag that indicates if a
term is a proper noun. If a term is a proper noun,
proper noun is set to 1; otherwise, it is set to 0.

• The number of terms attribute is the number of terms in
a term phrase.

B. The KE algorithm
The KE algorithm is based on GenEx and Kea (for details

of the differences between KE, GenEx, and Kea, see Section
III-C) and consists of seven steps:

• Step 1 is to tag the input document and to select all the
words which have been tagged as adjective, verb and
noun and are not included in the stopword list.
Although it is unlikely that adjectives and verbs will be
output, they help to boost the score of their noun form
(provided their stems are the same as the noun’s) and
therefore increase the likelihood that it will be output.

• Step 2 is to stem the selected words, to calculate the
TF×IDF, position, title and proper noun of each term,
to assign a score to each term based on these attributes,
and to sort the terms in descending order of score (if
two terms have the same score, they are ranked in
ascending order of position).

• Step 3 is to select all the noun phrases in the document.
Like KE, LAKE uses a part-of-speech tagger to select
candidate phrases if they match one of the many
manually predefined linguistics-based patterns (see
Section II-D). Nevertheless, we believe this could be
simplified by selecting only noun phrases, which can
be naively defined as zero, one or two nouns or
adjectives followed by a noun or a gerund, from the
document. This is because almost all the keyphrases
are noun phrases and they normally follow this
definition [15].

• Step 4 is similar to Step 2. The main differences are
that noun phrases, instead of words, are stemmed, the
TF×IDF, position, title, and number of terms of each
term phrase is calculated, and if two term phrases have
the same score, they are ranked in ascending order of
position followed by descending order of number of
terms.

• Step 5 is to expand the single terms to term phrases.
For each term, find all the term phrases that contain the
term, and link it with the highest scoring term phrase.
The result is a list of term phrases. The scores
calculated in Step 2 are used to rank this list because it
is generally preferable to represent documents and
measure the importance of each representation element
in terms of single terms rather than term phrases [10].
Term phrases, on the other hand, are used for output
purposes. This is because documents are summarized
by a set of phrases, not words.

• Step 6 is to eliminate duplicates from the list of term
phrases. More than one term may be linked to the same
term phrase. If that is the case, the term phrase will be
linked to the highest scoring term.

• Step 7 is to identify the most frequent corresponding
phrase in the document for each of the linked term
phrases. If a term phrase is linked to more than one
phrase, the most frequent phrase will be chosen. This
step also eliminates subphrases if they do not perform
better than their superphrases. If phrase P1 occurs
within phrase P2, P1 is a subphrase of P2 and P2 is a
superphrase of P1. If a phrase is a subphrase of another
phrase, it will only be accepted as a keyphrase if it is
ranked higher; otherwise it will be deleted from the
output list.

C. Comparison with GenEx and Kea
KE is based on GenEx and Kea, but differs from them in

several ways:
• Purely statistical methods have been used in GenEx

and Kea. KE, however, uses a combination of
statistical and computational linguistics techniques for
keyphrase extraction. Part-of-speech tagging, which is
a useful computational linguistics technique, has been
used to improve the quality of candidate phrases. Only
words which have been tagged as adjective, verb and
noun are selected as candidate phrases.

• KE uses a different set of attributes to discriminate
between keyphrases and non-keyphrases: TF×IDF,
position, title, proper noun and number of terms. Kea
uses only two attributes: TF×IDF and distance.
GenEx, on the other hand, uses many more attributes,
but it does not use TF×IDF and title.

• KE uses a different machine learning algorithm; it is
tuned by an artificial neural network (for details of the
training of KE, see Section IV-B). GenEx is tuned by a
genetic algorithm, whereas Kea is based on a naïve
Bayes learning technique.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2780

• KE is a different model; it consists of seven steps, and
takes both words and phrases as candidate phrases. Kea
is a simple model; it only selects phrases as candidate
phrases, so it does not involve any linking between
words and phrases. GenEx is more complicated; it
consists of ten steps, considers both words and phrases,
and involves many post-processing tasks.

The experimental results summarized in Table II suggest
that these differences make KE a better algorithm than GenEx
and Kea.

IV. EXPERIMENTS

This section explains how we evaluate the output
keyphrases and train the KE algorithm, compares the
individual performance of different attributes, the
performance of different TF×IDF combinations and different
keyphrase extraction tools, and the performance of KE on
different learning methods and different corpora.

