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Abstract—Traditional parallel single string matching algorithms 

are always based on PRAM computation model. Those algorithms 
concentrate on the cost optimal design and the theoretical speed. 
Based on the distributed string matching algorithm proposed by 
CHEN, a practical distributed string matching algorithm architecture 
is proposed in this paper. And also an improved single string matching 
algorithm based on a variant Boyer-Moore algorithm is presented. We 
implement our algorithm on the above architecture and the 
experiments prove that it is really practical and efficient on distributed 
memory machine. Its computation complexity is O(n/p + m), where n 
is the length of the text, and m is the length of the pattern, and p is the 
number of the processors. 
 

Keywords—Boyer-Moore algorithm, distributed algorithm, 
parallel string matching, string matching.  

I. INTRODUCTION 
TRING matching problem received much attention over the 
years due to its importance in various applications such as 

text processing, information retrieval, computational biology 
and intrusion detection [1], [2]. All those applications require 
highly efficient algorithm to find all the occurrences of a given 
pattern in the text.  
 According to whether the text or the pattern needs 
preprocessing, the string matching algorithms can be divided 
into two categories. If the pattern needs to be preprocessed, it is 
called online string matching algorithm; if constructing a data 
structure on the text is required, it is called index string 
matching algorithm. In this paper, we focus on online string 
matching algorithm. 

The Knuth-Morris-Pratt (KMP) algorithm [3] and the 
Boyer-Moore (BM) algorithm [4] are both well-known single 
string matching algorithms. The KMP algorithm guarantees 
both independence from alphabet size and worst-case 
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execution time linear in the pattern length, and the worst-case 
computation complexity is ( )O n m+ ; on the other hand, the 
BM algorithm provides near optimal average case and 
best-case behavior, and it only needs ( / )O n m  comparisons in 
the best case. Hundreds of algorithms based on the KMP or BM 
algorithm have been proposed, such as BMH algorithm [5], QS 
algorithm [6] and so on [12]. Based on the key observation on 
the characteristics of the “bad character” and “good suffix” in 
BM algorithm, Cantone and Faro [7] proposed a more efficient 
algorithm called Fast Search. Though it keeps the good 
characteristics of the BM algorithm, its worst-case computation 
complexity is still ( )O n m× . 

Most proposed parallel string matching algorithms are 
usually based on PRAM (Parallel Random Access Machine) 
computation model [8]-[10], and this model is not practical in 
realistic distributed computation environment. CHEN [11] 
designed a parallel KMP string matching algorithm on 
distributed memory machine. The distributed memory model is 
practical in most parallel machines such as massive parallel 
processor machine and cluster machine. In PRAM model, all 
those operations are abstracted as they have the same cost, but 
in the realistic implementation, it is not the case. Memory 
access and communication between processors usually spend 
much more clock cycles than a single computation in processor. 
So, in the practical design of parallel algorithm, those impact 
factors should been concerned. 

In this paper, based on the distributed algorithm published by 
CHEN [11], we propose a practical distributed string matching 
algorithm architecture. We observed that nearly all the string 
matching algorithms could be implemented in the framework, 
not only the KMP algorithm which had been implemented by 
CHEN.  

This paper also presents an improved single string matching 
algorithm by making some modifications on the algorithm 
proposed by Cantone and Faro [7]. With those modifications, 
the good characteristics of the algorithm are still preserved, 
while the worst-case computation complexity has reduced from 

( )O n m×  to ( )O n m+ .  
We also implement our string matching algorithm on the 

architecture proposed above. The experimental results on our 
cluster prove that this architecture is suitable in distributed 
memory machine, and our string matching algorithm is really 
practical. 

This paper makes the following research contributions: 
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1) A practical distributed string matching algorithm 
architecture that is suitable for paralleling nearly all the 
string matching algorithms in distributed memory 
machine.  

