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Abstract—Rise/span ratio has been mentioned as one of the 

reasons which contribute to the lower buckling load as compared to 
the Classical theory buckling load but this ratio has not been quantified 
in the equation. The purpose of this study was to determine a more 
realistic buckling load by quantifying the effect of the rise/span ratio 
because experiments have shown that the Classical theory 
overestimates the load. The buckling load equation was derived based 
on the theorem of work done and strain energy. Thereafter, finite 
element modeling and simulation using ABAQUS was done to 
determine the variables that determine the constant in the derived 
equation.  The rise/span was found to be the determining factor of the 
constant in the buckling load equation. The derived buckling load 
correlates closely to the load obtained from experiments. 
 

Keywords—Buckling, Finite element, Rise/span ratio, Spherical 
cap 

 
I.INTRODUCTION 

HIN spherical shells are efficient and economical. The 
load-carrying capability of these structures is usually 
dominated by buckling thus the need to accurately predict 

the buckling load. Experimental studies have shown that the 
buckling load of shells is usually overestimated by the classical 
buckling theory [1]. Factors which contribute to this 
overestimation include: a) Geometric parameters b) material 
parameters c) boundary conditions d) pre-buckling 
deformations and e) geometric imperfections [2]. It is difficult 
to quantify the geometric imperfections because they are 
introduced during construction but the geometrical parameters 
can be quantified because they are decided upon before 
construction. One of the geometrical parameters is the rise/span 
(f/L) ratio. Little has been done to quantify the effect of f/L 
ratio to the buckling load because most researchers use the 
Classical theory as their base for determining the load, which is 
based on a complete spherical shell. However, most wide roof 
constructions are in the form of spherical cap which has a rise 
(f) and a span (L). According to classical buckling theory, the 
critical value of the membrane stress is as stated in [3]: 
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thus the buckling load is: 
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where; qcr is the critical buckling load in the form of radial 
pressure, σcr the critical buckling stress, R is the radius of 
curvature, t the thickness of the shell wall, E the Young’s 
modulus and ν the Poisson’s ratio of the material. 

Prevost et al [4], mentions that the buckling load can be 
expressed in the form: 

 

cr
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R

α
⎛ ⎞= ⎜ ⎟
⎝ ⎠

   (3) 

 
where, qcr is the critical buckling load, t it the thickness of the 
shell, R is its radius of curvature, E is the Modulus of elasticity 
of the material and C and α are constants which are to be 
determined. As mentioned in [5], α is given the value 2 but the 
equation for C is yet to be determined. Some researchers have 
assumed that the f/L ratio is taken into consideration when 
calculating the radius of curvature (R) but R can be constant 
and different buckling loads obtained with varying f/L ratio. In 
this study, the effect of geometrical imperfections is eliminated 
by using the post-buckling load so that the constant C remains 
to be a function of f/L ratio. The post-buckling load is observed 
from the ‘plateau’ on the load-deflection curves. The plateau is 
formed irrespective of the initial geometrical imperfection. 
Also the theorem of work done and the stain energy is used to 
determine the value of α. 
 
II.EMPIRICAL PREDICTIONS OF BUCKLING LOAD OF 

THIN SPHERICAL SHELLS 
 

When a concentrated load is applied at the apex of a 
spherical cap, the shell deforms in a shape as shown in Fig. 1. 
The magnitude of r as compared to R is usually very small 
making α to be also very small.  
 
From Fig. 1: 
 

sinr R Rα α= ≈     (4) 
 
The depth of buckling: 
 

( ) 22 1 cos sin
2ow R R αα= − =    (5) 
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Since α is very small, it may be assumed that: 
 

2
0w Rα≈       (6) 

 

 
  

Fig. 1 Inversion of spherical shell by a concentrated force 
 

The work done is given by the product of the concentrated 
force (q) and the volume of the inversed region: 
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Substituting (4) and (6) into (7): 
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3
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The strain energy is concentrated along the boundary layer of 
the inversed region as shown in Fig. 2. The total strain energy 
as given by [6] is: 
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    (9) 

 
The work done for the inversion of the shell is the same as the 
strain energy according to work-energy method [7]. This 
implies that  (8) and  (9) should be equal. Equating the two 
equations: 
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 Solving for q: 
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Since the value of α in Fig. 1 is not known, we introduce a 

constant C so as to express it in relation to f/L ratio because it is 
this ratio that determines the value of α. Therefore, it can be 
finalized that: 
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where, C is a constant. 
 
III.FINITE ELEMENT MODELING TO DETERMINE THE 

VALUE OF C 
 
3.1 Post-Buckling Load 
Using Finite Element (FE) analysis produces the optimum 
product; a product that is the least costly to produce, performs 
as intended and meets all of the specified requirements [8]. 
Also, the structural behavior of shell structures during the 
whole loading process can be revealed by the load-deflection 
curves and the buckling load can be predicted with sufficient 
accuracy [9]. 
 