A. Methodology
KE has been tested on two different corpora. The first

corpus is the same as the one used in GenEx and Kea, and it
has been used to train and test KE in all our experiments
(except the one in Section IV-G). The criteria used for
evaluating the output keyphrases are also the same as in
GenEx and Kea (i.e. a machine-extracted keyphrase is said to
be correct if its stem matches the stem of an author-assigned
keyphrase), so direct comparison is possible. For details of
this corpus and the evaluation method used, see [16]. The
second corpus is different and larger than the first one, and it
has been used to test the generalization performance of KE.
The evaluation criteria are the same as the first corpus.

B. Training of KE
The set of terms (i.e. output of Step 2) and the set of term

phrases (i.e. output of Step 4) were tuned separately by a fully
connected 4-9-1 back-propagation neural network. The
resulting sets were then combined to perform Step 5, 6 and 7
of the KE algorithm. The number of hidden units affects the
generalization performance of a neural network. We have
tested different numbers of hidden units, and found that nine
hidden units give the best result. Also, it is possible to have
more than one hidden layer in a neural network, but one
hidden layer is adequate for most applications. KE has been
tuned and tested on a neural network with two hidden layers,
but the difference between that and one hidden layer is not
statistically significant. Therefore, only one hidden layer is
used.

The experiments also indicate that the term set often
requires more training iterations than the term phrase set. A
training iteration involves all the documents in the training set
and the selection of 150 terms (or term phrases), including
both keyphrase and non-keyphrase examples, from each
document. The cross-validation method has been used to
estimate the appropriate point to stop training to avoid
overfitting.

C. Different attributes
Five different attributes are used in the KE algorithm, but

we have only compared the individual performance of four
attributes: TF×IDF (using the standard TF and Kea’s IDF),
position, title, and proper noun. Number of terms has not been
evaluated in this experiment. Since number of terms is always
one when it comes to single terms, the attribute (if used alone)
cannot discriminate between different terms. Therefore, we
decided not to evaluate the individual performance of this
attribute.

Fig. 1 shows the comparison of the individual performance
of different attributes with varying number of output
keyphrases. Precision is the proportion of the keyphrases
extracted that are correct. The experiments indicate that the
performance of position is more stable than TF×IDF. The
average precision of position lies between 0.21 and 0.25,
whereas TF×IDF lies between 0.16 and 0.35. Also, there is a
tendency for the average precision of TF×IDF to fall. The
experiments also show that the performance of position is
always better than title, and that proper noun gives the worst
performance. We conclude that position is the best individual
indicator of keyphrase extraction. This confirms the findings
by Edmundson (1969) and Kupiec et al. (1995) that location-
based methods give the best performance, though their work is
concerned with sentence extraction and they use a different set
of attributes. For details of their work, see [7].

0.00

0.10

0.20

0.30

0.40

1 2 3 4 5

Number of Output
Keyphrases

A
ve

ra
ge

 P
re

ci
si

on TF×IDF

Position

Title

Proper Noun

Fig. 1 Comparison of the individual performance of different
attributes

0.00
0.10
0.20
0.30
0.40
0.50

1 2 3 4 5

Number of Output
Keyphrases

A
ve

ra
ge

 P
re

ci
si

on

Standard TF
and Kea’s IDF

Standard TF
and Standard
IDF
Normalized TF
and Standard
IDF

Fig. 2 Comparison of different combinations of TF×IDF

D. Different TF×IDF combinations
As mentioned before, there is no universal definition of

TF×IDF. Four different TF×IDF definitions have been
discussed: standard TF, standard IDF, normalized TF, and

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2781

Kea’s IDF. Three different combinations of TF×IDF have
been implemented using these definitions and tested in our
experiments.

Fig. 2 shows the comparison of different TF×IDF
combinations with varying number of output keyphrases. The
difference between the standard TF and Kea’s IDF and the
standard TF and standard IDF is not statistically significant,
though the former tends to give more stable results. The
average precision of the standard TF and Kea’s IDF lies
between 0.30 and 0.34, whereas the standard TF and standard
IDF lies between 0.27 and 0.35. The average precision of the
normalized TF and standard IDF lies between 0.22 and 0.40,
and has a tendency to fall.

