
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3177

Abstract—Traditional parallel single string matching algorithms

are always based on PRAM computation model. Those algorithms
concentrate on the cost optimal design and the theoretical speed.
Based on the distributed string matching algorithm proposed by
CHEN, a practical distributed string matching algorithm architecture
is proposed in this paper. And also an improved single string matching
algorithm based on a variant Boyer-Moore algorithm is presented. We
implement our algorithm on the above architecture and the
experiments prove that it is really practical and efficient on distributed
memory machine. Its computation complexity is O(n/p + m), where n
is the length of the text, and m is the length of the pattern, and p is the
number of the processors.

Keywords—Boyer-Moore algorithm, distributed algorithm,
parallel string matching, string matching.

I. INTRODUCTION
TRING matching problem received much attention over the
years due to its importance in various applications such as

text processing, information retrieval, computational biology
and intrusion detection [1], [2]. All those applications require
highly efficient algorithm to find all the occurrences of a given
pattern in the text.
 According to whether the text or the pattern needs
preprocessing, the string matching algorithms can be divided
into two categories. If the pattern needs to be preprocessed, it is
called online string matching algorithm; if constructing a data
structure on the text is required, it is called index string
matching algorithm. In this paper, we focus on online string
matching algorithm.

The Knuth-Morris-Pratt (KMP) algorithm [3] and the
Boyer-Moore (BM) algorithm [4] are both well-known single
string matching algorithms. The KMP algorithm guarantees
both independence from alphabet size and worst-case

Manuscript received November 14, 2005.
BI Kun is with the Department of Computer Science and Technology,

University of Science and Technology of China, Hefei, Anhui, P.R.China,
230027 (corresponding author to provide phone: 86-551-3601547; e-mail:
bikun@mail.ustc.edu.cn).

GU Nai-jie is with the Department of Computer Science and Technology,
University of Science and Technology of China (e-mail: gunj@ustc.edu.cn).

TU Kun is with the Department of Computer Science and Technology,
University of Science and Technology of China (e-mail: tukun@ustc.edu).

Liu Xiao-hu is with the Department of Computer Science and Technology,
University of Science and Technology of China (e-mail:
stain@mail.ustc.edu.cn).

LIU Gang is with the Department of Computer science and technology,
University of Science and Technology of China (e-mail:
liugang@mail.ustc.edu.cn).

execution time linear in the pattern length, and the worst-case
computation complexity is ()O n m+ ; on the other hand, the
BM algorithm provides near optimal average case and
best-case behavior, and it only needs (/)O n m comparisons in
the best case. Hundreds of algorithms based on the KMP or BM
algorithm have been proposed, such as BMH algorithm [5], QS
algorithm [6] and so on [12]. Based on the key observation on
the characteristics of the “bad character” and “good suffix” in
BM algorithm, Cantone and Faro [7] proposed a more efficient
algorithm called Fast Search. Though it keeps the good
characteristics of the BM algorithm, its worst-case computation
complexity is still ()O n m× .

Most proposed parallel string matching algorithms are
usually based on PRAM (Parallel Random Access Machine)
computation model [8]-[10], and this model is not practical in
realistic distributed computation environment. CHEN [11]
designed a parallel KMP string matching algorithm on
distributed memory machine. The distributed memory model is
practical in most parallel machines such as massive parallel
processor machine and cluster machine. In PRAM model, all
those operations are abstracted as they have the same cost, but
in the realistic implementation, it is not the case. Memory
access and communication between processors usually spend
much more clock cycles than a single computation in processor.
So, in the practical design of parallel algorithm, those impact
factors should been concerned.

In this paper, based on the distributed algorithm published by
CHEN [11], we propose a practical distributed string matching
algorithm architecture. We observed that nearly all the string
matching algorithms could be implemented in the framework,
not only the KMP algorithm which had been implemented by
CHEN.

This paper also presents an improved single string matching
algorithm by making some modifications on the algorithm
proposed by Cantone and Faro [7]. With those modifications,
the good characteristics of the algorithm are still preserved,
while the worst-case computation complexity has reduced from

()O n m× to ()O n m+ .
We also implement our string matching algorithm on the

architecture proposed above. The experimental results on our
cluster prove that this architecture is suitable in distributed
memory machine, and our string matching algorithm is really
practical.

This paper makes the following research contributions:

A Practical Distributed String Matching
Algorithm Architecture and Implementation

Bi Kun, Gu Nai-jie, Tu Kun, Liu Xiao-hu, and Liu Gang

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3178

1) A practical distributed string matching algorithm
architecture that is suitable for paralleling nearly all the
string matching algorithms in distributed memory
machine.

