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Abstract—Since supply chains highly impact the financial 

performance of companies, it is important to optimize and analyze 
their Key Performance Indicators (KPI). The synergistic combination 
of Particle Swarm Optimization (PSO) and Monte Carlo simulation is 
applied to determine the optimal reorder point of warehouses in 
supply chains. The goal of the optimization is the minimization of the 
objective function calculated as the linear combination of holding and 
order costs. The required values of service levels of the warehouses 
represent non-linear constraints in the PSO. The results illustrate that 
the developed stochastic simulator and optimization tool is flexible 
enough to handle complex situations. 
 

Keywords—stochastic processes, empirical distributions, Monte 
Carlo simulation, PSO, supply chain management 

I. INTRODUCTION 

HE determination of safety stock in an inventory model is 
one of the key tasks of supply chain management. 

Miranda and Garrido include safety stock in the inventory 
model in [12]. Authors in [4] give a model for positioning 
safety stock in a supply chain subject to non-stationary 
demand and show how to extend their former model to find 
the optimal placement safety stocks under constant service 
time (CST) policy. Prékopa in [16] gives an improved model 
for the so called Hungarian inventory control model to find the 
minimal safety stock level that ensures the continuous 
production, without disruption. 

The bullwhip effect is an important phenomenon in supply 
chains. Authors in [10] show how a supply chain can be 
modeled and analyzed by colored petri nets (CPN) and CPN 
tools and they evaluate the bullwhip effect, the surplus of 
inventory goods, etc. using the beer game as demonstration. 
More recent research can be found in [1], which shows that an 
order policy applied to a serial single-product supply chain 
with four echelons can reduce or amplify the bullwhip effect 
and inventory oscillation. Miranda et al. investigate the 
modeling of a two echelon supply chain system and 
optimization in two steps [15], while a massive multi-echelon 
inventory model is presented by Seo [19], where an order risk 
policy for general multi-echelon system is given, which 
minimizes the system operation cost. A really complex system 
is examined in [20], where it is necessary to apply some 
clustering for similar items, because detailed analysis could 
become impossible considering each item individually. The 
stability of the supply chain is also an intensively studied area.  
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[14] shows that a linear supply chain can be stabilized by 

the anticipation of the own future inventory and by taking into 
account the inventories of other suppliers, and Vaughan in 
[21] presents a linear order point/lot size model that with its 
robustness can contribute to business process modeling. 

Based on the previous review it is clear that most of the 
multi-echelon supply chain optimization and analysis are 
mainly based on analytical approach. Simulation however 
provides a very good alternative, because it can model real life 
situations with accuracy, more flexible in terms of input 
parameters and therefore it is more easy to use in decision 
support. The simulation results can be analyzed with various 
statistical methods and numerical optimization algorithms. To 
analyze complex, especially multi-echelon systems, multi-
level simulation models can be used, where the results of 
optimized high level model feeds into the lower level more 
detailed models.  

The simulation-based approach was published only in the 
last decade. Jung et al. [7] make a Monte Carlo based 
sampling from real data, and apply a simulation–optimization 
framework while looking for managing uncertainty. They use 
a gradient-based search algorithm, while authors in [8] discuss 
how to use simulation to describe a five-level inventory 
system, and optimize this model by genetic algorithm. 
Schwartz et al. [18] demonstrate the internal model control 
(IMC) and model predictive control (MPC) algorithms to 
manage inventory in uncertain production inventory and 
multi-echelon supply/demand networks. A complex instance 
of inventory model can be found in [5], where orders cross in 
time considering various distributions for the lead time. 
Sakaguchi in [17] investigates the dynamic inventory model in 
which demands are discrete and varying period by period 

The aim of our research is to create a Monte-Carlo 
simulator which uses probability distributions based on 
material usage data posted in the logistic module of an 
enterprise resource planning (ERP) system.  The main 
objective of this development was to build a simulator that can 
use simple building blocks to construct models of complex 
supply chain networks. Supply chains processes can be 
simulated using these modular models, where parameters of 
Key Performance Indicators are analyzed by sensitivity 
analysis. The developed SIMWARE simulator can be used as 
a verification tool to analyze and evaluate inventory control 
strategies. The simulation of “actual” inventory controlling 
strategies provides the most important key performance 
indicators KPI-s of these strategies. On the other hand this 
simulator can be used for optimization to determine the 
optimal values of the key inventory control parameters. 

