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Abstract—In automatic manufacturing and assembling of mechan-
ical, electrical and electronic parts one needs to reliably identify
the position of components and to extract the information of these
components. Data Matrix Codes (DMC) are established by these
days in many areas of industrial manufacturing thanks to their
concentration of information on small spaces. In today’s usually
order-related industry, where increased tracing requirements prevail,
they offer further advantages over other identification systems. This
underlines in an impressive way the necessity of a robust code reading
system for detecting DMC on the components in factories. This paper
compares two methods for estimating the angle of orientation of Data
Matrix Codes: one method based on the Hough Transform and the
other based on the Mean Shift Algorithm. We concentrate on Data
Matrix Codes in industrial environment, punched, milled, lasered or
etched on different materials in arbitrary orientation.

Keywords—Industrial Data Matrix Code; Hough Transform; Mean
Shift

1. INTRODUCTION

HE industrial Data Matrix Code (DMC) is a two-

dimensional matrix bar-code consisting of dots (modules)
arranged in a square. The information to be encoded can
be text or raw data [1]. Error correction codes are added to
increase the robustness of the code: even if they are partially
damaged, they can still be read. As more data is encoded in the
symbol, the number of modules (rows and columns) increases
from 8 x 8 to 144 x 144.

For industrial purposes, Data Matrix Codes are marked
directly on the parts by different techniques like milling,
punching, lasering or etching [1].

Fig. 1 gives an overview of the identification process of
Data Matrix Code, focusing on the image processing steps
to find the angle of orientation of the DMC. After image
acquisition, the process starts with the localization of the Data
Matrix Code. As result, a region of interest (ROI) is obtained,
in which the DMC is located. In order to reliably detect the
angle of orientation, a set of modules of the DMC having
good quality is selected. Using these candidate modules, the
angle of orientation of the DMC is estimated. Therefore we
provide two methods: one based on the Hough Transform, the
other based on the Mean Shift Algorithm. The purpose of this
paper is to compare the two methods and to point out their
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Fig. 1. Identification process of Data Matrix Code

strengths and weaknesses. Finally knowing the location and
the orientation of the DMC, the process continues by scanning
the modules and reading the code.

II. DMC LOCALIZATION

This block is used to determine a Region of Interest (ROI)
where the Data Matrix Code lies. To this end, the real world
size of the DMC and camera’s focal length are considered to
be approximately known. The image is thresholded using an
adaptive threshold level [2] [3].

To reliable detect the Data Matrix Code it is convenient
to have a solid shape rather than separated modules. In this
work, the morphological close operation [4] is used to this end.
The first stage of the close operation dilates the foreground in
order to fill the empty spaces between modules, whereas the
second stage, erosion, restores the original size of the DMC
area. The dilation operation expands the objects. By choosing
an appropriate structural element, after dilation all modules
will be connected, building a square.

Using the erode operation, the objects are resized to the ini-
tial dimension. The effect generated by the eroding operation
is to thin the objects. The two operations performed in sequel
are called Image Closing.

For each object in the image, by taking theirs maximum
and the minimum coordinates define the four enclosing rect-
angle. Using the position vectors of these points (Fig. 2), the
orientation angle of the Data Matrix Code is given by:
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The angle v and the major axis of each object are calculated

using the geometrical moments as given in eq. (2, 3).
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The angle corners «; together with other features, like the
area of the solid square, are used to locate the region of interes
which contains a valid DMC.

By using the vectors r; and 79 one can calculate the
orientation angle of the DMC. However, due to the image
closing operation, this angle is not obtained with the required
accuracy. Even small errors in the angle can mislead the
modules scanning process from one row into the adjacent one.

1
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III. DMC ANGLE ESTIMATION BASED ON HOUGH
TRANSFORM ALGORITHM

A. Hough Transform

The Hough transform is a feature extraction technique used
in image analysis, computer vision, and digital image process-
ing [5]. The purpose of this technique is to find imperfect
instances of objects within a certain class of shapes by a
voting procedure. This voting procedure is carried out in a
parameter space, from which object candidates are obtained
as local maxima in a so-called accumulator space that is
explicitly constructed by the algorithm for computing the
Hough transform.