2) An improved string matching algorithm that reduces the
complexity of Fast-Search algorithm from ()O n m×
to ()O n m+ .

3) An implementation of the improved string matching
algorithm on the distributed architecture and a show of its
adaptability for paralleling string matching algorithms.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III describes our distributed
architecture and presents the improved string matching
algorithm and its implementation in the distributed
architecture. Section IV analyzes the computation complexity
of our algorithm. Section V evaluates the practical performance
of the distributed string matching algorithm. Finally, section VI
concludes the paper with a summary.

II. RELATED WORK

A. Single String Matching Algorithms
With the publication of both the KMP and the BM string

matching algorithms, lots of papers worked on improving the
efficiency of the original algorithm. When the alphabet size is
large enough, Horspool [5] suggested using only “bad
character” rule shifts when a mismatch occurs. This algorithm
is faster in practice when the alphabet size is not small because
it does not need to make a comparison between the “bad
character” shift and the “good suffix” shift which is used to
shift the pattern when a mismatch occurs. Sunday [6] proposed
to shift the pattern using “bad character” shift according to the
next character of this match attempt in the text. Those
algorithms all took the advantage of the “bad character” rule
characteristic, which guaranteed the near optimal average case
behavior. A list of other algorithm variants based on KMP or
BM and a fairly complete bibliography are available on the web
site [12]. Cantone and Faro [7] discovered that “the Horspool
bad character rule leads to larger shift increments than the good
suffix rule if and only if a mismatch occurs immediately, while
comparing the pattern p with the window”, so they suggested
using the “bad character” rule when the mismatch occurred
immediately in comparing the text, otherwise, using the “good
suffix” rule.

If the pattern is periodical, the worst-case computation
complexity of BM algorithm is ()O n m× , so are the BMH
algorithm, the QS algorithm and the Fast-Search algorithm.
Galil [13] proposed an algorithm to improve the worst case
running time of the BM algorithm, and he proved the
improving BM algorithm is ()O n m+ in the worst case.
Richard Cole [14] presented the tight bounds on the complexity
of the BM algorithm.

B. Parallel String Matching Algorithms
The first optimal parallel string matching algorithm was

proposed by Galil [8]. On SIMD-CRCW model, this algorithm
required / logn n processors, and the time complexity

is (log)O n ; on SIMD-CREW model, it required 2/ logn n

processors and the time complexity is 2(log)O n . Vishkin [9]
improved this algorithm to ensure it is still optimal when the
alphabet size is not fixed. In [10], an algorithm used ()O n m×
processors was presented, and the computation time
is (log log)O n . A parallel KMP string matching algorithm on
distributed memory machine was proposed by CHEN [11]. The
algorithm is efficient and scalable in the distributed memory
environment. Its computation complexity is (/)O n p m+ , and
p is the number of the processors.

III. DISTRIBUTED ARCHITECTURE AND ALGORITHM

A. The Distributed String Matching Algorithm Architecture
Nowadays, the frequency of the processor is high. The speed

gap between processors and memory access and
communications between processors is large. Because the
communication between different computing nodes requires
the message to be sent by operating system and the network
protocol is heavy for a single communication. It usually takes
much more cycles to send data to other computing nodes than
computing it in local processor.

Our distributed string matching algorithm architecture is
based on the following three assumptions:
1) The computing environment is distributed memory

environment, such as cluster computing environment.
2) Communication between processors costs much more time

than computing it in local processors.
3) The length of text is much longer than the length of the

pattern string. The text is partitioned and then assigned to
each processor before processing.

The proposed distributed architecture is shown in Fig 1.

Fig. 1 The distributed string matching algorithm architecture

In step 1, the processor with number zero broadcasts the

pattern string to other processors. The length of the pattern is m,
and stores in an array named pat. This step can be implemented
by the binomial tree-based communication strategy or the
Fibonacci communication strategy [15].

In step 2, all the processors call the procedure “BUILD” to

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3179

preprocess the pattern string in parallel. For example, if you
want to parallel BM algorithm, you need to compute the “bad
character” shift and “good suffix” shift in this step.

In step 3, all the processors call the string matching
algorithm to search the pattern string locally in the text Ti. Ti

denotes the text assigned to processor whose number is i. The
string matching algorithm could be all the classical string
matching algorithms, such as the KMP algorithm and the BM
algorithm.

In step 4, the boundary condition should be considered,
because the pattern matching may occur just across the text Ti
and Ti+1. The boundary pattern matching condition can be
solved by sending the last m-1 characters’ information from
processor PEi to the next processor PEi+1.