The proposed SIMWARE software provides a framework 
to analyze the cost structure and optimize inventory control 
parameters based on cost objectives.  
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With this tool we have minimized the inventory holding 
cost by changing the parameters of the reordering strategy 
while keeping the service level at the required value.  The 
simulation of “actual” inventory controlling strategies 
provides the most important KPI-s of these strategies. On the 
other hand we can use the simulator as part of optimization 
and determine the optimal values of the key inventory control 
parameters. We are in the process to finalize the costing model 
therefore we used a simple cost function at this point. We have 
minimized the inventory holding cost by changing the 
parameters of our operational space while keeping the service 
level at the required value. 

In the last decades, optimization was featured in almost all 
aspects of human civilization, thus it has truly become an 
indispensable method. In some aspects, even a local optima 
can highly improve the efficiency or reduce the expenses, 
however, most companies want to keep their operational costs 
as low as possible, i.e. on global minimum. Problems where 
solutions must satisfy a set of constraints are known as 
constrained optimization problems. In inventory control 
theory, one of the most important and most strict constraints is 
the service level, i.e. the portion of satisfied demands from all 
customer needs. The particle swarm optimization algorithm 
has been successfully applied to a wide set of complex 
problems, like data mining [29], software testing [30], 
nonlinear mapping [31], function minimization [32] or neural 
network training [33] and in the last decade, constrained 
optimization using PSO got a bigger attention [34,35,36]. 

There exist some well-known conditions under which the 
basic PSO algorithm exhibits poor convergence characteristics 
[28]. However, only a few studies have considered the 
hybridization of PSO, especially making use of gradient 
information directly within PSO. Notable ones are HGPSO 
[25] and GTPSO [26], which use the gradient descent 
algorithm, and FR-PSO [27], which applies the Flecher-
Reeves method. As it will be demonstrated in the following 
sections, combining these two methods appropriately, the 
efficiency of the optimization using PSO can be considerably 
improved. 

The structure of the paper is the following: Section II is a 
general introduction to the problem describing the multi-
echelon supply chain and the relevant cost structure and the 
proposed flexible modeling tool to build complex multi-
echelon supply chain models using simple, easy to understand 
modules. Section III introduces the proposed optimization 
algorithm. Section IV represents the main results through a 
case study, while section V concludes our work.  
 

II.  STOCHASTIC MULTI-ECHELON SUPPLY CHAIN MODEL  

A. Inventory model of a single warehouse 

The modular model of the supply chain is based on the 
following classic model of inventory control. This session 
gives a summary of the most important parameters of this 
model. In Figure 1, Q is the theoretical demand over cycle 
time T and this is the Order Quantity; R is the Reorder point, 
which is the maximum demand can be satisfied during the 
replenishment lead time (L). The Cycle time (T) is the time 
between two purchase orders.  

The Order Quantity is Q, where� � �� · �. This is the 
ordered quantity in a purchase order, and Q is equal to the 
Expected demand and the Maximum stock level. Maximum 
stock level is the stock level necessary to cover the Expected 
demand in period T; therefore it has to be the quantity we 
order. Lead time(L) is the time between the Purchase order and 
the goods receipt. ��� denotes the average demand during the 
replenishment lead time. ��� � �� · �, where �� is the daily 
average demand. Using the same logic, ��� is a special case; it 
yields consumption if the service level is 100%. We will use 
��� to denote the consumption during the paper.  Reorder point 
is the stock level when the next purchase order has to be 
issued. It is used for materials where the inventory control is 
based on actual stock levels. 