 
Fig. 2 Concentration of strain energy 

 
Maximum load that a structure can safely carry can be 

calculated by performing an incremental analysis using the 
non-linear formulation. Therefore FE modeling was done on 
several shells to find out the effect of f/L ratio on the buckling 
load. Steel being a very good material for construction of 
shells, a mild steel spherical cap shell of E = 200 x 109 N/m2 
and Poisson Ratio (ν) = 0.3, L= 20m and t=0.02m was initially 
used for the modeling. The initial geometry of the spherical cap 
shell is shown in Fig. 3. Initial geometrical imperfection was 
introduced by a dimple as shown in Fig. 4. During construction, 
initial geometrical imperfections may be introduced due to 
imperfect spherical shape resulting in uneven curvature. Using 
ABAQUS, the shell was meshed with triangular shell 
elements-S3R [10] with a typical side length of 500mm. Riks 
method [11] was used to trace the load-deflection curves which 
are shown in Fig. 5.  
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Fig. 3 Geometry of the spherical cap shell 
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Fig. 5 Load-deflection curves of different magnitudes of initial 

geometrical imperfections for f/L = 1/8. 
 

We observed from Fig. 5 that the initial buckling of the shell 
is sensitive to the initial geometrical imperfection as also 
observed by [12] while the post-buckling load is little 
influenced because irrespective of the magnitude of the 
imperfection, the curves tend to meet at the ‘plateau’. Therefore 
using the post-buckling load eliminates the effect of 
geometrical imperfections. 
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Fig. 6 Load-deflection curves of different magnitudes of initial 
geometrical imperfections for f/L = 1/4. 

       
Fig. 4 Initial geometrical imperfection of the cap shell 

 
3.2 Test for the Effect of f/L Ratio 

While keeping L, t and other factors constant, different f/L 
ratios were modeled and simulated. We observed that the 
load-deflection curves in every ratio formed a ‘plateau’ at the 
post buckling load. The load-deflection curves are shown in 
figures 6 - 8. 
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Fig. 7 Load-deflection curves of different magnitudes of initial 

geometrical imperfections for f/L = 1/6 
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Fig. 8 Load-deflection curves of different magnitudes of initial 

geometrical imperfections for f/L = 1/10 
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The load-deflection curve from each ratio which had an 
average value of the post-buckling load was used to draw the 
curves in Fig. 9. 
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Fig. 9 Load-deflection curves for varying f/L and with other factors 
remaining constant 

 
From the load-deflection curves shown in Fig. 9, the values of 
C based on (12) are calculated and shown in table 1. 
 

TABLE I 
VALUES OF C WITH DIFFERENT F/L RATIOS 

f/L L (m) t (m) Post-buckling 
load (kN/m2) 

Value of 
C 

1/4 20 0.02 77.00 3.76 
1/6 20 0.02 45.97 4.61 
1/8 20 0.02 28.91 5.32 

1/10 20 0.02 19.53 5.95 
1/10 30 0.02 12.29 10.32 

 
We observed as seen in table 1 that the constant C is inversely 
proportional to f/L ratio. However, the relationship is not linear 
making it necessary to determine the indices of the geometrical 
parameters. Two unknowns (x and y) are introduced as indices 
as to represent the relationship as: 
 

1 x

y

f
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∝      (13) 

 
Introducing the constant of proportionality: 
 

y

x

LC k
f

=      (14) 

 
Rearranging: 
 

x yCf kL=  
 

Introducing logs on both sides: 
 

log log log logC x f k y L+ = +     (15) 
 

Substituting in (15) the values for f/L = 1/4 in table 1: 
 

log 3.76 log 5 log log 20x k y+ = +  
 

 Rearranging: 
 

log 1.301 0.699 0.575k y x+ − =      (16) 
 

Substituting in (15) the values for f/L =1/10 for L = 20m in 
table 1: 
 

log 5.95 log 2 log log 20x k y+ = +  
 

 Rearranging: 
 

log 1.301 0.301 0.7745k y x+ − =     (17) 
 

Subtracting (16) from (17): 
 

0.398 0.1995x =  
 

Solving for x: 
0.5x =  

 
Substituting the value of x in (16) and solving: 
 

log 1.301 0.9245k y+ =     (18) 
 

Substituting in (15) the values for f/L = 1/10 for L = 30m in 
table 1: 
 

log10.32 log3 log log30x k y+ = +  
 

 Substituting for x and rearranging: 
 

log 1.477 1.2526k y+ =   (19) 
 

Subtracting (18) from (19): 
 

0.176 0.3281y =  
 

Solving for y: 
1.86y =  

 
Substituting the value of y in (19) and solving for k: 
 

0.032k =  
Therefore: 

1.86

0.50.032 LC
f

=      (20) 