B. The Improved Single String Matching Algorithm
Our improved single string matching algorithm is based on

the algorithm Fast-Search published by Cantone and Faro [7].
The aim of our algorithm is to improve the worst case
complexity of the Fast-Search algorithm while keeping its
practical efficiency.

The key idea of our algorithm is that when a pattern
matching occurs, the position in the text is recorded, and in the
next matching attempt, a pattern matching will be reported
when the character comparison comes to that position instead
of the end of this attempt. This method was first discovered by
Galil [13].

Fig. 2 shows our improved single string matching algorithm.

Fig. 2 The improved single string matching algorithm

In this algorithm, we have not presented the definition and

the construction algorithm for arrays named “bmBc” and
“bmGs”, because the definition and computation algorithm can
be found in the web site [12] through the hyperlink titled

“Boyer-Moore algorithm”.
We use the variable “end” to record the position, and the

variable “pos” indicates where the current matching attempt
should stop and a matching position will be reported at that
time. In section IV, we will prove that the worst-case time
complexity of this improved algorithm is ()O n m+ .

C. Implement the Improved Algorithm in the Distributed
String Matching Algorithm Architecture

In this part, using the proposed distributed string matching
algorithm architecture, we parallel the improved single string
matching algorithm.

Step 1 is the same as mentioned in the distributed algorithm
architecture. The procedure “BUILD” in step 2 is to call the
construction algorithm [12] to compute the “bad character”
shift and “good suffix” shift which are stored in array “bmBc”
and “bmGs” separately. In step 3, the common procedure
“StringMatchingAlgorithm” is implemented by our improved
single string matching algorithm. In step 4, the boundary
condition should be considered. The last m-1 characters are
sent from processor PEi to the next processor PEi+1, and PEi+1
receives the m-1 characters from processor PEi . After this
phase, each processor checks whether a match occurs just on
the boundary or not.

IV. COMPLEXITY ANALYSIS

A. The Time Complexity of the Improved Single String
Matching Algorithm
Definition. A string u is periodical if it can be written in the
form kwv , where w is a proper suffix of v and 2k ≥ .
Equivalently, u is said to be period of v .
Theorem 4.1. If the pattern is non-period, the improved single
string matching algorithm performs at most 4n comparisons
when matching a pattern of length m against a text of n.
Proof. Richard Cole [14] proved that “If the Boyer-Moore
string matching algorithm determines its shifts using only the
good suffix shift rule, then it performs at most 4n comparisons
when matching a non-period pattern of length m against a text
of length n.” In his proof, he used the amortized analysis
method, and defined the potential function was “3⋅#positions
not yet shifted over + #unread text characters.” So we can
extend his proof to the case of using the “bad character” shift
rule when a mismatch occurs in the first comparison of this
attempt, because in this case, the pattern at least needs to shift
one position, so the potential is reduced by at least 3. So, Cole’s
proof is still hold in this case. □
Lemma 4.1. If the pattern is period and the pattern never
occurs in the text, the algorithm performs at most 4n
comparisons.
Proof. We use the same potential function as mentioned above.
Case 1: The mismatch occurs in the first |v| comparisons in one
attempt. In this case, the pattern will shift forward at least |u|-|w|,
so the potentials reduced by at least 3⋅(|u|-|w|)-|v|.
Case 2: The mismatch occurs after at least |v|+1 times of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3180

comparisons. In this case, the next attempt at most compares
|u|-(|v|-1) characters, and all those characters are yet not
covered. The next shift is at least |u|-|w|, so the amortized cost is
at most zero.
 Because the initial potential is 4n, so the lemma holds. □
Theorem 4.2. If the pattern is period, the improved single
string matching algorithm performs at most 4n comparisons
when matching a pattern of length m against a text of n.
Proof. We use the same potential function as mentioned above.
Case 1: There is no occurrence of the pattern in the text. From
lemma 4.1, it holds.
Case 2: A match occurs when all the comparisons are in the
characters which are not compared before. In the case the
“#unread text characters” is equal to the comparison cost, so the
amortized cost is below zero.
Case 3: A match occurs just after a match in the previous
attempt. In the case, because the position is recorded when a
match occurs, and in the next match, it only needs to check
those characters unread before. So the “#unread text
characters” is equal to the comparison cost in this match. The
amortized cost is below zero.
Case 4: A match occurs just after a mismatch. In this case, from
lemma 4.1, the number of previous comparisons is no more
than 4⋅k, where k denotes the number of characters ever read in
the text. When a match occurs, in the next attempt, there are
only two cases. The first case is another match occurs, the other
is a mismatch occurs. The first case returns to the case when a
match occurs. If the match continues occurring till the end of
text, the amortized cost is below zero. So, only the latter case is
concerned. If a mismatch occurs, the number of comparisons in
this attempt is less than |v|, and the shift is no less than |u|-|w|. So
the amortized cost is no more than zero in totals.
 Because the initial potential is 4n, so this theorem holds. □
Theorem 4.3. The worst case time complexity of the improved
single string matching algorithm is ()O n m+ .
Proof. Combined the theorem 4.1 and theorem 4.2, it is clear
that the improved algorithm performs at most 4n comparisons
no matter that the pattern is periodical or not. Considered the
length of the pattern is m, and the computation complexity of
the value of array “bmBc” and “bmGs” is ()O a and ()O m
separately, where a denotes the alphabet size. So the worst
case time complexity of the improved single string matching
algorithm is ()O n m+ . □