S is the Safety stock; this is needed if the demand is higher 
than the expected (line d). In an ideal case R equals to total of 
safety stock and average demand over lead time: 	 � ��� 
 �, 
where S is the Safety stock which is defined to cover the 
stochastic demand changes. For a given Service Level this is 
the maximum demand can be satisfied over the Lead time.  
 

 
Fig. 1 The classic model of inventory control 

 
Assuming constant demand pattern over the cycle time, 

Average Stock (K) can be calculated as a weighted average of 
stock levels over the cycle time: 

S
Q

K +=
2

 (1) 

Service Level (SL) is the ratio of the satisfied and the total 
demand (in general this is the mean of a probability 
distribution), or in other words it is the difference between the 
100% and the ration of unsatisfied demand: 

Q
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We assume that all demand is satisfied from stock until 
stock exists. When we reach stock level R the demand over the 
lead time (���) will be satisfied up to R.  Consequently if 
��� � 	, we are getting a stock out situation and there will be 
unsatisfied demand therefore the service level will be lower 
than 100%. ��� is not known and it is a random variable. The 
probability of a certain demand level is 
�����. Based on this, 
the service level is formed as shown in the next equation: 
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where ��� is continuous random variable, and 
maximum demand over Lead time. 
 

Based on our experience in analyzing actual supply chain 
systems we discovered that the probability functions of 
material flow and demand are different from the theoretical 
functions (see Figure 2 that shows the distribution function of 
an actual material consumption compared to 
distribution used in most of the analytical methodologies)
This difference makes difference between the theoretical 
(calculated) and the actual inventory movements, th
makes sense using a stochastic simulation 
“empirical” distribution functions.  

Inventory movements can be modeled much better using 
stochastic differential equations than modeling based on the 
theoretical assumption that movements are following normal 
distribution. We propose the following model:
 

),,(
1 uiLL tRxuWxx
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Where xi is stock level on the ith week,
process to represent consumption. This stochastic process is 
based on the empirical cumulative distribution function we 
described in the previous section.   u is the quantity of material 
received on week i, based on purchase orders. Purchase or
are calculated based on the actual inventory level (
replenishment lead-time (tu). 

 

(3) 

is continuous random variable, and ����� is the 

Based on our experience in analyzing actual supply chain 
systems we discovered that the probability functions of 

demand are different from the theoretical 
shows the distribution function of 

compared to the normal 
distribution used in most of the analytical methodologies). 

tween the theoretical 
(calculated) and the actual inventory movements, therefore it 
makes sense using a stochastic simulation approach based on 

Inventory movements can be modeled much better using 
al equations than modeling based on the 

theoretical assumption that movements are following normal 
We propose the following model: 

(4) 

week, Wi is a stochastic 
process to represent consumption. This stochastic process is 
based on the empirical cumulative distribution function we 

is the quantity of material 
, based on purchase orders. Purchase orders 

on the actual inventory level (x), and the 

 

 

Fig. 2 The theoretical cumulative distribution function 
actual cumulative distribution function for a raw material based on 

its consumption data (

B. Multi-echelon warehouse model

The main objective of the presented
a simulator that can utilize the previously 
blocks to construct models of complex 
chain networks. In the following 
simulator to analyze a system with two connected warehouses
is presented. The following diagram shows the supply chain, 
i.e. the structure of the analyzed 2
 

Fig. 3 The analyzed 2
 
Where the objective function is:
 

 1)()( 1hmeanzf +=
 
i.e. the holding cost in the second Warehouse is 30 percent 
higher than in the first Warehouse.

Fig. 4 The values of the objective function for the 
 
In Figure 4, the values of the objective function (i.e. cost) is 
presented as a function of the reorder point of the two 
Warehouses. Figure 5 shows the service level of Warehouse 1 
in the 2-level system. The constraint for the service levels is 
95% in this case. 
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The theoretical cumulative distribution function (top) and the 
actual cumulative distribution function for a raw material based on 

consumption data (bottom) 

echelon warehouse model 

e presented development is to build 
utilize the previously proposed building 

blocks to construct models of complex multi-echelon supply 
the following demonstrated example a 

to analyze a system with two connected warehouses 
. The following diagram shows the supply chain, 

i.e. the structure of the analyzed 2-level system. 