The simplest case of Hough transform is the linear transform
for detecting straight lines. In the image space, the straight
line can be described as y = max + b and can be graphically
plotted for each pair of image points (x,y). In the Hough
transform, a main idea is to consider the characteristics of
the straight line not as image points (z1,y1), (x2,y2), but
instead, in terms of its parameters, the slope parameter m
and the intercept parameter b. Based on that fact, the straight

line y = ma + b can be represented as a point (b, m) in the
parameter space. However, one faces the problem that vertical
lines give rise to unbounded values of the parameter m. For
computational reasons, it is therefore better to use a different
pair of parameters, denoted  and 6, for the lines in the Hough
transform.

The parameter r represents the distance between the line
and the origin, i.e. the length of a vector from the origin
perpendicular to the line, while 6 is its angle. Using this
parametrization, the equation of the line can be written as:

(3]

cost r

y= 4)

e —
sind sind’
which can be rearranged to r = x - cosf + y - sind.

0

y

Fig. 3. 7 and 6 line parametrization

The Hough transform algorithm uses an array, called ac-
cumulator, to detect the existence of a line r = zcos(f) +
ysin(f). The dimension of the accumulator is equal to the
number of unknown parameters of the Hough transform prob-
lem. The linear Hough transform problem has two unknown
parameters: r and 6. The two dimensions of the accumulator
array would correspond to quantized values for r and 6.
For each pixel and its neighborhood, the Hough transform
algorithm determines if there is enough evidence of an edge
at that pixel. If so, it will calculate the parameters of that line,
and then look for the accumulator’s bin that the parameters
fall into, and increase the value of that bin. By finding the
bins with the highest values, typically by looking for local
maxima in the accumulator space, the most likely lines can be
extracted, and their (approximate) geometric definitions read
off.
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Fig. 4. Hough transform accumulator
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The simplest way of finding these peaks is by applying
some form of threshold, but different techniques may yield
better results in different circumstances - determining which
lines are found as well as how many. Since the lines returned
do not contain any length information, it is necessary to find
which parts of the image match up with which lines.

B. Hough Transform implementation for DMC angle estima-
tion

Let’s consider the Data Matrix Code binary image from Fig.
5.

W

Fig. 5. The orientation angle

The Hough Transform steps for Data Matrix Code angle

computation are:

e For each data point, a number of lines going through it
at different angles are generated. A plot of such lines is
illustrated in 5.

o The length, r and angle, 6, of each dashed line is
measured as is shown in Fig. 4.

o This is repeated for each data point.

¢ In the accumulator matrix of the Hough-Transform (Fig.
6), by searching the maxima the lines are detected.
From the same figure we can associate the angle and
the distance corresponding to the maxima of the Hough
accumulator. The maximum found in Fig. Fig. 6 is
marked by a white square.

10 20 30 40 50 60 70 80
0

Fig. 6. The Hough Transform of the Data Matrix Code image

IV. DMC ANGLE ESTIMATION BASED ON MEAN SHIFT
ALGORITHM

A. Mean Shift

Mean shift is a non-parametric feature-space analysis tech-
nique, a so-called mode seeking algorithm. It locates the

maxima of a density function given discrete data sampled
from that function [6]. By iteratively moving an analysis
window starting from an initial estimate x, it detects the modes
(maxima) of the density.

Let a kernel function K (z; — ) be given. This function
determines the weight of nearby points for re-estimation of the
mean. Typically one uses the Gaussian kernel on the distance
to the current estimate, K (z; —x) = cllzi—all* The weighted
mean of the density in the window determined by K is:

ZziEN(z) K('L.Z - ‘T) '
where N () is the neighborhood of z, a set of points for which
K(x) # 0. The mean-shift algorithm now sets z < m(z) ,
and repeats the estimation until m(z) converges, Fig. 7 [7].
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Fig. 7. Mean Shift Algorithm

If dense regions (or clusters) are present in the feature space,
then they correspond to the mode (or local maxima) of the
probability density function. For each data point, Mean shift
associates it with the nearby peak of the data-set’s probability
density function. For each data point, Mean shift defines a
window around it and computes the mean of the data point.
Then it shifts the center of the window to the mean and repeats
the algorithm till it converges. After each iteration, one can
consider that the window shifts to a more denser region of the
data-set.

B. Mean Shift implementation for DMC angle estimation

Let’s consider the labeled image of a Data Matrix Code
and all the coordinates of the objects from the image. One
starts from the first module to the last one from the image and
calculates the angle of the straight line created by the modules,
using the equation:

xTi— T
a;; = arctan ——— (6)
Yi = Yi

where (x;,v;) si (v, y;) are the coordinates of modules ¢ and

The calculated angels are stored in a connected list in
increasing order.