B. The Complexity of the Parallel Improved Single String
Matching Algorithm

The computation complexity of the procedure “BUILD”
is ()O m , because in this phase, the values of array “bmBc” and
“bmGs” are computed, m is the length of the pattern. In step 3,
the time complexity of our improved single string matching
algorithm is (/)O n p m+ , because the text of length n is
partitioned and then assigned to each processor before
processing by our assumptions in section III. So in each
processor, the length of the assigned text is /n p , and p is the

number of the processors. In step 4, at most 2 2m − characters
need to be checked further, so the complexity is ()O m in this
step. So the total time complexity of the algorithm
is (/)O n p m+ .

In step1, the pattern of length m needs to be broadcasted to
all of the processors, if the binomial tree-based communication
strategy is used, the communication complexity in this step
is (log)O m p . In step 4, the last 1m − characters in each
processor except the last one have to be sent to the next
processor, so the communication complexity in this step
is ()O m . So the total communication complexity of the
algorithm is (log)O m p m+ .

V. EXPERIMENTAL RESULTS

A. Experimental results of the Improved Single String
Matching Algorithm

We present the experimental results in Fig.3 which allow
comparing the running time of the following three single string
matching algorithms: Fast-Search, BMH and our improved
string matching algorithm. All those three algorithms have been
implemented in the C programming language. The computer is
with AMD Athlon processor of 1.67GHz and 256M memory.
The length of the text is fixed to 10,000,000 Bytes, and the
length of the pattern is fixed to 50 Bytes. The size of the
alphabet is 4, 8, 12, 16, and 26. The text and pattern are
randomly generated from the alphabet. The results show that
when the size of the alphabet is small, the performance of the
Fast-Search algorithm or our improved Fast-Search algorithm
is better than the BMH algorithm and our improved
Fast-Search algorithm is a little better than the Fast-Search
algorithm; when the size of the alphabet has increased to 26, the
performance of the Fast-Search algorithm and our improved
Fast-Search is similar and a little better than BMH algorithm.
Our improved Fast-Search algorithm performs fewer
comparisons than the other two algorithms in the worst case,
because it guarantees that the worst-case time complexity
is ()O n m+ , while the other two algorithms are both ()O n m×
in the worst case.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3181

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105

Ti
m

e
(m

ill
is

ec
on

d)

Size of Alphabet

Improved fast-search
 fast-search
 BMH

Fig. 3 The running times of single string matching algorithms

B. Experimental Results of the Paralleled Single String
Matching Algorithm

We evaluate the performance of our practical distributed
string matching algorithm architecture by paralleling our
improved Fast-Search algorithm in the proposed architecture.
The experimental results are shown in Table 1. The algorithm is
implemented in the C programming language with MPI. We
have run it in our own cluster. The computers with AMD
Athlon processor of 1.67GHz and 256M memory are connected
by a switch of 100Mbit/s. The operating system is “Microsoft
Windows 2000 professional”. The MPICH version is 1.2.5.
The length of the total text is 80 megabyte, and the length of the
pattern is 100 Bytes, and the size of the alphabet is fixed to 16.
In Table1, the first column is the number of the processors. The
second column is the computing time in milliseconds which is
the sum of the preprocessing time and the time running in
searching the pattern in the text. The third column is the
communication time in milliseconds between processors. The
total time in milliseconds in the fourth column is the sum value
of computing time and communication time. In the last column,
the ratio is defined as (() (/)) /(/)Comp Comm Serail SerailT T T p T p+ − ,

CompT denotes the computing time, CommT denotes the
communication time, p denotes the number of processors, and

SerialT denotes the computing time when 1p = . The ratio
reflects the gap between the realistic performance and the ideal
performance. The last column shows that our distributed string
matching algorithm architecture is really practical when
paralleling the string matching algorithm. The ratio is also a
measurement of the performance influenced by the
communication time between processors.

