
International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:1, No:2, 2007

100

 

 

  
Abstract— Functional imaging procedures for the non-invasive 

assessment of tissue microcirculation are highly requested, but 
require a mathematical approach describing the trans- and inter-
capillary passage of tracer particles. Up to now, two theoretical,      
for the moment different concepts have been established for        
tracer kinetic modeling of contrast agent transport in tissues: 
pharmacokinetic compartment models, which are usually written as 
coupled differential equations, and the indicator dilution theory, 
which can be generalized in accordance with the theory of linear-
time-invariant (LTI) systems by using a convolution approach. Based 
on mathematical considerations, it can be shown that also in the case 
of an open two-compartment model well-known from functional 
imaging, the concentration-time course in tissue is given by a con-
volution, which allows a separation of the arterial input function from 
a system function being the impulse response function, summarizing 
the available information on tissue microcirculation. Due to this 
reason, it is possible to integrate the open two-compartment model 
into the system-theoretic concept of indicator dilution theory (IDT) 
and thus results known from IDT remain valid for the compartment 
approach. According to the long number of applications of 
compartmental analysis, even for a more general context similar 
solutions of the so-called forward problem can already be found in 
the extensively available appropriate literature of the seventies and 
early eighties. Nevertheless, to this day, within the field of 
biomedical imaging – not from the mathematical point of view – 
there seems to be a trench between both approaches, which the author 
would like to get over by exemplary analysis of the well-known 
model.  
 

Keywords— Functional imaging, Tracer kinetic modeling, LTI 
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I. INTRODUCTION 

OR a long time, physiological tissue parameters could be 
obtained only with nuclear medicine imaging techniques. 

Recent advances in computed tomography (CT) and magnetic 
resonance (MR) imaging technology, however, have helped to 
reduce scanning times and image repetition rates. Owing to 
this development, dynamic imaging with high temporal 
resolution has become possible by CT and MR techniques as 
well. Functional imaging procedures as non-invasive methods 
for the assessment of tissue microcirculation are highly 
requested, but require a mathematical approach describing the 
trans- and intercapillary passage of tracer particles. In this 
context, mainly diffusible extracellular contrast agents 
(contrast media, CM) are considered, nevertheless intra-
vascular contrast agents may be taken into account as a 
borderline case of the methods presented in this paper. 

The intravenous injection of a diffusible extracellular MR or 
CT contrast agent is followed by a distribution of the tracer 
particles in the intravascular (strictly speaking: plasma) 
volume and, owing to the bidirectional permeability of 
capillary walls, a reversible diffusion between intravasal 
(plasma) and interstitial (extracellular, extravasal) space then 
occurs. The kinetics of these processes, often abbreviated as 
“wash-in – wash-out”, specially depends on physiological 
tissue parameters such as capillary permeability and surface 
area, plasma flow, extent of distribution volume in plasma and 
interstitial space (referring to the whole tissue volume in the 
region considered). That’s why also the concentration-time 
courses in tissue revealing the differences in the underlying 
physiologies are considerably shaped by these factors. Certain 
types of disease are accompanied with significant changes in 
one or more of the above-mentioned (or further) micro-
circulation parameters. State of the art and future trends 
concerning functional imaging with MR or CT technology are 
summarized, for instance, in Padhani [1] and Lee [2]; 
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furthermore, both papers emphasize the increasingly important 
role of microcirculation parameters for diagnosis, patient 
prognosis, and follow-up. Therefore, to gain an insight into 
various physiological aspects, it is highly desirable to 
determine as many as possible of these functional parameters 
from one and the same dynamic image data set. 

In this context, two theoretical concepts have been 
established for tracer kinetic modeling of contrast agent 
transport in tissues until now: pharmacokinetic compartment 
models, which are usually written as coupled differential equa-
tions, and the indicator dilution theory (IDT), which can be 
generalized in accordance with the theory of linear-time-
invariant (LTI) systems by using a convolution approach. 
Consequently, theoretical approaches in differential as well as 
in integral form are available. 