2) An improved string matching algorithm that reduces the 
complexity of Fast-Search algorithm from ( )O n m×  
to ( )O n m+ . 

3) An implementation of the improved string matching 
algorithm on the distributed architecture and a show of its 
adaptability for paralleling string matching algorithms.  

The rest of the paper is organized as follows. Section II 
reviews the related work. Section III describes our distributed 
architecture and presents the improved string matching 
algorithm and its implementation in the distributed 
architecture. Section IV analyzes the computation complexity 
of our algorithm. Section V evaluates the practical performance 
of the distributed string matching algorithm. Finally, section VI 
concludes the paper with a summary. 

II. RELATED WORK 

A. Single String Matching Algorithms 
With the publication of both the KMP and the BM string 

matching algorithms, lots of papers worked on improving the 
efficiency of the original algorithm. When the alphabet size is 
large enough, Horspool [5] suggested using only “bad 
character” rule shifts when a mismatch occurs. This algorithm 
is faster in practice when the alphabet size is not small because 
it does not need to make a comparison between the “bad 
character” shift and the “good suffix” shift which is used to 
shift the pattern when a mismatch occurs. Sunday [6] proposed 
to shift the pattern using “bad character” shift according to the 
next character of this match attempt in the text. Those 
algorithms all took the advantage of the “bad character” rule 
characteristic, which guaranteed the near optimal average case 
behavior.  A list of other algorithm variants based on KMP or 
BM and a fairly complete bibliography are available on the web 
site [12]. Cantone and Faro [7] discovered that “the Horspool 
bad character rule leads to larger shift increments than the good 
suffix rule if and only if a mismatch occurs immediately, while 
comparing the pattern p with the window”, so they suggested 
using the “bad character” rule when the mismatch occurred 
immediately in comparing the text, otherwise, using the “good 
suffix” rule.  

If the pattern is periodical, the worst-case computation 
complexity of BM algorithm is ( )O n m× , so are the BMH 
algorithm, the QS algorithm and the Fast-Search algorithm. 
Galil [13] proposed an algorithm to improve the worst case 
running time of the BM algorithm, and he proved the 
improving BM algorithm is ( )O n m+  in the worst case. 
Richard Cole [14] presented the tight bounds on the complexity 
of the BM algorithm.  

 

B. Parallel String Matching Algorithms 
The first optimal parallel string matching algorithm was 

proposed by Galil [8]. On SIMD-CRCW model, this algorithm 
required / logn n  processors, and the time complexity 

is (log )O n ; on SIMD-CREW model, it required 2/ logn n  

processors and the time complexity is 2(log )O n . Vishkin [9] 
improved this algorithm to ensure it is still optimal when the 
alphabet size is not fixed. In [10], an algorithm used ( )O n m×  
processors was presented, and the computation time 
is (log log )O n . A parallel KMP string matching algorithm on 
distributed memory machine was proposed by CHEN [11]. The 
algorithm is efficient and scalable in the distributed memory 
environment. Its computation complexity is ( / )O n p m+ , and 
p  is the number of the processors. 

III. DISTRIBUTED ARCHITECTURE AND ALGORITHM 

A. The Distributed String Matching Algorithm Architecture 
Nowadays, the frequency of the processor is high. The speed 

gap between processors and memory access and 
communications between processors is large. Because the 
communication between different computing nodes requires 
the message to be sent by operating system and the network 
protocol is heavy for a single communication. It usually takes 
much more cycles to send data to other computing nodes than 
computing it in local processor.  

Our distributed string matching algorithm architecture is 
based on the following three assumptions: 
1) The computing environment is distributed memory 

environment, such as cluster computing environment. 
2) Communication between processors costs much more time 

than computing it in local processors. 
3) The length of text is much longer than the length of the 

pattern string. The text is partitioned and then assigned to 
each processor before processing. 

The proposed distributed architecture is shown in Fig 1. 

