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Abstract—We have considered an unmagnetized dusty plasma 

system consisting of ions obeying superthermal distribution and 

strongly coupled negatively charged dust. We have used reductive 

perturbation method and derived the Kordeweg-de Vries-Burgers 

(KdV-Burgers) equation. The behavior of the shock waves in the 

plasma has been investigated. 
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I. INTRODUCTION

USTY plasmas are ordinary plasmas with embedded solid 

microparticles. In recent years, the study of nonlinear 

waves in plasmas has become one of the most important topic 

in plasma physics. Rao et al. [1] theoretically predicted the 

existence of dust-acoustic waves (DAWs), in which the inertia 

is provided by the dust particle mass and the restoring force is 

provided by the pressures of the inertialess electrons and ions. 

There has been a rapidly growing interest in understanding the 

physics of strongly coupled dusty plasma and associated low-

frequency dust modes because of their vital role in space and 

astroplasmas (such as white dwarf matter, interior of heavy 

planets, etc.), laboratory plasmas (for example, plasma 

crystals, plasmas produced by laser compression of matter, 

etc.), and industrial plasma processing. It was first pointed out 

by Ikezi [2] that a classical Coulomb plasma with micron-

sized dust particles can readily go into the strongly coupled 

regime. The laboratory experiments [3–5] as well as a number 

of theoretical analysis [6–9] conclusively verified the 

prediction of Ikezi [2] and demonstrated that the dust particles 

organize themselves into crystalline patterns in such a dusty 

plasma. It is also observed by experiments that as the coupling 

is increased, the dust crystals melt and then vaporize so that 

one encounters the usual weakly coupled ideal Coulomb 

plasma. Thus, laboratory experiments in such a dusty plasma 

system provide an excellent opportunity for the study of 

transitions from the strongly coupled to weakly coupled 

regimes. A number of authors in the recent years have studied 

the behavior of dust acoustic shock waves in coupled dusty 

plasmas. Shukla and Mamun [10] have derived Korteweg de 

Vries-Burgers (KdV-Burgers) equation by reductive 

perturbation method and they have studied the properties of 

the solitons and shock waves for strongly coupled 

unmagnetized dusty plasmas. Also Mamun et al [11] have 

studied dusty plasma with a Boltzmann electron distribution, a 

nonisothermal vortex-like ion distribution and strongly 

correlated grains in a liquid-like state and discussed about the 

properties of shock wave structures. 

 Ghosh and Gupta have investigated the nonlinear propagation 

of shock wave in strongly coupled collisional dusty plasma 

using the GH model incorporating a charging-delay effect 

[12]. More recently, it had been found that the electrons and 

ions distributions play a crucial role in characterizing the 

physics of the nonlinear waves [13-16]. The nonlinear features 

of dust acoustic shock waves in a strongly coupled 

unmagnetized dusty plasma containing Boltzmann electron 

distribution, nonisothermal ions and negatively charged dust 

has been studied in [17]. The effect of nonthermal ions on 

dust acoustic shock waves in dusty plasma was investigated in 

[18]. Numerous observations of space plasmas [19-21] 

indicate clearly the presence of superthermal electron and ion 

structures as ubiquitous in a variety of astrophysical plasma 

environments. We consider a fluid model of dusty plasma in 

which the electron number density is assumed to be 

sufficiently depleted, i.e., de nn . The aim of the present 

paper is study the effect of superthermal ions on the dust 

acoustic shock waves in coupled dusty plasmas. The 

manuscript is organized as follows. The GH equations are 

presented in Section 2. In Section 3 we derive the Korteweg 

de Vries Burgers equation using the reductive perturbation 

method. We study the solitary and shock waves solutions in 

Section 4. Finally the main results from this investigation have 

been given in Section 5. 

II.BASIC EQUATIONS 

We consider an unmagnetized strongly coupled dusty 

plasma with superthermal distributed ions and negatively 

charged dust grains. We assume that the ions are weakly 

coupled compared to the dust grains. The dynamics of the 

DAW in our coupled dusty plasma are given by GH equations 

[22-24] as follows  
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dn ( in ) is the dust  (ion) number density normalized by its 

equilibrium value dn ( in ), du is the dust fluid velocity 

normalized by the dust-acoustic speed 
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C ( dZ is the number of electrons residing on 

the dust grain, iT is the ion temperature, and dm is the dust 

mass),  is the electrostatic wave potential normalized by 

e

Ti
(e is the magnitude of the electron charge). The time and 

space variables are normalized by the dust plasma period 
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normalized longitudinal viscosity coefficient and is given by 
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where s and b are the transport coefficients of shear and bulk 

viscosities, respectively. The viscoelastic relaxation time m

is normalized by the dust plasma period d and is given by 
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is the compressibility [25,26] and )(u is a measure of the 

excess internal energy of the system and is calculated for 

weakly coupled plasma ( <1) as [25,27] 
2/3)2/3()(u . To express )(u in terms of 

for a range of 1< <100, Slattery et al. [28] analytically 

derived a relation 

81.019.095.089.0 4/14

)(u                        (5) 

where a small correction term due to finite number particles is 

neglected. 

We adopt a superthermal distribution for the ions, and by 

integrating over velocity space obtain the ions number density 

[29]
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k is a spectral index. The spectral index is a measure of the 

slope of the energy spectrum of the suprathermal particles 

forming the tail of the velocity distribution function; the 

smaller the value of k the more suprathermal particles in the 

distribution function tail and the harder the energy spectrum. 

