
International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:1, No:12, 2007

127

Abstract— The study of the stress distribution on a hollow 
cylindrical fiber placed in a composite material is considered in this 
work and an analytical solution for this stress distribution has been 
constructed.  Finally some parameters such as fiber’s thickness and 
fiber’s length are considered and their effects on the distribution of 
stress have been investigated. For finding the governing relations, 
continuity equations for the axisymmetric problem in cylindrical 
coordinate (r, ,z) are considered.  Then by assuming some conditions 
and solving the governing equations and applying the boundary 
conditions, an equation relates the stress applied to the representative 
volume element with the stress distribution on the fiber has been 
found.

Keywords—Axial Loading, Composite, Hollow Cylindrical 
Fiber, Stress Distribution.

I. INTRODUCTION

OWADAYS as a new generation of advanced materials, 
composite materials have been used widely in different 

manufacturing and industrialized applications.  The basic 
constituent part of these types of compound structures is 
related to its reinforcement part, which causes rather 
pronounced improvement in the mechanical properties of such 
compound material. Of great importance is the configuration 
of employed reinforcement. There are many different 
reinforcement topologies such as rod, pyramid, spherical and 
so on. 

Primary analysis on the effect of orientation of the fibers on 
the stiffness and strength of materials is reported as early as 
1952 [1]. Later on the superior mechanical properties of 
fibrous composites and the properties of their constituents 
were reported in a research dated back to 1964 [2]. The first 
research work on the estimation of strength distribution of a 
fiber embedded in a single-fiber composite using elasto-plastic 
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approach is reported at 2001, [3].  Other works have been 
done since then, [4-10]. 
It has been noticed that no analytical work on the 
reinforcement effect of a hollow fiber embedded in a 
composite medium was reported until now. Therefore, in this 
paper a hollow cylindrical shape fiber has been considered as 
a reinforcement phase embedded in cylindrical matrix where 
an axial load is applied at the ends of compound medium. 

II. GEOMETRY AND ASSUMPTIONS

Fig. 1 illustrates the geometry of the compound structure 
under consideration for further analysis. It comprises of an 
isotropic external cylinder with length of 2L and radius R, 
plus another isotropic hollow cylindrical fiber with length of 
2Lf and inner and outer radii of ri and ro, respectively. As it is 
seen, the hollow fiber is embedded within the external 
cylinder and a perfect bounding is established between them.  
For analysis of this problem a representative volume element 
(RVE) of such structure will be considered. 
In order to analyze this problem following assumptions are 
made: 

1. Both matrix and fiber are made of isotropic but 
different materials. 

2. A perfect bonding between fiber and matrix exists. 
3. Radial strain is much smaller than the axial strain. 

r
w

z
u

.
4. The applied axial force will be transferred to the 

hollow fiber via surrounding matrix. 
5. The cross section area of the fiber is smaller than the 

RVE’s or in other words the volume fraction of the 
fiber is much less than the volume fraction of the 
matrix. 

6. The induced radial and hoop stresses are much 

smaller than the axial stress zzrr  which 
is an acceptable assumption especially for the case of 
materials with small Poisson ratio. 

7. The effect of body forces compared to other applied 
forces can be ignored.
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A great amount of efforts have been done for finding the 
stress distribution function, but all of them have been carried 
out for the case of rod shape fibers.  In some of these works 
for their analysis they have used models such as Rule of 
Mixture, Cox Model and Kelly-Tyson Model [11-15]. 
In solving this problem, three-dimensional theory of elasticity 
is employed for further analysis. The governing equilibrium 
equations of an axisymmetric problem in cylindrical 
coordinate (r, ,z) is considered first, then by using kinematical 
relations, constitutive equations and finally applying boundary 
conditions in both reinforced and pure matrix parts in the 
RVE, the governing differential equations of stress 
distribution on the fiber is obtained.  Solution of such 
differential equations yields the stress distribution on the 
hollow cylindrical shape fiber. 

Fig. 1 Representative Volume Element of the Composite

Fig. 2 Front view of the RVE and specifications of the problem’s 
parameters

Fig. 3 Side view of RVE and specification of the axial displacement 
direction

III. MODELING AND SIMULATION

The governing equilibrium equations of an axisymmetric 
problem in cylindrical coordinate by neglecting the body 
forces are as follows [16]: 

0

0

rrrr rz

rz zz rz

r z r

r z r

(1-a)

(1-b)

in which referred to Fig.(1) the ij’s are the components of 
stress tensor in the cylindrical coordinate. The kinematical 
relations in such coordinate system are as follows [16]: 
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(2-c)

(2-d)

in which u and w represent the axial and radial displacement 
of any point within the media, respectively. Moreover, rr , 
, zz and rz are the only non-zero components of the strain 
tensor.  
The constitutive equations, i.e. Hooke’s Law are [16]: 
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(3-a)
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in which E, and G are the Young’s modulus, Poisson’s ratio 
and shear modulus, respectively.   
Referred to Fig. (1), the governing boundary conditions for 
the reinforced and pure matrix are as follows: 

| 0,m
r Rt

3ˆ|m
z L et

(4-a)

(4-b)

where the interfacial traction continuity conditions are: 

, ,| |
f f o f f o

f m
L z L r r L z L r rt t

, ,| |
f i o f i o

f m
z L r r r z L r r rt t

(5-a)

(5-b)

in which t is the traction vector,  is the axial normal stress 
uniformly applied at the RVE’s ends and superscripts f and m
denote the fiber and matrix mediums, respectively. 