It is the primary goal of this paper to mathematically 
analyze the for the moment conceptionally different 
approaches of IDT and compartmental modeling and, in 
particular, to integrate the open two-compartment model, 
illustrated in Fig. 1 and well-known from functional imaging 
with MR or CT technology, into the systems theory approach 
of IDT. 

Using the theory of causal LTI systems as a starting point – 
independently of IDT or compartment approach –, all models 
with the following property are being recorded:  

The (spatially independent) concentration-time course in 
tissue can be expressed as a convolution of the arterial input 
function CA and a function Q (aside from time) only 
depending on system properties. 

According to the nature of (mathematical) distribution theory, 
this system function Q is the impulse response function of the 
tissue and summarizes the whole information on tissue micro-
circulation. Therefore, this Q is suitable for determining 
(estimating) the desired tissue specific parameters (using 
fitting procedures for instance) and thus has a key role within 
the analysis of functional studies. 

As a secondary objective, it can be shown that the system 
function, now established for the compartment model under 
discussion as well, has a parameterization facilitating the 
determination of microcirculation parameters mentioned above 
and frequently used for compartment approaches. 

By the way, it should be noticed that most of the 
investigations, which have to be pointed out in this paper, 
come under the heading of  “The Forward Problem,” known as 
the analytic theory of linear and nonlinear compartmental 
systems (Jacquez [4]). Many years ago, this forward problem 
has been solved – even in a more general context as it is 
looked upon in this article (compare e.g. [4] – [14]). 
Nevertheless, to this day, within the field of biomedical 
imaging, not from the mathematical point of view, there seems 
to be a mental gap between the system-theoretic concept of 
IDT and the compartment approach – a trench, which the 
author would like to get over by exemplary analysis of the 
above-mentioned well-known model.    

II. THEORY 

In the sequel, the two approaches mentioned in the 
introduction have to be analyzed in more detail. In this 
context, the following notations are used regardless of any 
tracer kinetic model:  

As already mentioned at the beginning, CA denotes the 
arterial input function (AIF); in the same way let CV be the 
venous concentration of the tracer. CA and CV are functions of 
the time t (using the term “function” in its classical meaning); 
due to requirements of causality, CA | (- ∞ , 0)  =  0 , i.e.  
supp(CA)  ⊆  [0 , ∞) 1) is assumed. Furthermore, let F denote 
the plasma flow and for the volumes to be considered the 
notations are as follows: Let VT be the tissue volume under 
study as well as VP and VI the distribution volumes of the 
tracer in plasma and interstitial space (inside VT), respectively. 
Then  f P  ≔ VP VT

‒1 and  f I   ≔  VI VT
‒1 are the corresponding 

relative distribution volumes inside the tissue region being in 
focus. Assuming complete distribution of an extracellular CM 
and disregarding the small proportion of transcellular fluid, the 
extracellular volume VE (inside VT) is obviously received by 
the sum of VP and VI . In any case, the cellular volume (inside 
VT) is represented by the difference VT − VE  .  

In addition, let  σ  be the step function at zero defined by       

σ :  ℝ → ℝ ,  t  ֏  σ(t) ≔ 







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According to the context, every function considered in this 
paper has to be understood as function in the classical sense or 
as distribution (generalized function). Finally, the convolution 
of two (generalized) functions is denoted by ∗, as usual. 

 

A.   Models  based  on IDT 

About 50 years ago, the fundamental principles of IDT have 
been developed and presented by Meier / Zierler and co-
workers in serveral pioneering publications (compare [15] – 
[18]). Those aspects which are relevant for our discussion are 
summarized below. 