 
The analyzed 2-level system 

Where the objective function is: 

)(3.1 2hmean∗ ,       (5) 

i.e. the holding cost in the second Warehouse is 30 percent 
higher than in the first Warehouse. 

 
the objective function for the 2-level system 

values of the objective function (i.e. cost) is 
presented as a function of the reorder point of the two 

shows the service level of Warehouse 1 
level system. The constraint for the service levels is 

 

Cost 

Reorder point – Storage 1  Reorder point – Warehouse 1 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:6, No:7, 2012

1275

 

 

 
Fig. 5 The values of service level for Warehouse 1 

 
The simulator is capable to optimize the two warehouses in 

the same time and calculate the optimum for the supply chain 
as a whole. The required values of service levels of the 
warehouses represent non-linear constraints, hence a nonlinear 
optimization algorithm developed to solve this complex 
optimization problem.  
 

III.  THE IMPROVED PSO ALGORITHM 

There are two popular swarm inspired methods in 
computational intelligence areas: Ant colony optimization 
(ACO) and PSO. ACO was inspired by the behaviors of ants 
and has many successful applications in discrete optimization 
problems. The particle swarm concept originated as a 
simulation of simplified social system. The original intent was 
to graphically simulate the choreography of bird of a bird 
block or fish school. However, it was found that particle 
swarm model can be used as an optimizer. Suppose the 
following scenario: a group of birds are randomly searching 
food in an area. There is only one piece of food in the area 
being searched. All the birds do not know where the food is. 
But they know how far the food is in each iteration. So what's 
the best strategy to find the food? The effective one is to 
follow the bird which is nearest to the food. 

PSO is based on this scheme. This stochastic optimization 
technique has been developed by Eberhart and Kennedy in 
1995 [22]. In PSO, the potential solutions, called particles, fly 
through the problem space by following the current optimum 
particles.  All of particles have fitness values which are 
evaluated by the fitness function to be optimized, and have 
velocities which direct to the flying of the particles.  

PSO is initialized with a group of random particles 
(solutions) and then searches for optima by updating 
generations. In every iteration, each particle is updated by 
following two "best" values. The first one is the best solution 
(fitness) it has achieved so far. (The fitness value is also 
stored.) This value is called pbest. Another "best" value that is 
tracked by the particle swarm optimizer is the best value, 
obtained so far by any particle in the population. This best 
value is a global best and called gbest. When a particle takes 
part of the population as its topological neighbors, the best 
value is a local best and is called lbest. 

( )
( ))(()
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dtkvkxkx jjj ⋅++=+ )1()()1(  (7) 

Where v is the particle velocity, pbest and gbest are defined as 
stated before, rand()is a random number between [0,1], c1, c2 
are learning factors usually c1=c2=2. Code 1.  shows the 
pseudo code of the PSO algorithm. 
 
Code 1 The pseudo code of the PSO algorithm 

procedure PSO; { 
  Initialize particles; 
  while (not terminate) do { 
   for each particle { 
    Calculate fitness value; 
    if fitness <pBest than  pBest = fitness; 
   } 
   Choose the best particle as the gBest; 
   for each particle { 
    Calculate particle velocity; 
    Update particle position;  
   } 
   }  
 }  

 
The role of the, w, inertia weight in Eq. (6), is considered 

critical for the convergence behavior of PSO. The inertia 
weight is employed to control the impact of the previous 
history of velocities on the current one. Accordingly, the 
parameter regulates the trade–off between the global and local 
exploration abilities of the swarm. A large inertia weight 
facilitates global exploration (searching new areas) while a 
small one tends to facilitate local exploration, i.e. fine–tuning 
the current search area.  