TABLE I
RUNNING TIMES IN DISTRIBUED MEMORY MACHINE

 Time
Proc

Computing
time

Communication
time

Total
time Ratio

1 192.15 0 192.15 0.000
2 94.76 3.63 98.39 0.024
3 64.09 6.66 70.75 0.105
4 46.64 6.21 52.85 0.100

VI. CONCLUSION
In this paper, we presented a practical distributed string

matching algorithm architecture which is suitable and efficient
in distributed memory computing environment. We also
presented an improved single string matching algorithm based
on the Fast-Search algorithm proposed by Cantone and Faro.
And then, we paralleled the improved algorithm in our
distributed architecture. This distributed architecture is also
suitable for paralleling the multipattern string matching
algorithms and approximate string matching algorithms.

REFERENCES
[1] Zheng Liu, Xin Chen, James Borneman and Tao Jiang, “A fast algorithm

for approximate string matching on gene sequences,” in Symposium. 16th
Annu. Combinatorial Pattern Matching, LNCS, Springer-Verlag, vol.
3537, pp. 79-90, June 2005.

[2] N. Tuck, T. Sherwood, B. Calder and G. Varghese, "Deterministic
memory-efficient string matching algorithms for intrusion detection," in
Proc. IEEE INFOCOM, vol. 4, pp. 2628-2639, March 2004.

[3] D. E. Knuth, J. H. Morris, and V. R. Pratt, “Fast pattern matching in
strings,” SIAM Journal on Computing, vol. 6, pp. 323-350, 1977.

[4] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,”
Communications of the ACM, vol. 20, pp. 762-772, 1977.

[5] R. N. Horspool, “Practical fast searching in strings,” Software - Practice
and Experience, vol. 10, pp. 501-506, 1980.

[6] D. M. Sunday, “A very fast substring search algorithm,” Communications
of the ACM, vol. 33, pp. 132-142 ,1990.

[7] D. Cantone and S. Faro, “Fast-Search: A new efficient variant of the
Boyer-Moore string matching algorithm,” in Proc. Second International
Workshop on Experimental and Efficient Algorithms, LNCS,
Springer-Verlag, Vol. 2647, pp. 47–58, May 2003.

[8] Z. Galil, “Optimal parallel algorithms for string matching,” in Proc. 16th
Annu. ACM symposium on Theory of computing, pp. 240-248, 1984.

[9] U. Vishkin, “Optimal parallel matching in strings,” Information and
control, vol. 67, pp. 91-113, 1985.

[10] Y. Takefuji, T. Tanaka, and K. C. Lee, “A parallel string search
algorithm”, IEEE Trans. Systems, Man and Cybernetics, vol. 22, pp.
332-336, March-April 1992.

[11] CHEN Guo-liang, LIN-Jie, and GU Nai-jie, “Design and analysis of
string matching algorithm on distributed memory machine,” Journal of
Software, vol. 11, pp. 771-778, 2000.

[12] C. Charras and T. Lecroq, “Exact string matching algorithms,”
Laboratoire d'Informatique de Rouen Université de Rouen. Available:
http://www-igm.univ-mlv.fr/~lecroq/string/

[13] Z. Galil, “On improving the worst case running time of the Boyer-Moore
string matching algorithm,” Communications of the ACM, vol. 22, pp.
505-508, 1979.

[14] R. Cole. “Tight bounds on the complexity of the Boyer-Moore string
matching algorithm,” SIAM Journal on Computing, vol. 23, pp.
1075–1091, 1994.

[15] GU Nai-jie, LI Wei and LIU Jing, “Fibonacci series-based multicast
algorithm,” Chinese Journal of Computers, vol. 25, pp. 365-372, 2002.

BI Kun was born in 1981. He is a Ph.D. student in the Department of Computer
Science and Technology, USTC. His research interests include parallel and
distributed computing.
GU Nai-jie was born in 1961. He is a Professor and Doctoral Advisor in the
Department of Computer Science and Technology, USTC. His research
interests include parallel computing architecture, interprocessor
communication, and high-performance computing
TU Kun was born in 1980. He is a Ph.D. student in the Department of
Computer Science and Technology, USTC. His research interests include
parallel and distributed computing.
LIU Xiao-hu was born in 1979. He is a Ph.D. student in the Department of
Computer Science and Technology, USTC. His research interests include
secure multicast and distributed computing.