 
Fig. 1 The distributed string matching algorithm architecture 

 
In step 1, the processor with number zero broadcasts the 

pattern string to other processors. The length of the pattern is m, 
and stores in an array named pat. This step can be implemented 
by the binomial tree-based communication strategy or the 
Fibonacci communication strategy [15]. 

In step 2, all the processors call the procedure “BUILD” to 
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preprocess the pattern string in parallel. For example, if you 
want to parallel BM algorithm, you need to compute the “bad 
character” shift and “good suffix” shift in this step. 

In step 3, all the processors call the string matching 
algorithm to search the pattern string locally in the text Ti. Ti 

denotes the text assigned to processor whose number is i. The 
string matching algorithm could be all the classical string 
matching algorithms, such as the KMP algorithm and the BM 
algorithm. 

In step 4, the boundary condition should be considered, 
because the pattern matching may occur just across the text Ti 
and Ti+1. The boundary pattern matching condition can be 
solved by sending the last m-1 characters’ information from 
processor PEi to the next processor PEi+1. 

B. The Improved Single String Matching Algorithm  
Our improved single string matching algorithm is based on 

the algorithm Fast-Search published by Cantone and Faro [7]. 
The aim of our algorithm is to improve the worst case 
complexity of the Fast-Search algorithm while keeping its 
practical efficiency. 

The key idea of our algorithm is that when a pattern 
matching occurs, the position in the text is recorded, and in the 
next matching attempt, a pattern matching will be reported 
when the character comparison comes to that position instead 
of the end of this attempt. This method was first discovered by 
Galil [13]. 

Fig. 2 shows our improved single string matching algorithm. 

 
Fig. 2 The improved single string matching algorithm 

 
In this algorithm, we have not presented the definition and 

the construction algorithm for arrays named “bmBc” and 
“bmGs”, because the definition and computation algorithm can 
be found in the web site [12] through the hyperlink titled 

“Boyer-Moore algorithm”.   
We use the variable “end” to record the position, and the 

variable “pos” indicates where the current matching attempt 
should stop and a matching position will be reported at that 
time. In section IV, we will prove that the worst-case time 
complexity of this improved algorithm is ( )O n m+ . 

C. Implement the Improved Algorithm in the Distributed 
String Matching Algorithm Architecture 

In this part, using the proposed distributed string matching 
algorithm architecture, we parallel the improved single string 
matching algorithm. 

Step 1 is the same as mentioned in the distributed algorithm 
architecture. The procedure “BUILD” in step 2 is to call the 
construction algorithm [12] to compute the “bad character” 
shift and “good suffix” shift which are stored in array “bmBc” 
and “bmGs” separately. In step 3, the common procedure 
“StringMatchingAlgorithm” is implemented by our improved 
single string matching algorithm. In step 4, the boundary 
condition should be considered. The last m-1 characters are 
sent from processor PEi to the next processor PEi+1, and PEi+1 
receives the m-1 characters from processor PEi . After this 
phase, each processor checks whether a match occurs just on 
the boundary or not. 

IV. COMPLEXITY ANALYSIS 

A. The Time Complexity of the Improved Single String 
Matching Algorithm 
Definition. A string u  is periodical if it can be written in the 
form kwv  , where w  is a proper suffix of v and 2k ≥ . 
Equivalently, u is said to be period of v . 
Theorem 4.1. If the pattern is non-period, the improved single 
string matching algorithm performs at most 4n comparisons 
when matching a pattern of length m against a text of n. 
Proof. Richard Cole [14] proved that “If the Boyer-Moore 
string matching algorithm determines its shifts using only the 
good suffix shift rule, then it performs at most 4n comparisons 
when matching a non-period pattern of length m against a text 
of length n.” In his proof, he used the amortized analysis 
method, and defined the potential function was “3⋅#positions 
not yet shifted over + #unread text characters.” So we can 
extend his proof to the case of using the “bad character” shift 
rule when a mismatch occurs in the first comparison of this 
attempt, because in this case, the pattern at least needs to shift 
one position, so the potential is reduced by at least 3. So, Cole’s 
proof is still hold in this case.                                                □ 
Lemma 4.1. If the pattern is period and the pattern never 
occurs in the text, the algorithm performs at most 4n 
comparisons. 
Proof. We use the same potential function as mentioned above. 
Case 1: The mismatch occurs in the first |v| comparisons in one 
attempt. In this case, the pattern will shift forward at least |u|-|w|, 
so the potentials reduced by at least 3⋅(|u|-|w|)-|v|. 
Case 2: The mismatch occurs after at least |v|+1 times of 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3180