 
Equation (18) is valid for all f/L as seen in table I. 
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3.3 Effect of the f/L Ratio on the Buckling Load 
It is clearly shown that the initial buckling of the shell is 

sensitive to the initial geometrical imperfection while the 
post-buckling behavior is little influenced because the curves 
tend to meet at the post-buckling load. Therefore using the 
post-buckling load eliminates the effect of all types of 
imperfections. Boundary conditions have little influence on 
buckling [13] and the effect of pre-buckling deformations is 
very small if any according to [14]. Therefore C can be 
assumed to be mainly a function of the f/L ratio. The study 
shows that the effect of f/L which is inversely proportional to 
the Constant C. It can therefore be concluded that the critical 
buckling load of a spherical cap shell is given by: 

 
2.5

cr
tq CE
R

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 
Substituting for C: 

2.51.86

0.5

0.032
cr

EL tq
f R

⎛ ⎞= ⎜ ⎟
⎝ ⎠

     (21) 

 
where, qcr is the critical buckling load, t it the thickness of the 
shell, R is its radius of curvature, f is the rise of the spherical 
cap shell, L is the span of the shell and E is the Modulus of 
elasticity of the material.  
 
IV.VALIDATION OF THE DERIVED BUCKLING LOAD 

 
To validate the derived equation, shells with different 

geometrical parameters were modeled and simulated. Various 
spans, rises and thicknesses were used to test whether the 
derived formula was valid for different geometrical parameters. 
The load-deflection curves are shown in figures 10 – 14.  
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Fig. 10 Load-deflection curves, L = 30m, f = 3m and t = 0.04m 

 
 Other factors were kept constant as in section 3.1. The 
load-deflection curves from different shells, which had values 
equal to the average of the post-buckling load at the ‘plateau’, 
are shown on the same axes in Fig. 15. The values from the 
derived formula are compared with results from FE modeling 
based on the post-buckling load. Also the values are compared 

to the Classical buckling theory load in terms of percentages as 
shown in table II. 

The values for the critical buckling load from the derived 
formula and from FE modeling are almost the same showing 
that the formula is valid. Theoretical results by many 
researchers range approximately from 7 to 67% of the classical 
buckling load [15]. The derived formula gives a buckling load 
whose percentage (as compared to that of the Classical 
buckling theory) is within the range. This also confirms that the 
formula is valid as compared to what other researchers have 
done. 
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Fig. 11 Load-deflection curves, L = 20m, f = 2.5m and t = 
0.02m. 
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Fig. 12 Load-deflection curves, L = 20m, f = 2.5m and t = 

0.02m. 
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Fig. 13 Load-deflection curves, L = 20m, f = 1m and t = 
0.02m. 
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Fig. 14 Load-deflection curves, L = 20m, f = 0.5m and t = 
0.02m. 

 
 

 
TABLE II 

VALIDATION OF DERIVED FORMULA 

0.00 0.05 0.10 0.15 0.20
0

50

100

150

200

250

LO
A

D
 (k

N
/m

2 )

DEFLECTION (m)

 L=20m, f=2.5m and t=0.03m
 L=30m, f=3.0m and t=0.04m
 L=20m, f=2.5m and t=0.02m
 L=20m, f=1.0m and t=0.02m
 L=20m, f=0.5m and t=0.02m

 
 

Fig. 15 Load-deflection curves for different shells 
 

V.CONCLUSIONS 
The Classical buckling theory does not consider the f/L ratio 

of the shell because a complete spherical shell was used to 
determine the membrane stresses. Researchers have used this 
theory to predict the buckling load of spherical shells due to 
fact that the stresses are the same as those of the complete shell 
but they just mention f/L ratio as a contributing factor to the 
lower buckling load. In this study, f/L ratio has been quantified 
so as to give a more realistic critical buckling load. The 
constant C has been determined mathematically with the help 
of FE modeling. The empirical prediction of the buckling load 
has also shown that the buckling load is proportional to t2.5, 
which gives the value of α as 2.5. This proportionality was also 
observed by [16] for cylindrical shells. We observed that the 
rise/span ratio has an effect of lowering the buckling load as 
compared the prediction of the Classical theory because 
increasing L also affects R. Further work can be done to use the 
derived formula to predict the buckling load of single-layer 
reticulated shells using the continuum analogy method because 
according to [17], it is possible to find a statically equivalent 
continuum and reduce the overall stability analysis of a grid 
structure to that of a continuous shell. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

 

Shell Geometrical parameters in metres 
 
 
 

Buckling 
load by the 

derived 
formula 
(kN/m2) 

Buckling 
load from 

the FE 
modeling 
(kN/m2) 

Classical 
buckling 

theory load 
(kN/m2) 

Derived 
formula value 

Percentage 
(%) of 

Classical load L f t 
1 20 2.5 0.03 79.71 79.65 482.51 17 
2 30 3.0 0.04 69.59 69.62 254.67 27 
3 20 2.5 0.02 28.93 29.45 214.45 14 
4 20 1.0 0.02 5.25 5.26 37.97 14 
5 20 0.5 0.02 1.34 1.34 9.64 14 
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