Kappa distributions approach the Maxwellian as k . The 

normalization has been provided by 0in  for any value of the 

k>3/2. 
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III. DERIVATION OF KDV-BURGER EQUATION  

According to the general method of reductive perturbation 

theory [30], we choose the independent variables as  
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where  is a small dimensionless expansion parameter which 

characterizes the strength of nonlinearity in the system and 

is the phase velocity of the wave along the x direction and 

normalized by dust acoustic velocity. Now we expand 

dependent variables as follows 
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Substituting (9) into (1) and collecting the terms in different 

powers of  the following equations can be obtained at the 

lower order of 
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At the higher order of , we have  
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Finally from (10) and (11) KdV-Burgers equation yields 
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where the coefficients are 
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Eq. (12) is a KdV-Burger equation which includes the effects 

of superthermal ions (k) and strongly coupled dust ( ). The 

Burger term is proportional to the dissipation due to dust 

viscosity through dust-dust correlation.

IV. DISCUSSION AND CONCLUSION  

Equation (12) is the well known KdV-Burgers equation 

describing the nonlinear propagation of the dust acoustic 

shock waves in a coupled dusty plasma with superthermal 

ions. In this equation A and B are the nonlinear coefficient 

and dispersive term and the Burger term (C) arises due to the 

coupling of dust particles. The KdV-Burgers equation is 

widely used in plasma physics and theoretical physics. The 

tangent hyperbolic method is a powerful method for the 

computation of exact traveling wave solutions. More recently, 

Asif Shah et al. [30] have derived the monotonic shock waves 

solution theoretically by employing the tangent hyperbolic 

method [31]. They used the transformation )( v

(where and v  are wave number and wave velocity, 

respectively) and presented the solution in terms of 

independent variable as 
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Now, using this stationary solution, we have numerically 

solved (14), and have studied the effects of the coupling and 

superthermal ions on the waves. Figs. 1 and 2 show how the 

coupling force effect covert the soliton profile to shock-like 

structures. Fig1. Shows the variation of 1  with respect 

to for k=2 and different values of . If the dissipative term 

C is negligible, in comparison with the nonlinear A and 

dispersive B terms, the solitary structure will be established by 

balancing the effects of dispersive and nonlinear terms. On the 

other hand, if the coupling becomes very strong the shock 

waves will appear. It is also seen in Fig. 1 that both strength 

and steepness of the shock structure increase by increasing the 

coupling. Figure 2 shows the variation in the 1 with respect 

to for k=2 and different values of . It is clear that there 

are the same results for both Figs. 1 and 2. However, it seems 

that the behavior of the shock waves changes from a kink 

wave structure to an anti-kink type with k=2 in Fig.1 and k=5 

in Fig.2. 

Variation of the shock amplitude as a function of k can be 

studied by plotting the amplitude respect to k for the case of 

 = 0 using Eq. (14). In fig. 3 the amplitude ( 0 ) has been 

plotted respect to k for =8. As one can see, when k 

increases in the interval 1.6<k<2.413, the amplitude is 

positive, but it is negative for k>2.413. Thus k=2.413 is a 

special value of spectral index for the amplitude in which the 

shock waves have different behavior which separates regions 

k>2.413 and k<2.413. In fact, a kink (an anti kink) of shock 

structure appear for k<2.413 (k>2.413). On the other hand, it 

is clear that there exists a singularity in the shock amplitude 

for 5.2ckk . Since Eq. (14) shows that the amplitude of 

shock waves depends on A and B and also since B is always 

positive, so it can be concluded that A is important to indicate 

of the shock structure. 

The amplitude of shock waves becomes zero for a critical 

value of k  ( ck ) which can be determined by A = 0. So we 

have
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This value of spectral index has been shown in Fig. 3. We 

can see that A becomes zero when ckk and thus the 

amplitude of shock waves increases sharply to infinity. On the 

other hand distribution function approaches to the Maxwellian 

distribution for k and in this situation we have shock 

waves with decreasing negative amplitude. 

1

Fig. 1 Variation of 1 with for different values of

1
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Fig. 3 Variation of the amplitude of shock wave with respect to k for 

=8. 

IV. CONCLUSION

We have studied the properties of dust acoustic solitary and 

shock waves by deriving the KdV-Burgers equation in 

coupled dusty plasma with superthermal ions. We have 

considered a fluid model of dusty plasma in which the 

electron number density is assumed to be sufficiently 

depleted, ( de nn ). The dissipative Burger term in the 

nonlinear KdVB equation arises by considering the coupling 

viscosity through dust-dust correlation. Our results show that 

in such plasmas, solitary and shock structures can be created. 

We have shown that soliton profile is converted into shock 

structure when the coupling force increases. The increase of 

spectral index k is significant as it leads to shift from a kink 

shock wave with positive amplitude to an anti kink shock 

wave with negative amplitude (see Fig. 3). It is also shown 

that the large amplitude of solitary and shock waves appear 

when 5.2ckk . The shock wave solution cannot be 

established when ckk (A is zero). This situation can be 

investigated in further works. The limitation of the present 

analysis is that the plasma has been considered as a medium 

which is not containing electrons and also the dust charge has 

been taken constant. It is clear that plasmas with variable dust 

charge and distributed electron, has a new scenario with very 

different behavior. 

In view of the observations of superthermal distributed ions in 

Saturn’s magnetosphere [32], the results of this investigation 

can help in the interpretation of nonlinear electrostatic shock 

waves that may be observed in that region. 
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