 

 

comparisons. In this case, the next attempt at most compares 
|u|-(|v|-1) characters, and all those characters are yet not 
covered. The next shift is at least |u|-|w|, so the amortized cost is 
at most zero.  
 Because the initial potential is 4n, so the lemma holds.     □ 
Theorem 4.2. If the pattern is period, the improved single 
string matching algorithm performs at most 4n comparisons 
when matching a pattern of length m against a text of n.  
Proof. We use the same potential function as mentioned above. 
Case 1: There is no occurrence of the pattern in the text. From 
lemma 4.1, it holds.  
Case 2: A match occurs when all the comparisons are in the 
characters which are not compared before. In the case the 
“#unread text characters” is equal to the comparison cost, so the 
amortized cost is below zero. 
Case 3: A match occurs just after a match in the previous 
attempt. In the case, because the position is recorded when a 
match occurs, and in the next match, it only needs to check 
those characters unread before. So the “#unread text 
characters” is equal to the comparison cost in this match. The 
amortized cost is below zero. 
Case 4: A match occurs just after a mismatch. In this case, from 
lemma 4.1, the number of previous comparisons is no more 
than 4⋅k, where k denotes the number of characters ever read in 
the text. When a match occurs, in the next attempt, there are 
only two cases. The first case is another match occurs, the other 
is a mismatch occurs. The first case returns to the case when a 
match occurs. If the match continues occurring till the end of 
text, the amortized cost is below zero. So, only the latter case is 
concerned. If a mismatch occurs, the number of comparisons in 
this attempt is less than |v|, and the shift is no less than |u|-|w|. So 
the amortized cost is no more than zero in totals.  
 Because the initial potential is 4n, so this theorem holds.   □ 
Theorem 4.3. The worst case time complexity of the improved 
single string matching algorithm is ( )O n m+ .  
Proof. Combined the theorem 4.1 and theorem 4.2, it is clear 
that the improved algorithm performs at most 4n comparisons 
no matter that the pattern is periodical or not. Considered the 
length of the pattern is m, and the computation complexity of 
the value of array “bmBc” and “bmGs” is ( )O a  and ( )O m  
separately, where a  denotes the alphabet size. So the worst 
case time complexity of the improved single string matching 
algorithm is ( )O n m+ .                                                                          □ 

B. The Complexity of the Parallel Improved Single String 
Matching Algorithm 

The computation complexity of the procedure “BUILD” 
is ( )O m , because in this phase, the values of array “bmBc” and 
“bmGs” are computed, m  is the length of the pattern. In step 3, 
the time complexity of our improved single string matching 
algorithm is ( / )O n p m+ , because the text of length n  is 
partitioned and then assigned to each processor before 
processing by our assumptions in section III. So in each 
processor, the length of the assigned text is /n p , and p  is the 

number of the processors. In step 4, at most 2 2m −  characters 
need to be checked further, so the complexity is ( )O m  in this 
step. So the total time complexity of the algorithm 
is ( / )O n p m+ . 

In step1, the pattern of length m  needs to be broadcasted to 
all of the processors, if the binomial tree-based communication 
strategy is used, the communication complexity in this step 
is ( log )O m p . In step 4, the last 1m −  characters in each 
processor except the last one have to be sent to the next 
processor, so the communication complexity in this step 
is ( )O m . So the total communication complexity of the 
algorithm is ( log )O m p m+ . 