International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:1, No:12, 2007

129

A. SOLUTION IN THE REINFORCED REGION

By integrating the Eq. (1-b) over the cross sectional area with 
respect to r from ri to ro for the reinforcing fiber one would 
get: 

2 2 2 2

1 1 12 2 0o o

i i

fr r fzz
rzr r

o i o i

r dr r r dr
z r rr r r r (6)

The average axial normal stress over the cross section of the 
effective fiber can be defined as: 

o

i

r

r

f
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f
zz drrzr

rr
2,1

22 (7)

Differentiation of Eq. (7) with respect to z from (-Lf to Lf) and 
using Eq. (6) leads to: 

2 2

2
f
zz f f

o o i i
o i

r r
r r

d
dz

(8)

In this relation f
o and f

i represent the shear stresses in the 
interfaces between the matrix and fiber at ri and ro,
respectively. By assuming that the matrix material will not 
penetrate into the hollow part of the fiber f

i will become 
zero and the Eq. (8) will reduce to: 

2 2

2
f
zz f

o o
o i

r
r r

d
dz

(9)

Eq.(9) indirectly indicates that the f
o is a function of z. 

Hence we set: 

( )
f
zz f z

z (10)

and by using Eq. (1-b) we have: 

( ) 0
f f
rz rzf z
r r

(11)

Eq. (11) is a first order linear differential equation in terms of 
f

rz  which its solution leads to: 

11 ( )
2

f
rz

cf z r
r (12)

Noting that 0
irr

f
rz due to no matrix penetration into the 

hollow part of the fiber we have: 
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By applying the boundary condition |
o

f f
rz r r o  to the Eq. 

(13), one would get: 
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In component form the boundary conditions of Eq’s. (4 a,b) 
are:

| 0,m
rr r R

| 0m
zr r R

(15-a)

(15-b)

Similarly from Eq. (5 a, b) we will have: 
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Now by integrating the Eq. (1-b) over the cross sectional area 
with respect to r from ro to R and using Eq. (15-b) one would 
get: 
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where,

2 2
( ) ( , )

1 2
o

Rm m
zz zzr

o

z r z r dr
R r (18)

A close inspection of Eq.(18) indicates that the m
zz  will be a 

function of z, moreover we have; 

)(zg
z

m
zz (19)

Were g(z) is an unknown function that must be determined. 
By substituting Eq. (19) in (1-b) and integrating over the 
cross-section with respect to r form ro to R leads to: 

2 2

2 2

( )
( ) ( )

2
2

m m
rz rz

z
z r

g R rg r
R r r

(20)

After combining Eq. (20) and Eq. (5-b), we have: 
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After back substitution of g(z) in Eq. (20), 

2 2

2 2( )m fo
rz o

o

r
r R r

R r r
(22)

In view of assumption III i.e. 
r
w

z
u

 and Eqs. (2-d) 

and (3-d), 
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Using Eqs. (23) and Eq. (22) we have, 

2 2

2 2

m
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o
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(24)

After integrating Eq. (24) over the cross-section with respect 
to r from ro to R, one would get: 

2 2
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(25)

Now we substitute f
o  from Eq.(25) into Eq. (22) which 

leads to, 
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By back substitution of m
rz from Eq. (26) into Eq. (23-b) and 

carrying out the integration, it results in: 
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By recalling assumption VI, i.e. zzrr  for both 
matrix and the fiber, then by using Eqs. (2-c) and (3-c) we 
have: 
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After substituting Eqs. (27) into Eg. (28-b) it results in: 
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Now, consider the force balance over the composite cross-
section along z axis: 
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By using Eqs. (7), (29) and (30) we have: 
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From Eqs. (9), (25), (28) and (31) it follows that, 
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In view of assumption II, i.e. perfect bounding between two 
media: 
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In view of assumption V, i.e. low volume fraction of the fiber, 
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From Eq. (34) and Eq. (32) it follows that: 
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By considering  as follows, 
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Eq. (35) becomes: 
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Eq.(37) represents an ordinary differential equation with 
constant coefficients and has a solution as follows: 
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Putting Eq. (38) into Eq. (9) results in, 
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Eq. (39) can be put in the following form as: 
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in which is,
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Using Eqs. (31), (34) and (38) in (29) result in, 
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Putting Eq. (40) in Eq. (14-b) results in, 
2
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Finally, the use of Eq. (40) in (22) gives 
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Eqs. (38), (40) and (42) to (44) represent some expressions for 

unknowns stresses of , ,
f f m
zz rz zz  and m

rz . The only 
remaining thing is specifying the constants A and B in these 
relations. To calculate the value of these two constant 
coefficients the pure matrix region must be considered. That is 
a matrix with an embedded solid virtual fiber with zero inner 
radius and outer radius equal to the outer radius of the actual 
hollow fiber in the reinforced region. 