TABLE II
EXPERIMENTAL RESULTS FOR DIFFERENT KEYPHRASE EXTRACTION TOOLS

 Average Number of Correct
Keyphrases

Standard
Deviation

KE 1.50 1.32
GenEx 1.45 1.24
C4.5 1.40 1.28
Kea 1.35 0.93
Kea-C4.5 1.20 0.83
Word
2000

0.85 0.93

TABLE III
EXAMPLES OF THE KEYPHRASES EXTRACTED BY KE

Title Brain Rhythms, Cell Assemblies and
Cognition: Evidence from the Processing
of Words and Pseudowords

Author-assigned
Keyphrases

Brain theory, cell assembly, cognition,
event related potentials, ERP,
electroencephalograph, EEG, gamma
band, Hebb, language, lexical processing,
magnetoencephalography, MEG,
psychophysiology, periodicity, power
spectral analysis, synchrony

Machine-
extracted
Keyphrases (Top
5)

Words, processing, cell, cell assemblies,
spatiotemporal activity patterns

Title Precis of: The Roots of Thinking
Author-assigned
Keyphrases

Analogical thinking, animate form,
concepts, evolution, tactile-kinesthetic
body

Machine-
extracted
Keyphrases (Top
5)

Thinking, concept, tactile kinesthetic
body, hominid evolution, thesis

E. Different keyphrase extraction tools
We have compared the performance of KE with other

keyphrase extraction tools: GenEx, C4.51, Kea, Kea-C4.52,

1 C4.5 consists of a set of parameterized heuristic rules that are fine-tuned
by the C4.5 decision tree learning algorithm. Some of these parameters are
used in GenEx.

and Microsoft Word 2000 (the AutoSummarize3 feature). C4.5
and Kea-C4.5 have not been discussed because they have
mainly been used as a standard of comparison for evaluating
the performance of GenEx and Kea respectively. Please refer
to [4], [16] for details of C4.5 and Kea-C4.5. Microsoft Word
was chosen because it is a very popular word processing tool
with the extraction of keywords and key sentences feature.
Five keyphrases have been extracted from each testing
document by these tools and compared with the corresponding
author-assigned keyphrases. The number of output keyphrases
is set to five because AutoSummarize always generates
exactly five keyphrases. Also, unlike the other tools,
AutoSummarize cannot be trained and the output keyphrases
always contain exactly one word.

Table II shows the number of correct keyphrases identified
by different keyphrase extraction tools. Results of GenEx,
C4.5, Kea, and Kea-C4.5 are from [4]. The experiments
indicate that KE (using the standard TF and Kea’s IDF)
performs better than the other tools (in terms of the average
number of correct keyphrases) and that the difference between
KE, GenEx, C4.5 and Kea is not statistically significant. Since
Word 2000 can only extract five single words from each
document and most of the keyphrases in the corpus contain
more than one word, it is not surprising that Word 2000 gives
the worst performance. Table III shows the keyphrases
extracted by KE from two testing documents. Correct
keyphrases are printed in bold.

F. Different learning methods
In addition to neural networks, we have used the C4.5

decision tree learning algorithm [9] to tune KE. There are two
reasons for doing this:

• Different machine learning methods should give
approximately the same performance results, but some
methods might be more suitable for keyphrase
extraction than others. As shown in the experiment in
Section IV-E, the choice of a learning method does
affect the performance of a keyphrase extraction
algorithm: GenEx and Kea give different results when
they are tuned by different learning methods.

• The experiment in Section IV-E suggests that KE
performs better than other keyphrase extraction tools.
Nevertheless, the improvement in performance could
be a result of the algorithm (and the selection of
attributes) itself and/ or the learning method (i.e. neural
networks) employed. Both GenEx and Kea have been
tuned by the C4.5 learning method, and the tuned
keyphrase extraction algorithms have been used as a
standard of comparison for evaluating the performance

2 Kea-C4.5 is a variation of Kea. The pre- and post-processing are the same

as Kea. The only difference is that it uses the C4.5 decision tree learning
technique, instead of a naïve Bayes learning technique.

3 The AutoSummarize feature aims at extracting key sentences from a
given document and is available from the Tools menu. The generation of
keywords is actually a by-product of AutoSummarize. When AutoSummarize
is used, it also fills in the Keywords field of the document’s Properties, which
is available from the File menu.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2782

of GenEx and Kea. If KE is tuned by the C4.5 learning
method, we can exclude the effect of neural networks
and evaluate only the performance of the algorithm.