The analysis window’s size should not be bigger than half
of the angles. In the example from Fig. 9(b) the size is chosen
as half of the space taken by the angles’ value.
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The general expression for the non-parametric density esti-
mation is:

k
T @
where V' is the volume of the « position, NV is the total number
of the elements, and k is the number of elements from inside
V [8].

If we assume that the region surrounding the examples & is
a Hypercube with sides of length h, centered in an estimated
point z, its volume is given by V = hP, where D is the
number of dimensions, Fig.8.
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(a) Vp-Space (b) Analysis window (c) Kernel function
Fig. 8. Analysis window

In our case the dimension D = 1, this means that V" is
the length of the segment, and k& is the number of the values
contained in the segment [9] [10].
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Fig. 9. Mean Shift Algorithm for angle computation

Next, based on Fig. 9(b), the Mean Shift steps are described:

o In the first step, the analysis segment is centered in
the center of the data base coverage. The length of the
segment is equal with half of the coverage. Using the
equation (7), the density center of the points from the
segment is computed. The center of the segment is moved
in the position calculated by the equation, Fig. 9 (b),

o In the second step, the segment would exceed the cov-
erage of the angels. Because of that, its dimension is
recalculated using the new values form the segment and
its real length.

o The procedure is repeated until it converges to mean,
3th — 6" iterations.

In Fig. 10 - 13 the first five iterations are shown, the
6" iteration being the same with the 5'. On these two last
iterations the algorithm converges and stops.

We can notice that the peak position of the function densities
stabilizes after each iteration. The Mean Shift does not re-
quire a pre-parametrization process, the algorithm is adapting
according to the values of the area subject to estimation.
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V. COMPARISON OF HOUGH TRANSFORM AND MEAN
SHIFT ALGORITHM FOR DMC ANGLE ESTIMATION

This chapter compares two methods for estimating the angle
of orientation of the Industrial Data Matrix Codes. The first
method is based on Hough Transform and the second is based
on the Mean Shift algorithm [11] [7]. The purpose of this
chapter is to highlight strengths and weaknesses of the two
methods presented in Chapters III, IV.

A. Experiment

In order to compare the two methods one should analyze
more DMC patterns at different angles to have a satisfying
statistic. This would be more difficult based on real objects
marked with Data Matrix Code. In this case the human error
can occur. Therefore, we develop a test method based on
synthetic - generated DMC patterns.

DMC size di t Orientation Dg/l?
8144 istance DMC 0290 modules

modules dewatlon
[ DMC pattern generator ]

Hough Transform Mean Shift
angle estimation angle estimation

Comparation
Results

Fig. 15. The description of the experiment

Knowing the structure of a real DMC pattern, its character-
istics like: the size of the pattern, the distance between the
modules and its angle one can generate a synthetic image
of the pattern (Fig. 15). If this process is automated by
generating successive patterns of several different angles, then
we can simultaneously test the two methods and achieve a
statistics of their results. When an image is acquired, errors
can occur. This error may be caused by the optical system
of the camera, by its analog-digital converter, or by external
factors: light, noise, camera lenses, etc. The image generated
by the generator of the DMC pattern proposed in this chapter,
would be a perfect image without the intervention of the
above enumerated factors. Therefore, as for the the synthetic
- generated DMC pattern to be similar with the real pattern
acquired with a video camera, a position error is introduced,
”o”. This error, ”0”, moves the centers of the DMC modules,
randomly between two limits imposed manually.

If we consider two neighboring modules ”1” and 27,
located at a distance ”d” between them (Fig. 16), the maximum
error F,,,, should not be greater than half of the distance
between the modules. In one dimension, we can associate
this error with Gaussian normal distribution, whose density
of probability function is written (eq. 8) [12]:

Fig. 16. The maxim deviation of a DMC module

S ®)
m) = ——"¢€ 202
Y oVer
for: —0o < X,, — X < oo, where : X is the average of the
input and o - the square average deviation.