B. SOLUTION IN PURE MATRIX REGION

Equation (38) for this region will be as follows: 
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A' and B' are constants, the same as A and B in Eq. (38) but in 
the pure matrix region. 
By substituting Eq. (45) into Eq. (9) and the result into 
Eq.(14-b) one would get: 
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In order to calculate the unknown coefficients A  and B
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boundary conditions listed in Eqs. (4-b) and (5-b) have to be 
imposed. After applying the boundary conditions and doing 
some further calculations, A  and B  will be obtained as 
followings: 

2

2 2 2 2
' 0, ' 1 m

f
o i of
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Ech L r r R r
E

(48)

Substituting the values of A and B in equations (38), (40) and 
(42-44), the following relations will result in: 
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In order to verify the validity of the above relations if the 
inner radius of the hollow fiber i.e. ri is approached to zero, 
which corresponds to a rod shape fiber, the formulas will be 
the same as the ones for the case of rod shape cylinder 
obtained by Cox [1].   

IV. NUMERICAL SOLUTION AND CASE STUDY

Based on derived relations, for a hollow carbon fiber placed in 
the epoxy matrix and under an axial constant traction, the 
shear stress distribution in the medium is calculated and the 
results are represented in different graphs. Following data 
represent the geometry and material constants [11]: 
Ef = 3800MPa, Em = 38MPa, vm = 0.3, R = 1cm, ri = 0.01cm, 
ro=0.02cm and Lm=2Lf . 

Fig. 4 Non-dimensional shear stress distribution vs. fiber length on 
the hollow carbon fiber (Lf = 0.01m, ro = 0.02cm) 

Fig. 5 Non-dimensional shear stress distribution vs. fiber length on 
the hollow carbon fiber (Lf = 0.03m, ro = 0.02cm) 

Fig. 6 Non-dimensional shear stress distribution vs. fiber length on 
the hollow carbon fiber (Lf = 0.05m, ro = 0.02cm,) 

Fig. 7 Non-dimensional shear stress distribution vs. fiber length on 
the hollow carbon fiber (Lf = 0.1m, ro = 0.02cm) 
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In order to investigate the effect of fiber length in the shear 
stress distribution, four different fiber lengths i.e. Lf = 0.01, 
0.03, 0.05, 0.1 meter are considered. The non-dimensionalized 
shear stress distributions for different above-mentioned fiber 
lengths are illustrated in Figs. (4-7). As it is seen in these 
figures, increasing the length of fiber will induce the shear 
stress distribution becomes a local phenomenon i.e. as the 
fiber length increases the shear jump will represent itself more 
locally towards the end of fiber length. Moreover, the non-
dimensionalized shear stress ratio tends to value of 0.8. 

Fig. 8 Non-dimensional shear stress distribution vs. fiber length on 
the hollow carbon fiber (Lf = 0.01m, ro = 0.03cm) 

Fig. 9 Non-dimensional shear stress distribution vs. fiber length on 
the hollow carbon fiber (Lf = 0.03m, ro = 0.03cm) 

Fig. 10 Non-dimensional shear stress distribution vs. fiber length on 
the hollow carbon fiber (Lf = 0.05m, ro = 0.03cm) 

A close inspection of Figures (6-9) reveals that, the trend of 
shear stress distributions is similar as those in Figs of (2-5), 
however we will see since the outer radius of the fiber in these 
cases is larger, and the shear stress ratio tends to a higher 
value i.e. 1.5. 

V. CONCLUSION

As it can be seen in the presented results the ability of the 
fiber in stress transfer will be improved by increasing its 
aspect ratio.  It is also possible to define a characteristic length 
for this type of fiber too, which its ability to stress transfer 
between the matrix and the fiber gets maximum value and 
remains constant for higher aspect ratios. 

Fig. 11 Non-dimensional shear stress distribution vs. fiber length on 
the hollow carbon fiber (Lf = 0.1m, ro = 0.03cm) 

The shear stress transfer will also increase by increasing the 
outer diameter of the fiber as it has been represented in the 
above.  It is also expected that the stress transfer increase by 
reducing the inner diameter of the hollow fiber because the 
shear stress is proportional to the ooi rrr 22 . It is also 
expected that the reduction in the inner radius of the fiber to 
have higher effect compared with increasing the outer radius 
due to the proportionality of the transferred stress to the 2

ir
compared with its proportionality to or .
Due to the above statements, it is expected that a rod-shaped 
fiber has higher stress transferability compared with a hollow 
cylindrical shaped fiber.  Although it might be true for the 
case of which the matrix does not penetrate inside the hollow 
part but if it does it can cause increasing in the stress 
transferability of the fiber due to increasing in the area of the 
contact between the fiber and matrix which in this case can be 
nearly twice the case of no matrix penetration.  Therefore to 
have a rational comparison between a rod-shaped fiber and a 
hollow cylindrical fiber which the matrix is penetrated inside 
its hollow part, further investigations needs to be done. 
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