The C4.5 learning algorithm is an unstable classification
algorithm, i.e. the constructed classifier (i.e. a decision tree) is
sensitive to small changes to the training data, so bagging has
been used to improve performance by reducing variance [14],
[18]. Both GenEx and Kea have been tuned by 50 bagged
C4.5 decision trees [4], [16]. To ensure comparability, the
same has been carried out on KE: 50 bagged C4.5 decision
trees were used to tune the term set and the term phrase set
separately.

There are a number of options, which allow users of the
C4.5 program [9] to improve decision tree performance, such
as the –c option and the –m option. The –c option sets the
confidence threshold for pruning, and the –m option sets the
minimum number of examples needed to form a leaf of the
decision tree.

We have evaluated the performance of different numbers of
training examples and different values of –c and –m, and
found that KE gives the best performance when 200 terms and
150 term phrases are selected from each training document
with –c set to 50% and –m to 10. The experiments also
indicate that, in general, simple trees give better results than
bushy trees. We believe this is because bushy trees tend to be
overtrained on the training set.

Fig. 3 shows the performance of KE and KE-C4.5 (i.e. KE
tuned by the C4.5 learning method). The experiments indicate
that the performance of KE is more stable than KE-C4.5 (the
average precision of KE lies between 0.30 and 0.34, whereas
KE-C4.5 lies between 0.27 and 0.35), and that KE often gives
better performance results than KE-C4.5, except when the
desired number of output keyphrases is set to one. We
conclude that neural networks are better for keyphrase
extraction than the C4.5 learning algorithm.

Although KE gives better results when it is tuned by neural
networks, neural networks have been criticized for their poor
interpretability (i.e. the level of understanding and insight
provided by the model). It is difficult to extract classification
rules from neural networks. The C4.5 learning algorithm,
however, can do that easily. Although the performance of KE-
C4.5 is not as good as KE, KE-C4.5 can help us to understand
how a phrase has been classified as a keyphrase or a non-
keyphrase in this experiment. Fig. 4 and Fig. 5 show the
decision trees constructed from the term set and the term
phrase set respectively. Decision nodes are represented by
rounded rectangles. All the attributes of KE have been
normalized, so they lie in the range of 0 to 1.

The process of term classification is simplified by seven
rules (see Fig. 4). Terms, that first appear at the beginning of
the document, appear in the title, and have been tagged as
proper noun, are useful for identifying keyphrases. TF×IDF,
however, is trickier; it depends on the values of other
attributes, but, in general, large TF×IDF values are not
preferred.

The process of term phrase classification is also simplified

by seven rules (see Fig. 5). Term phrases, that first appear at
the beginning of the document, appear in the title, or not in the
title but contain more than one term, are useful for identifying
keyphrases. Large TF×IDF values are again not preferred.

0.00

0.10

0.20

0.30

0.40

1 2 3 4 5

Number of Output Keyphrases

A
ve

ra
ge

 P
re

ci
si

on

KE
KE-C4.5

Fig. 3 Comparison of KE and KE-C4.5

Fig. 4 Decision tree for classifying terms

Fig. 5 Decision tree for classifying term phrases

G. Different corpus
To ensure comparability, KE has been trained and tested on

the same set of documents as GenEx and Kea. Nevertheless,
we would like to see how KE performs when it is tested on a
different, larger corpus. For convenience, we use Corpus B to
refer to this corpus, and Corpus A to refer to the set of
documents used by GenEx and Kea and in our previous

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2783

experiments.
Corpus B is used to evaluate the generalization performance

of KE (tuned by neural networks using the training set in
Corpus A). Corpus A and Corpus B are disjoint. Corpus B
contains 231 articles selected from four journals. The journals
are from different subject areas, including life sciences,
mathematical sciences, and social sciences. Please see Table
IV for the sources of Corpus B. All the articles contain
keyphrases supplied by the authors.