V. EXPERIMENTAL RESULTS 

A. Experimental results of the Improved Single String 
Matching Algorithm 

We present the experimental results in Fig.3 which allow 
comparing the running time of the following three single string 
matching algorithms: Fast-Search, BMH and our improved 
string matching algorithm. All those three algorithms have been 
implemented in the C programming language. The computer is 
with AMD Athlon processor of 1.67GHz and 256M memory. 
The length of the text is fixed to 10,000,000 Bytes, and the 
length of the pattern is fixed to 50 Bytes. The size of the 
alphabet is 4, 8, 12, 16, and 26. The text and pattern are 
randomly generated from the alphabet. The results show that 
when the size of the alphabet is small, the performance of the 
Fast-Search algorithm or our improved Fast-Search algorithm 
is better than the BMH algorithm and our improved 
Fast-Search algorithm is a little better than the Fast-Search 
algorithm; when the size of the alphabet has increased to 26, the 
performance of the Fast-Search algorithm and our improved 
Fast-Search is similar and a little better than BMH algorithm.   
Our improved Fast-Search algorithm performs fewer 
comparisons than the other two algorithms in the worst case, 
because it guarantees that the worst-case time complexity 
is ( )O n m+ , while the other two algorithms are both ( )O n m×  
in the worst case.   
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Fig. 3 The running times of single string matching algorithms 

B. Experimental Results of the Paralleled Single String 
Matching Algorithm 

We evaluate the performance of our practical distributed 
string matching algorithm architecture by paralleling our 
improved Fast-Search algorithm in the proposed architecture. 
The experimental results are shown in Table 1. The algorithm is 
implemented in the C programming language with MPI. We 
have run it in our own cluster. The computers with AMD 
Athlon processor of 1.67GHz and 256M memory are connected 
by a switch of 100Mbit/s. The operating system is “Microsoft 
Windows 2000 professional”. The MPICH version is 1.2.5. 
The length of the total text is 80 megabyte, and the length of the 
pattern is 100 Bytes, and the size of the alphabet is fixed to 16. 
In Table1, the first column is the number of the processors. The 
second column is the computing time in milliseconds which is 
the sum of the preprocessing time and the time running in 
searching the pattern in the text. The third column is the 
communication time in milliseconds between processors. The 
total time in milliseconds in the fourth column is the sum value 
of computing time and communication time. In the last column, 
the ratio is defined as (( ) ( / )) /( / )Comp Comm Serail SerailT T T p T p+ − , 

CompT  denotes the computing time,  CommT  denotes the 
communication time, p  denotes the number of processors, and 

SerialT  denotes the computing time when 1p = . The ratio 
reflects the gap between the realistic performance and the ideal 
performance. The last column shows that our distributed string 
matching algorithm architecture is really practical when 
paralleling the string matching algorithm. The ratio is also a 
measurement of the performance influenced by the 
communication time between processors.  

TABLE I 
RUNNING TIMES IN DISTRIBUED MEMORY MACHINE 

   Time 
Proc 

Computing 
time 

Communication 
time 

Total 
time Ratio 

1 192.15 0 192.15 0.000 
2 94.76 3.63 98.39 0.024 
3 64.09 6.66 70.75 0.105 
4 46.64 6.21 52.85 0.100 

VI. CONCLUSION 
In this paper, we presented a practical distributed string 

matching algorithm architecture which is suitable and efficient 
in distributed memory computing environment. We also 
presented an improved single string matching algorithm based 
on the Fast-Search algorithm proposed by Cantone and Faro. 
And then, we paralleled the improved algorithm in our 
distributed architecture. This distributed architecture is also 
suitable for paralleling the multipattern string matching 
algorithms and approximate string matching algorithms.  
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