In Fig. 17 the shape of the probability function in two
dimensions it is presented, It can express the distribution of
the error in the image space.
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Fig. 17. Gaussian distribution curve of probability density of the error in
image space

Knowing all these, one can generate the Data Matrix pattern,
creating a network of points using the relationship :
for the rows:

z1 = (zg +d-cosa) + Ey ©)
y1 = (yo+d-sina)+ E, ’

for the columns:
z9 = (zg —d-sina) + E, (10)
y2 = (yo+d-cosa)+ E,

where « is the orientation angle of the pattern, d is the distance
between the modules and FE, is the error of the position of
the DMC modules, a random value supplied according to the
density of probability (eq. 8).

The probability of density parameters are chosen for 7 = 0,
so that by (z¢ + d - cosa), it can already choose the central
position. The distribution has to provide the position from the
correct deviation. And because E,,., < d/2 and as in the
limits [T — 30, T + 30], are included 99, 7% of all values, we
choose 30 = E44, then Eyp g, < d/6.

Fig. 18 displays the original Data Matrix Code image and
the synthetically pattern built on different levels of error. Note
that the DMC image is increasingly distorted as the average
quadratic deviation is higher.
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(a) Original b)o=0 (¢c) o =d/15

® o= df6

Fig. 18. The DMC pattern synthetically generated, Size = 26 x 26, d =
11px, o = 78°

(e) o =d/9

(d) o =d/12

To test the methods, they must be parameterized in equal
conditions, at an optimal scale, so the results can be compared
to each other. Next, we briefly present the two methods and
the factors that directly influence algorithms proposed for the
test.

Hough Transform

We know from Chapter III, that the Hough Transform algo-
rithm uses a matrix called accumulator to detect the existence
of aline: r = x-cos(0)+y-sin(6). The matrix size accumulator
match the measured values for r and 6, and station columns.
For each pixel and its neighborhood, the Hough Transform
algorithm determines whether there is sufficient evidence for
that pixel [13]. The parameter which depends on the Hough
Transformation algorithm is the number columns from the
accumulator. The more columns the accumulator has, the
precise the accumulator is, but more instable in the same
time. However, the fewer columns the accumulator of the
transformation has, the stable the algorithm is, but not so
precise.

Mean Shift algorithm

From Chapter IV, we know that the Mean Shift algorithm
locates the maximum of a density function given by a set
of discrete data. Moving iterative and analyzing a Parzen
window, one can start from an initial estimated x, and detect
the density’s peak points [14]. Parameters on which the Main
Shift Algorithm depends are the Parzen window (in our case
segment) and the number of data falling in this window.

With all this knowledge about the methods that are to be
tested, we propose to choose the size of Hough Transformation
accumulator. We know that the angles range is 0° — 90°. To
have a 1° precision in estimation, we build the accumulator
from 90 bins, that means one angle for each bin (90 angles).
If we build a higher accumulator, for example: with 900 bins,
then the Hough Transform algorithm precision is of 0, 1°.
To have a bigger precision, as for example 9000 bins, the

precision is 0,01°, that is very good. The DMC generator
constructs patterns which their modules have a o deviation.
To find which is the optimal accumulator dimension, we test
the follow sizes : [90, 900, 9000].

For the Mean Shift algorithm, we choose the segment “Parzen”
half of the data set. If all values from the Parzen segment are
chosen by the algorithm, than the accurate is maximal, but on
the other hand the processing time is bigger. A higher process
speed can be reached only by decreasing the accumulator size.
For the experiment, the number of data from the segment
is chosen between: 1%, 10% and 100% of the amount of
data that fall in the Parzen segment. There are also tested the
methods proposed for the four types DMC patterns, according
to the modules’ deviation o = [d/15,d/12,d/9,d/6]. The
algorithms are tested in parallel to each situation, there being
realized 100 tests. The test results are represented in Tables I
- 1L

TABLE I
EXPERIMENT 1, PARZEN SEGMENT = 100 VALUES, HOUGH
ACCUMULATOR = 90 BINS

Comparison of Hough Transform and Mean Shift algorithm for DMC angle
estimation
Test | DMC | Average error E E faileq
no. | (Emax) | Gomc-Opasurat| min max estimations
M-S & Hough M-S Hough M-S Hough M-S | Hough M-S Hough
1 d/15 | 0.4644 | 0.9982 | 0.0045 | 0.0071 | 10.02 | 15.92 0 1
2 d/12 | 2.5161 | 9.0203 | 0.0116 | 0.1591 | 20.94 | 22.20 0 9
3 d/9 |2.6119 | 9.4872 | 0.0341 | 0.5588 | 22.28 | 22.32 0 13
4 d/6 | 3.1246 | 9.3913 | 0.0459 | 0.4114 | 19.44 | 22.02 0 18