For the present, only an ideal system with a single inflow 
and a single outflow (SISO system) is considered. The time 
required for a given tracer particle to flow from entrance to 
exit through the system (after an impulsive input), by whatever 
path, is known as its exit or (overall) transit time. No one 
transit time applies to all tracer particles; rather, there is a 
family of transit times depending on travel velocity and path 
taken. Hence, the (overall) transit time is regarded as a random 
variable in the sense of probability theory, and it is supposed 
that this random variable can be described by a locally 
integrable (probability) density 2)  h , which satisfies                
h | (- ∞ , 0)  =  0 , i.e.  supp(h)  ⊆  [0 , ∞) , due to causality 

1)  supp(f)  denotes the support of a (generalized) function f . 
2)  In the older literature the term “frequency function” was applied to what 

we call density. 
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requirements. The expectation (first moment) of this random 
variable is often called system mean transit time and denoted 
by tt = (h) .    Furthermore, let H be the distribution function 

corresponding to h . Obviously,  H = h ∗ σ   holds. 
For application of indicator dilution techniques and 

simplification of mathematical descriptions, some further basic 
assumptions about the biological system and the tracer being 
studied apply: 

• Plasma flow F and fluid system volumes such as VP , VI , 
VT are constant. 
Constant volume implies that the system has no stagnant 
pools, that is, every unit of fluid entering the system must 
finally leave the system.  

• The distribution of transit times for entering particles 
remains constant during the measurement / experiment. 

• The distribution of transit times of tracer particles is 
identical with the distribution of transit times of the 
carrier fluid (tracee). 

There are no further assumptions about the internal structure of 
the system. Indicator recirculation may be considered via the 
AIF. Definitions and results cited in the sequel are valid for 
intravascular as well as for diffusible extracellular CM. For a 
pure intravascular tracer simply VI = 0 has to be taken.  

In accordance with the theory of LTI systems, let the 
concentration of tracer at outflow (output), i.e. the venous 
concentration CV , be given by a convolution of the arterial 
input function CA and the system dependent density h : 

CV  =  CA ∗ h  .                                                       [IDT.1]                                                    

This equation may be regarded as the basic relation of IDT. 
Next, consider the convolution algebra with the underlying set 
consisting of all distributions with support contained in [0 , ∞) . 
According to Titchmarsh’s theorem, this convolution algebra 
has no zero divisors ≠ 0 (see [19], [20]). Due to this reason, 
the locally integrable function h in Eq. [IDT.1] is uniquely 
determined except for a (Lebesgue) null set:  If g, h are two 
locally integrable, causal functions satisfying  CA ∗ h  =  CV  =  
CA ∗ g  then  h  =  g  (Lebesgue) almost everywhere, and we 
may “identify” h and  g . 

In order to establish an IDT model in dealing with the 
terminology of this paper, a more precise definition is 
recommended:  
In the set of all locally integrable probability densities with 
support contained in [0 , ∞) , the following equivalence 
relation ∼ is defined: 

h ∼ g      
Def.
⇔      h = g   (Lebesgue) almost everywhere . 

If the assumptions above hold for a system under consideration 
and the basic convolution approach is satisfied by a locally 
integrable, causal density h , then the equivalence class of h is 

called the IDT model belonging to h and denoted by h
~

. Often 
it is sufficient only to make use of a representative of this 
equivalence class, for instance h itself. In addition, h is 
uniquely determined except for the value at  t = 0 , if the 

supplementary requirement for continuity on (0 , ∞) frequently 
realized in biological systems is taken into account.  

For the IDT model h
~

 just described, more precisely for its 
representative h , we define 3): 

IDT
hR  ≔  σ  –  h ∗ σ   =   σ – H       

              and                                                               [IDT.2]                                 

IDT
hQ  ≔ IDT

T
hR

V

F
.                                                                        

Because the distribution function H corresponding to h is 
independent of the choice of representatives, obviously 

IDTIDT
hg RR =  and  IDTIDT

hg QQ =  hold for all h
~

g ∈ . Further-

more,  IDT
hR and  IDT

hQ  are time dependent functions, but apart 

from that they are only depending on system properties; due to 
this reason, they are of great importance: 
Assuming that the tissue concentration CT is only time (but not 
position) dependent, then it follows from the principle of mass 
balance, the causality condition supp(CT) ⊆ [0 , ∞) , the 
relation  H = h ∗ σ , and the above Eqs. [IDT.1], [IDT.2]: 

         dssCsC
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In summary: 

. IDT
A

IDT
A

T
T hh QCRC

V

F
C ∗=∗=                 [IDT.3]  