To evaluate the correctness of the output keyphrases, we
need a set of documents which contain author-assigned
keyphrases. Journal articles are, as far as we know, the main
source of these kinds of documents. It is not easy to find
documents with author-assigned keyphrases in other areas.
Even if some documents do contain keyphrases, the quality of
these keyphrases might not be as good as those in journal
articles. For example, keyphrases could be found in the meta
tag of some web pages. However, these phrases are often
unreliable and misleading, so most major search engines,
including AltaVista, have stopped using them [13]. A recent
study also confirms that the importance of these phrases to
search engine ranking is little [3]. Therefore, journal articles
have been used in this experiment.

Fig. 6 shows the comparison of the performance of KE on
different journals with varying number of output keyphrases.
KE does not seem to perform well in Corpus B compared with
Corpus A. We believe this is because of the higher
compression (or document-keyphrase) ratio in Corpus B. On
average, there are 7936.83 words and 4.58 keyphrases per
document in Corpus B compared with 4350.20 and 8.35 for
the testing set in Corpus A. KE gives similar performance
results on these journals, except when the desired number of
output keyphrases is set to two. Most of the average precision
of these journals lies around 0.20.

TABLE IV
SOURCES OF CORPUS B

Journal Name Field Number of
Documents

Journal of Molecular
Biology

Molecular
Biology

46

Information and Software
Technology

Information
Systems

65

Journal of Economic
Behaviour and Organization

Economics
and
Econometrics

57

International Journal of
Educational Development

Education 63

All 231

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 2 3 4 5
Number of Output Keyphrases

A
ve

ra
ge

 P
re

ci
si

on

Journal of Molecular
Biology

Information and
Software Technology

Journal of Economic
Behaviour and
Organization
International Journal
of Educational
Development
All

Fig. 6 Comparison of the performance of KE on different journals

V. DISCUSSION OF RESULTS

The above performance numbers are misleadingly low.
Author-assigned keyphrases are often a small subset of the set
of good quality keyphrases for a given document. On average,
there are only 7.46 keyphrases per document in Corpus A
(both training set and testing set) and 4.58 in Corpus B, and
these phrases constitute less than 1% of the document length.
A more accurate picture can be obtained by asking human
assessors to evaluate the machine-extracted keyphrases.
GenEx has been tested on 267 web pages: 62% of the
keyphrases extracted from these pages are rated by human
assessors as ‘good’, 18% as ‘bad’, and 20% as ‘no opinion’.
This suggests that about 80% of the keyphrases extracted by
GenEx are acceptable [17]. The quality of machine-extracted
keyphrases may not be as good as author-assigned keyphrases.
Nevertheless, machine-extracted keyphrases could give the
author a useful starting point for further manual refinement
when author-assigned keyphrases are not available.

Some of the machine-extracted keyphrases are rather close
to their corresponding author-assigned keyphrases, but
because of the stemmer employed, they are regarded as
different. For example, the author-assigned keyphrase ‘cell
assembly’ is considered different from the machine-extracted
keyphrase ‘cell assemblies’ (see the first example in Table III)
because the stemmer maps ‘assembly’ to ‘assemb’ and
‘assemblies’ to ‘assembl’. However, this kind of problem is
inevitable if an automatic performance measure is used.

We notice that some common words are ranked fairly high
in the output list despite the use of stopword lists and IDF.
These words come from two main categories. Recall that the
score of a term (or term phrase) is dependent on TF×IDF,
position, and other attributes. Terms such as ‘chapter’ tend to
occur at the beginning of the document. Early occurrence
often boosts the score of these terms and increases the
likelihood that they are output, though their IDF might be low.
In addition, because of the nature of the corpora, terms such as
‘person’, which tend to occur rather frequently in everyday
documents, appear only in a few documents. This boosts the
IDF of these terms and improves their ranking. A possible
way of solving this problem is to add these common words to

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:9, 2007

2784

the stopword lists, but this will make KE more domain
dependent, and that is not what we want.

The use of proper noun appears to degrade the performance
of KE. This is probably because the training and testing
documents are all academic papers, which tend to contain
many proper nouns, especially in the References section.
Indicator phrases [7] may be used to resolve this problem by
ignoring all the words in the References section, but this will
make KE more domain dependent. However, we believe that
proper nouns might be useful in some domains (e.g. news)
where they tend to occur less frequently, but further testing is
needed to support this.

The domain independence of KE has also been confirmed
in our experiments. KE successfully extracts keyphrases from
documents on different subject areas (in Corpus B) while it
has been trained on something totally different (i.e. training
set in Corpus A).