PSO shares many similarities with evolutionary 
computation techniques, e.g. with evolutionary algorithms 
(EAs). Both algorithms start with a group of a randomly 
generated population, both have fitness values to evaluate the 
population. Both update the population and search for the 
optimum with random techniques. Both systems do not 
guarantee success. The main difference between these 
algorithms is that PSO does not have genetic operators like 
crossover and mutation. Particles update themselves with the 
internal velocity. They also have memory, which is important 
to the algorithm. 

Compared with evolutionary algorithms, the information 
sharing mechanism in PSO is significantly different. In EAs, 
chromosomes share information with each other. So the whole 
population moves like a one group towards an optimal area. In 
PSO, only gBest (or lBest) gives out the information to others. 
It is a one-way information sharing mechanism, the evolution 
only looks for the best solution. Compared with EAs, all the 
particles tend to converge to the best solution quickly even in 
the local version in most cases. Compared to EA, the 
advantages of PSO are that PSO is easy to implement and 
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there are few parameters to adjust. Hence, PSO has been 
successfully applied in many areas: function optimization, 
artificial neural network training, fuzzy system control, and 
other areas where GA can be applied.  

A. The proposed algorithm 

As we saw in section I., the basic PSO algorithm exhibits 
poor convergence characteristics under some specific 
conditions. We gave a small overview also about the previous 
gradient based methods, and in this section we will 
demonstrate a novel way, how the particle swarm optimization 
(PSO) technique can be improved with the calculation of the 
gradient of the applied objective function. There are some well 
documented algorithms in the literature to boost the 
convergence of the basic PSO algorithm. Victoire et al. 
developed a hybrid PSO to solve the economic dispatch 
program. They combined PSO with Sequential Quadratic 
Programming to search for the gradient of the objective 
function. A very similar algorithm is introduced by Noel, in 
which quasi Newton-Raphson (QNR) algorithm is applied to 
calculate the gradient [23]. The QNR algorithm optimizes by 
locally fitting a quadratic surface and finding the minimum of 
that quadratic surface.  

Our aim is to develop a novel PSO algorithm which is able 
to consider linear and non-linear constraints and it calculates 
the gradient of the objective function to improve the 
affectivity.  

PSO is initialized with a group of random particles 
(solutions) and then searches for optima by updating 
generations. In every generation, each particle is updated by 
following two "best" values. The first one is the best solution 
(fitness) it has achieved so far. This value is called pbest. 
Another "best" value that is tracked by the particle swarm 
optimizer is the best value, obtained so far by any particle in 
the population. This best value is a global best and called 
gbest. When a particle takes part of the population as its 
topological neighbors, the best value is a local best and is 
called lbest. Our vision is to apply the gradient of the objective 
function in every generation to control the movements of the 
particles. Therefore, the equation which is applied to calculate 
the velocity of the particles is modified:  
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dtkvkxkx jjj ⋅++=+ )1()()1(  (9) 

 
Where ���������� represents the partial derivatives of the 
objective function, and �� is the weight for the gradient term. 
In Noel’s work a uniformly distributed random value is 
applied as �� from the interval of �0,0.5!2. Since the negative 
gradient always points in the direction of steepest decrease in 
the function, the nearest local minimum will be reached 
eventually. Since the gradient is zero at a local minimum, 

smaller steps will automatically be taken when a minimum is 
approached. Also, movement in a direction other than the 
direction defined by the negative gradient will result in a 
smaller decrease in the value of the cost function. 

B. Illustrative example 

In the following a simple illustrative example is presented 
to demonstrate the efficiency of the proposed algorithm.   
 
The aim of the optimization is to minimize two objective 
functions with two variables: 

5),( 22 +++= xyyxyxf  (10) 

)/60cos()/120sin(),( yxyxf +=  (11) 

The gradients of these functions can be analytically calculated: 

yx
x

yxf +=
∂

∂
2

),(
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∂
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),(
 (13) 

and 

2

)/120cos(120),(
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x

yxf ⋅−=
∂

∂
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2

)/60sin(60),(

y

y

y

yxf ⋅=
∂

∂
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The determined gradients are applied to increase the 
convergence of the search. The shape of the two analyzed 
functions can be seen in Figure 5. Both of the functions have a 
global minimum (at 5 and -2).  