The system function IDT
hQ  is the impulse response function, in 

which the whole information available of tracer in tissue is 

3) Remark.  The definition of the step function σ at its step discontinuity 
zero as the arithmetic mean of the left-hand and the right-hand limits of σ at 
zero, i.e. the mean value property 

σ(0)  ≔  
2

)σ(0)σ(0

2

1 ++−
=  , 

ensures that (the prevailing) impulse response function (of the (sub)system 
considered) and (the associated) system function – as functions in the 
classical sense – match at the discontinuity of the step function as well. This 
is valid independently of the specially chosen concept for modeling 
microcirculation. 
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summarized. IDT
hR  is known as residual function and  F VT

‒1  

is the tissue perfusion (compare [21], [22], in addition).    
An integration of the equation 

IDT
ATA

T

)σ( hQCCHC
V

F
∗==−∗

 

using the theorem of Fubini, followed by integration by parts 
on the left-hand side, leads to the system mean transit time, 
which is independent of the choice of representatives: 

∫
∞

∞−
== .dttQ

V

F
htt h )()( IDT

T

 

In consequence, the next two statements (compare Meier / 
Zierler [15] – [18]), valid for IDT-models, are equivalent: 

• Stewart-Hamilton Principle 4) (for the system as a whole): 
The system mean transit time can be calculated as 
quotient of distribution volume (of tracer injected) and 
plasma flow; i.e., regardless of the choice of re-
presentatives, the following equations hold: 

F

VV
dtthtdtththtt IP

0
)()()(

+
==== ∫ ∫

∞

∞−

∞

.   

                                                                                   [IDT.4]                                                                                      

• The (improper) integral of the impulse response function 
is the relative distribution volume (i.e., the distribution 
volume referring to the tissue volume studied) of the 
tracer being applied: 

IP
T

IP

0

IDTIDT )()( ff
V

VV
dttQdttQ hh +=

+
==∫ ∫

∞

∞−

∞

.  

                                                                                   [IDT.5] 

Immediately from H(0) = 0 , it follows: 

• The (right-hand) limit of the impulse response function as  
t → 0+  represents the tissue perfusion: 

    
T

IDT

0
)(lim

V

F
tQh

t
=

+→
.                                             [IDT.6]                                        

So far as needed for the paper on hand, Eqs. [IDT.4], [IDT.5], 
[IDT.6] may be regarded as the central results of Zierler’s 
theory. In particular, this is true for Eq. [IDT.4]. In addition, 
some remarks about the sum  fP + fI  in Eq. [IDT.5] should be 

pointed out: Fixing eyes on the present IDT model h
~

, writing 

Q ≔ IDT
hQ for notational brevity, and starting from the 

convolution product 

QCC C ∗= AT, A
 

including the previous causality requirements and for the 
moment explicitly expressing the dependence on the AIF CA 

4) The “Stewart-Hamilton Principle” has also become known as “Central 
Volume Theorem” or “Area-to-Height-Relation”. 

with respect to the tissue response, properties concerning the 
system function Q  allow different interpretations: 
It is known that LTI systems can be characterized not only by 
their impulse response QC =δT, , but also by means of their 

step response  QC ∗=σ σT, , where 

∫ ∞−
σ =

t
dssQtC )()(T,  . 

If now the (improper) integral of Q represents the relative 
distribution volume of the injected tracer in the sense of 
[IDT.5], one obtains: 

IPT, )()(lim)(lim ffdssQdssQtC
t

tt
+=== ∫∫

∞

∞−∞−∞→
σ

∞→
 . 

In this way, the sum  fP + fI , on the one hand, can be 
understood as area below the temporal course of the system 
function or rather impulse response, but, on the other hand, an 
interpretation as limit of the step response as t → ∞ is possible 
just as well – two aspects of one and the same object. 
Furthermore, simply from the convolution equation as well as 
the theorem of Fubini it follows: 
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This is the frequently used geometric meaning of the sum  fP + 
fI , showing that the relative distribution volume of the tracer 
can be calculated as a quotient of two areas, namely the area 
below the concentration-time curve in tissue and the area 
below the AIF curve. 
 