Syntactic methods (e.g. the use of italics) seem helpful in
extracting high quality keyphrases, and initially they were
considered as an attribute for keyphrase extraction. However,
all the documents in Corpus A are in ASCII and Unicode
format, so we cannot implement this.

VI. CONCLUSIONS AND FUTURE WORK

We have discussed a new domain independent keyphrase
extraction algorithm called KE, and shown that it performs
better than other keyphrase extraction tools, including GenEx
and Kea, and that it significantly outperforms Microsoft Word
2000’s AutoSummarize feature. Machine-extracted
keyphrases can provide valuable information about the
content of a document, though they are not as good as author-
assigned keyphrases. KE is currently targeted at the extraction
of keyphrases from plain text, but it will be interesting to see
if the use of hyperlink information in web documents can
boost the quality of the output keyphrases.

ACKNOWLEDGMENT

The author would like to thank his supervisors, Professor
Richard Brent and Dr Ani Calinescu, for their valuable
comments on his work.

REFERENCES

[1] E. D’Avanzo, B. Magnini and A. Vallin, “Keyphrase extraction for
summarization purposes: the LAKE system at DUC-2004”, Document
Understanding Workshop, Boston, USA, 2004.

[2] E. D’Avanzo and B. Magnini, “A keyphrase-based approach to
summarization: the LAKE system at DUC-2005”, Document
Understanding Workshop, Vancouver, Canada, 2005.

[3] R. Fishkin and J. Pollard, “Search engine ranking factors v2”,
http://www.seomoz.org/article/search-ranking-factors, 2007.

[4] E. Frank, G. Paynter, I. Witten, C. Gutwin and C. Nevill-Manning,
“Domain-specific keyphrase extraction”, Proceedings of 16th

International Joint Conference on Artificial Intelligence, California,
USA, Morgan Kaufmann, pp. 668-673, 1999.

[5] Y. Lui, “An improved keyphrase extraction algorithm”, Proceedings of
PREP2005, Lancaster, UK, 2005.

[6] Y. Lui, R. Brent and A. Calinescu, “Extracting significant phrases from
text”, Proceedings of IEEE Data Mining and Information Retrieval,
Ontario, Canada, IEEE Computer, pp. 361-366, 2007.

[7] I. Mani, “Automatic summarization”, John Benjamins, 2001.
[8] O. Medelyan and I. Witten, “Thesaurus based automatic keyphrase

indexing”, Proceedings of 6th ACM/ IEEE-CS Joint Conference on
Digital Libraries, North Carolina, USA, ACM Press, pp. 296-297, 2006.

[9] R. Quinlan, “C4.5: programs for machine learning”, Morgan Kaufmann,
1993.

[10] G. Salton and C. Buckley, “Term-weighting approaches in automatic
text retrieval”, Information Processing and Management, Vol. 24, No. 5,
pp. 513-523, 1988.

[11] G. Salton and M. McGill, “Introduction to modern information
retrieval”, McGraw-Hill, 1983.

[12] M. Song, I. Song and X. Hu, “KPSpotter: a flexible information gain-
based keyphrase extraction system”, Proceedings of 5th ACM
International Workshop on Web Information and Data Management,
Louisiana, USA, ACM Press, pp. 50-53, 2003.

[13] D. Sullivan, “Death of a meta tag”, http://searchenginewatch.com/
showPage.html? page=2165061, 2002.

[14] P. Tan, M. Steinbach and V. Kumar, “Introduction to data mining”,
Addison-Wesley, 2006.

[15] P. Turney, “Extraction of keyphrases from text: evaluation of four
algorithms”, Technical Report ERB-1051, National Research Council of
Canada, 1997.

[16] P. Turney, “Learning to extract keyphrases from text”, Technical Report
ERB-1057, National Research Council of Canada, 1999.

[17] P. Turney, “Coherent keyphrase extraction via web mining”,
Proceedings of 18th International Joint Conference on Artificial
Intelligence, Acapulco, Mexico, CogPrints, pp. 434-439, 2003.

[18] I. Witten and E. Frank, “Data mining: practical machine learning tools
and techniques with Java implementations”, Morgan Kaufmann, 2000.

[19] Y. Zhang, N. Zincir-Heywood and E. Milios, “World wide web site
summarization”, Web Intelligence and Agent Systems, Vol. 2, Issue 1,
pp. 39-53, 2004.