TABLE 11
EXPERIMENT 1, PARZEN SEGMENT = 1000 VALUES, HOUGH
ACCUMULATOR = 900 BINS

Comparison of Hough Transform and Mean Shift algorithm for DMC angle
estimation
Test | DMC Average error E E Faileq
no. (Emax) | Gomc-Omasurat| min max estimations
M-S & Hough M-S Hough M-S Hough M-S | Hough | M-S | Hough
1 d/15 | 0.3666 | 1.1545 | 0.0044 | 0.0064 | 4.750 | 17.80 0 0
2 d/12 | 2.7428 | 6.3865 | 0.0038 | 0.1235 | 21.79 | 21.30 0 6
3 d/9 | 2.2995 | 8.6701 | 0.0290 | 0.1268 | 21.16 | 22.39 0 13
4 d/6 | 3.3091 | 7.9894 | 0.0818 | 0.3313 | 21.72 | 21.98 0 11

TABLE III
EXPERIMENT 1, PARZEN SEGMENT = 10000 VALUES, HOUGH
ACCUMULATOR = 9000 BINS

Comparison of Hough Transform and Mean Shift algorithm for DMC angle
estimation
Test | DMC | Average error E E Eailef]
no. | (Emax) | Gomc-Anasurat| min max estimations
M-S & Hough M-S Hough M-S Hough M-S | Hough M-S Hough
1 d/15 | 0.5652 | 0.8208 | 0.0056 | 0.0093 | 8.488 | 22.40 0 0
2 d/12 | 2.7433 | 6.6697 | 0.0156 | 0.1460 | 21.95 | 22.19 0 8
3 d/9 | 2.5994 | 8.0336 | 0.0277 | 0.4943 | 20.89 | 22.29 0 11
4 d/6 |2.7005 | 9.5836 | 0.0013 | 0.8312 | 19.45 | 22.44 0 10
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B. Results

In the case of the Hough Transform, the greater the mod-
ules’ deviation is, regardless of the number samples from the
accumulator, the greater the error and the detection angle.
In the case of the Mean Shift algorithm, Data Matrix Code
modules deviation influences very little the estimated angle.
Fig. 19 illustrates the average error for the estimated angles
by the tested methods.

Graphical representation - The average error
10

-/.ﬁ‘
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Fig. 19. The average error

VI. CONCLUSION

The Hough Transform is only efficient if a high number
of votes fall in the right bin, so that the bin can be easily
detected amid the background noise. This means that the bin
must not be too small, or else some votes will fall in the
neighboring bins, thus reducing the visibility of the main bin.
If we analyze the experiments results, Tables (I - III), can
observe that in the case when the accumulator has 90 bins, the
algorithm is very stabile (Table I). Following the graphs from
the Fig. 19 (up side), we can see that the average error achieve
up to 9, 39°. Also, when the number of parameters is large the
average number of votes cast in a single bin is very low, and
those bins corresponding to a real figure in the image do not
necessarily appear to have a much higher number of votes
than their neighbors. In the case when the accumulator size
is bigger and the modules deviation is bigger, the algorithm
is instable, the average error being 9,58° (Table II). Finally,
much of the efficiency of the Hough Transform is dependent
on the quality of the input data. Use of the Hough Transform
on noisy images is a very delicate matter.

The Mean Shift algorithm is a nonparametric clustering
technique which does not require prior knowledge of the
number of clusters, and does not constrain the shape of the
clusters. It requires the bandwidth parameter h to be tuned.
The choice of bandwidth is influences convergence rate and
the number of clusters. A large h might result in incorrect
clustering and might merge distinct clusters. A very small A
might result in too many clusters. Mean shift might not work
well in higher dimensions. In higher dimensions, the number
of local maxima is pretty high and it might converge to a
local optima soon, but because in our case the angles set is
one dimension the algorithm works with very well results. If
we check the Fig. 19 (down side), we can conclude that the

average error is independent by the modules deviation or by
the bandwidth of Mean Shift Algorithm. The maximal average
error is only 3, 3°, Table L.

Being independent of the choice of some in width, in our
case the Mean shift algorithm provided us better results in
the estimate of the angle of orientation of the Industrial Data
Matrix Code.
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