In Table I, the analysis of �� is summarized in these two 
cases. As can be seen in both cases the necessary number of 
generations is lower if the gradient is applied to control the 
movement of particles than in case the value of �� is 0. It 
means that the application of gradient can increase the 
convergence of PSO algorithm.The proper value of �� is close 
in these two investigations. However, to determine a 
universally applicable value more objective functions must be 
analyzed and many evaluations must be performed. In that 
case we have a proper value for �� the PSO algorithm can be 
further improved with the integration of Monte Carlo 
simulation to numerically determine the gradient. 
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Fig. 6 Shape of the analyzed objective functions 

 
IV.  RESULTS 

The developed simulator and optimization algorithm can be 
used to optimize the two warehouses in the same time and 
calculate the optimum for the supply chain as a whole. 
Authors developed a new component-based MATLAB 
simulator, as well as a novel PSO algorithm. The algorithm is 
based on an existing implementation form MATLAB Central 
[37]. The reason we choose this Toolbox is that it can handle 
linear and Non-linear constraints also. It handles nonlinear 
inequality constraints in the form c(x)  <= 0 using 'soft' or 
'penalize' boundaries. The penalization is like "soft" 
boundaries, except that some kind of penalty value must be 
calculated from the degree of each constraint violation. 

MC simulation is applied to describe the stochastic behavior 
of the process. The investigated period is 28 weeks. The 
service levels of both of the warehouses are determined. Ten 
MC simulations are evaluated to simulate different situations 
and the average of the simulated results is used to calculate the 
value of the applied objective function at given reorder point. 
PSO is applied to modify the reorder point due to the value of 
the objective function and finally to find the global optima.  

Before the optimization the reorder points of the two 
warehouses are 160 and 60 units.  

At the initial reorder points the actual service levels are 
below the desired values (0.95 and 0.90) in both of the 
warehouses (0.76 and 0.63). After the optimization process the 
reorder points is changed to 200 and 71.708. Due to this 
modification the service levels are much better than at the 
initial state (0.97 and 0.89).  

The average inventory levels before and after optimization 
can be seen in Figure 7. It can be seen that before optimization 
the inventory of the Warehouse 02 is depleted between the 9th 
and 17th weeks and after 25th weeks. Due to the optimization 
the inventory in the second warehouse is not empty in these 
crucial periods.  

Figure 8 shows only the service level for the first 
warehouse, but in the optimization problem both service levels 
were taken into consideration. The optimal solution is 
highlighted with the green square. It satisfies the 95% 
constraints and ensures the minimal holding cost in the 
warehouses.  
 

TABLE I 
THE AFFECT OF C3 ON THE CONVERGENCE OF PSO 

�3 0 0.01 0.02 0.05 0.06 0.07 0.08 0.09 0.1 

Gener
ations 
(case 
eq. 3) 

127 134 122 136 116 125 138 135 142 

Gener
ations 
(case 
eq. 4) 

114 93 99 86 90 68 103 110 97 
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Fig. 7 The inventory levels in the two-level system before 

optimization (a: left hand side) and after optimization (b: right hand 
side) 

 

 
Fig. 8 Illustrative representation of the cost function and the 

constraint of the service level 

V. CONCLUSION 

Since supply chain performance impacts the financial 
performance companies, it is important to optimize and 
analyze their performances.  For this purpose an interactive 
simulator, SIMWARE, capable to simulate complex multi-
echelon supply chains based on simple configurable 
connection of building blocks has been developed. To support 
the optimization of supply chains as complex systems a 
Particle Swarm Optimization algorithm that utilizes gradients 
(sensitivities) was developed. The proposed method is applied 
in case of multi-echelon system built from two warehouses. 
We validated our solution by simulating four stochastic input 
variables. The results illustrate that the developed tool is 
flexible enough to handle complex situations and 
straightforward and simple enough to be used for decision 
support.. 
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