B.   Open Two-Compartmen t  Model  (TCM) 

For modeling the transport of a diffusible, extracellular CM 
after passing the input point via the AIF CA , within the theory 
of compartment models, for the sake of simplicity, it is 
assumed that the tissue considered can be described by two 
compartments: a (central) plasma compartment with volume 
exactly alike VP and a (peripheral) interstitial compartment 
with volume exactly alike VI . In addition, the assumptions 
below apply in the course of this paper: 
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• In accordance with the first section, the blood flow 
through the capillaries or rather the plasma flow F as well 
as the volumes VP , VI , and VT are regarded as constant. 
Furthermore, as usual, the flow of indicator particles is 
assumed to be representative of the flow of total fluid and 
the distribution of transit times for entering particles is 
assumed to be constant during the measurement / 
experiment. 

• The solubility of the employed CM may be regarded as 
the same in the interstitial fluid and in plasma. The 
permeability, describing the diffusion of tracer particles 
through the capillary walls, i.e. between plasma and 
interstitial space, is assumed to be the same in both 
directions as well as constant in space and time. Hence, 
the diffusion of the CM can be described bidirectionally 
by the constant permeability-surface area ( PS ) product. 

For the moment, CM concentrations in plasma, interstitial 
space, and overall tissue depend on both position and time. A 
mathematical modeling of the underlying biophysical situation 
using Fick’s law leads to a pair of partial differential equations 
as it can be found, for example, in St. Lawrence / Lee [23], 
Brix [3], and Moran / Prato [24]. From the literature, there are 
known further more models based on partial differential 
equations (compare e.g. Perl / Chinard [25], Bassingthwaighte 
[26], Fletcher [27]), but they shall not really be discussed in 
this paper. 

In contrast to such sophisticated considerations, pharmaco-
kinetic models – for the sake of simplicity – are founded on a 
further assumption: 

• Each compartment is well stirred, so that any contrast 
agent entering the compartment is instantaneously 
distributed throughout the entire compartment. 
This implies that for the particular problem at hand we do 
not have to worry about transport of tracer within the 
compartment. In this way it is attained that the CM 
concentrations CP in the plasma compartment, CI in the 
interstitial compartment, and CT in the tissue considered 
do not depend on position and are functions of time only. 
In particular, CP = CV  holds.  
[Remark. In general terms and in metalanguage, the 
following relations are valid:  CA(t)  =  CP(t, position = 
inlet)  and  CV(t)  =  CP(t, position = outlet).] 

 

 
Fig. 1 Open two-compartment model in accordance with [3] in order 
to describe the trans- and intercapillary transport of a diffusible, 
extracellular contrast medium 

Working on these simplifying assumptions, the box-model 
from Fig. 1 leads to the following pair of ordinary differential 
equations (ODEs) by applying the principle of conservation of 
mass to each compartment: 

[ODE]
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Below it is intended to investigate, to what extent this 
extremely reduced approach represents the well-known 
statements of IDT and, furthermore, can be subordinated to 
IDT; in other  words: In what way does the reduced TCM 
approach supply the IDT-model belonging to the available 
system characterized by the assumptions referred to. In view of 
initial conditions, [ODE′] represents a classical initial value 
problem, as long as for the AIF CA a continuous concentration-
time course is assumed. In this case the classical solution is 
“straightforward.” If it is desired to refer to systems theory and 
to consider Dirac’s delta impulses and other distributions as 
input functions as well, then the problem has to be solved by 
using methods of distribution theory.    

[ODEɂ] or rather the affiliated initial value problem can be 
applied to two different situations: 
(I) For  PS > 0  [ODEɂ] is a system of coupled differential 

equations and deals with the case of diffusible, 
extracellular CM. 

(II) For  PS = 0  the two differential equations in [ODEɂ] are 
uncoupled from each other, resulting in the basic 
equation(s) of a non-extravasating contrast agent. 

  
First and foremost, the following considerations are valid 

for the more complex 

CASE (I):  PS > 0 , i.e. diffusible, extracellular CM. 

The Box-Model and its Theory 

[ODEʽ] is a linear nonhomogeneous first-order ODE system 
with constant coefficients; the associated system matrix, i.e. 
the matrix of coefficients, is denoted by K:   

 F F

PS

CV(t) = CP(t)CA(t)    CP(t) , VP

   CI(t) ,VI
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
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K has two different, real eigenvalues λ1 , λ2 : 
 

λ1  ≔ )(
2
1 1

P
1

P
1

I
−−−

++− VFVPSVPS  

 1
P

1
I

21
P

1
P

1
I 4)(

2
1 −−−−−

−+++ VVPSFVFVPSVPS , 

 

λ2  ≔ )(
2
1 1

P
1

P
1

I
−−−

++− VFVPSVPS   

         1
P

1
I

21
P

1
P

1
I 4)(

2
1 −−−−−

−++− VVPSFVFVPSVPS . 

 
According to the theory of linear ODE systems with constant 
coefficients, a determination of the eigenvectors of K 
belonging to the eigenvalues λ1 and λ2 , respectively, results in 
a fundamental matrix of the homogenous ODE system 
associated with [ODE׳]:  For example, 

Y(t)  ≔ 
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is a special choice of such a fundamental matrix, where    

βi  ≔ 2} {1,for1 1
P

1
∈λ++

−− iPSVPSF i  

is used for notational brevity. Apart from the classical 
solutions, the homogeneous ODE system has no further 
distribution solutions. Concerning the notations and 
abbreviations, the following relations are valid, which are 
frequently used in the course of this paper:    
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Using the fundamental matrix Y(t) mentioned above, an 
approach applying the “variation-of-constants” procedure in 
distributional form yields the response of plasma and 
interstitial space to Dirac’s delta impulse (with respect to zero) 
(compare e.g. [19], [28]): 
Considered as regular distributions, the causal bi-exponential 
functions 
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satisfy the nonhomogeneous ODE system 
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                                                                                   [ODEɃ] 
 
which can also be verified by “calculation with distributions” 
without any problems. By convolution of each of the impulse 
response functions h1 , h2  and the AIF CA – considered as 
distribution – it immediately follows from [ODE″] that 

CP  =  CA ∗ h1      and       CI  =  CA ∗ h2                 [ TCM.1a] 

are causal distribution solutions of the initial ODE system 
[ODE′]. The requirement of causality, which reduces the space 
of solutions to solutions with support contained in [0, ∞), 
ensures the uniqueness of a solution, because the difference to 
any further causal solution is an element of the solution space 
of the associated homogeneous ODE system and hence the null 
function (zero vector function). Due to this reason, the pair of 
convolution products mentioned in [TCM.1a] is the unique 
solution of [ODE′].     

In passing, the following properties concerning  h1  and  h2  
should be mentioned, recalling that the term “function” is used 
in its classical meaning here: 

• h1  and  h2  are (probability) densities as they are already 
considered in the framework of IDT-models, in 
particular: 

 ∫∫
∞∞

∞−
∈==

0
2} {1,for1)()( idtthdtth ii  .  
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• h2  is continuous on ℝ (in particular at zero) and  h2(0)  =  
0 .                   

 h1  has a step discontinuity at zero:   

 h1(0−)  ≔  0)(lim 1
0

=
−→

th
t

     and      

h1(0+)  ≔  
P

1
0

)(lim
V

F
th

t
=

+→
 . 

The assumption of instantaneous mixing, specially resulting 
in  CV  =  CP  as already observed within the basics, and the 
first equation in [TCM.1a] imply 

CV  =  CA ∗ h1 .                                                   [TCM.1b]                                                   

Equation [TCM.1b] is the decisive message, because it states 
Eq. [IDT.1] for the locally integrable, causal density h ≔ h1 . 

Due to this reason, the accompanying equivalence class 1h
~

 is 

the IDT model belonging to the compartment model under 
study. Hence, the system or rather impulse response function  

Q
TCM ≔ IDT

1hQ   and the residual function  RTCM ≔ IDT
1hR   are 

defined according to [IDT.2]. In addition, all further 
statements within the section about IDT models remain valid 
word for word with  h1  instead of  h . Of course, a direct 
verification is also possible. Finally, it should be emphasized, 
that  Q

TCM  is a linear combination of  h1 and  h2  with 
weighting factors  fP  and  fI , respectively: 

Q
TCM  =  2I1P hfhf +  , 

in particular revealing the impulse response function in terms 

of a parameterization, which uses ,,, 1
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1
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−VV  as model parameters. According to [IDT.3] and 

[TCM.1a], the above equation implies 
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i.e. the tissue concentration is the sum of the two 
compartmental CM concentrations – each summand weighted 
with the corresponding relative distribution volume inside the 
region being in focus. 
 

The (Peripheral) Interstitial Compartment 

If the interstitial compartment is studied on its own and thus 
only [ODE.b] with CP as input function has to be discussed, 
then a nonhomogeneous ODE is available, which can be 
treated in a similar way with the methods presented using the 
previous initial or rather causality conditions. This leads to  

CI  =  CP ∗ hI , 

where hI denotes the following causal mono-exponential 
function: 

hI : ℝ → ℝ ,  t  ֏  hI(t)  ≔  )σ()exp(
II

tt
V

PS

V

PS
−  . 

Again, hI is a (probability) density in the previous sense. 

Therefore, the mean transit time for the tracer passing over the 
interstitial compartment is given by 

PS

V
dtththtt I

II )()( ∫
∞

∞−
===  . 

Furthermore,  h2  =  h1 ∗ hI  by using what has gone before and 
continuity on (0, ∞). 
 

Mean Residence Times for Compartmental Subsystems 

Besides transit times, it is often desired to consider 
residence times as well, specially in the case of proper 
subsystems. To make a distinction, the term transit time means 
first exit time after an impulsive input, i.e. time spent by a 
particle from its entry into a (sub)system to its next exit, while 
residence time refers to the time that a material or tracer 
particle resides in the (sub)system under study, likewise after 
an impulsive input. Transit and residence times are identical 
for (sub)systems if all material leaving cannot reenter. For a 
(sub)system with reentry they differ, because the duration of 
each visit is taken into account when referring to residence 
times. Obviously, distributions of residence times and mean 
residence times can be defined in analogy to transit times 
(compare e.g. [29], [30]). 
 If the ODE system [ODEʽ] would have been formulated for 
amounts instead of concentrations as it is usual for the most 
part of papers dealing with mathematical biology, the 
transpose K

T of K has to be considered as associated 
compartmental matrix. It is well known, that K or rather KT is 
nonsingular, if and only if the compartment system has no 
traps. In this case, which is true for the box model under 
discussion, the entries of the negative inverse of the 
compartmental matrix K

T have a well-known important 
physical interpretation – namely that of mean residence times. 
Taking a closer look at this situation as it is done at several 
places in the literature (compare e.g. Eisenfeld [31] – [33], [7], 
[4], [34]), 
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has to be considered. Generally speaking, the (i, j)-element 

jiT  of the above matrix is the mean residence time that a 

random particle spends in compartment i having commenced 
the system in compartment j (by an impulsive input), before 
being excreted. This notation is based on the assumption that 
compartment numbering and equation order in the underlying 
ODE system match. In our special case, the excretory system 
is loaded in a single compartment, namely the (central) plasma 
compartment, which is the first compartment in the above 

notation. Therefore, only the first column of ( ) 1T −
− K  is of 

further interest:  
1

P11
−

= FVT   and   1
I12

−
= FVT   are the mean residence 

times for tracer particles dwelling on the central plasma 
compartment (first compartment) and on the peripheral 
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interstitial compartment (second compartment), respectively. 
Notice on the other hand, that the mean transit time for 
particles passing over the interstitial space could be calculated 

as .PSVht 1
II )( −

=  The sum  2111 TT +  , i.e. the 1-column 

sum of ( ) 1T −
− K , is the system mean residence time. 

According to [IDT.4], this sum also equals the system mean 
transit time, due to the observation that both mean transit time 
and mean residence time refer to an impulsive input and, 
hence, by definition there is no reentry of material when 

considering the system as a whole.      

  
 The theoretical explanations to the compartment approach 
should be closed with a brief consideration of 

Case (II):  PS = 0 , i.e. intravascular CM. 

Because of the de-coupling of the two equations in [ODE], the 
second Eq. [ODE.b] can be integrated directly, which results 
in a constant concentration CI . In more detail, CI = 0 holds on 
the previous initial or rather causality conditions, since there 
are no different complexions even when looking from the 
distribution theoretic point of view. It remains the basic 
equation of a non-extravasating contrast agent: 
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Looked at from purely mathematical aspects, this is an 
[ODE.b]-type equation; thus, the considerations of the section 
above (compare “The (Peripheral) Interstitial Compartment”) 
can be applied. Keeping up the initial or rather causality 
conditions of standard-issue, the solution is given by 

CP  =  CA ∗ hP , 

where hP denotes the following causal mono-exponential 
function and (probability) density: 

hp : ℝ → ℝ ,  t  ֏  hp(t)  ≔  )σ()exp(
PP

tt
V

F

V

F
−  , 

which is the impulse response function with respect to plasma 

when looking upon as regular distribution. With  Qiv ≔ IDT
PhQ  

=  fP hP  and using what has gone before, it follows 

Q
iv is system function as well as impulse response function of 

the tissue under discussion (in case of a purely intravascular 
tracer). Finally, the central properties repeatedly discussed up 
to now are also valid for blood-pool contrast agents, as 
expected: 
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III. DISCUSSION AND CONCLUSION 

The theory of LTI systems may be regarded as a common 
general outline of IDT and compartment approach. In 
particular, by the analysis carried out in this paper not the 
trench, but the causal relationship between TCM and IDT 
introduced at the beginning could be confirmed, revealing that 
the compartment approach leads to the IDT model of the 
system under discussion, if – aside from standard requirements 
– specially the assumption of an instantaneous distribution 
applies to each compartment: 
 As well-founded in the section about IDT models, in the 
present investigation an IDT model of a system studied is 
understood as that equivalence class of locally integrable, 
causal probability densities describing the (overall) transit 
times of tracer particles, whose representatives satisfy the 
central convolution approach [IDT.1]. This system-theoretic 
approach specially assumes the existence of such a 
representative. 
As one result of the box-model analysis, the solution of 
[ODE′] is given by 
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with the locally integrable, causal probability densities h1 and 
h2 satisfying [ODE″]. In particular, it follows: The equivalence 
class of h1 consisting of all locally integrable, causal 
probability densities, which are equal to h1 (Lebesgue) almost 
everywhere, is the IDT model of the system under 
consideration. On the conclusive spot, this result makes use of 
the assumption of well stirred compartments. 
 In this way, all statements valid for IDT models are also 
applicable to the compartment approach. We note in passing 
that it is also possible, of course, to derive these results for the 
box-model on its own without recourse to IDT models and 
their theory. To this end, corresponding statements valid for 
IDT models and compartment approach, respectively, would 
have been developed parallel to a large extent. 
 Following [4] (and applied to the box-model), we have 
concentrated on the forward problem: Given the structure, how 
does the system behave? The inverse problem reads: Given the 
experimental measurements of behavior, i.e. an input-output 
sequence, what is the structure? This inverse problem is the 
one usually faced by the biomedical experimenter; it includes 
model specification, definition of the experiments, 
identifiability [29], [30], parameter estimation [4], [37], and 
validation. There are many levels of complexity at which the 
inverse problem represents itself. In its most general form, 
there may be no information about the system; one may not 
even know whether the system is representable as a 
compartmental system [38], never mind the box-model from 
Fig. 1. In this context, it seems worth to note that the system 

.CfCfCfQCC )( IIPPPP
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functions (tissue response and residual function) of the above 
open TCM do not “know” any time-related delay as it is 
possible within the realms of other model classes, e.g. within 
the class of all IDT models. The important question, for 
instance, to what extent the assumption of instantaneous 
distribution may be considered to be realistic and performed in 
applications, can only be answered in practice, of course. 
Hence, the handling of the inverse problem is beyond the 
scope of this paper, even if this problem will be the more 
interesting one. 
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