
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:4, 2013

598

Abstract—We consider a typical problem in the assembly of

printed circuit boards (PCBs) in a two-machine flow shop system to
simultaneously minimize the weighted sum of weighted tardiness and
weighted flow time. The investigated problem is a group scheduling
problem in which PCBs are assembled in groups and the interest is to
find the best sequence of groups as well as the boards within each
group to minimize the objective function value. The type of setup
operation between any two board groups is characterized as carryover
sequence-dependent setup time, which exactly matches with the real
application of this problem. As a technical constraint, all of the
boards must be kitted before the assembly operation starts (kitting
operation) and by kitting staff. The main idea developed in this paper
is to completely eliminate the role of kitting staff by assigning the
task of kitting to the machine operator during the time he is idle
which is referred to as integration of internal (machine) and external
(kitting) setup times. Performing the kitting operation, which is a
preparation process of the next set of boards while the other boards
are currently being assembled, results in the boards to continuously
enter the system or have dynamic arrival times. Consequently, a
dynamic PCB assembly system is introduced for the first time in the
assembly of PCBs, which also has characteristics similar to that of
just-in-time manufacturing. The problem investigated is
computationally very complex, meaning that finding the optimal
solutions especially when the problem size gets larger is impossible.
Thus, a heuristic based on Genetic Algorithm (GA) is employed. An
example problem on the application of the GA developed is
demonstrated and also numerical results of applying the GA on
solving several instances are provided.

Keywords—Genetic algorithm, Dynamic PCB assembly,
Carryover sequence-dependent setup times, Multi-objective.

I. INTRODUCTION
HE main part of every electronic device is PCBs which
embodies several different types of electronic

components. PCB assembly simply means to place these
components which range in very different types and shapes,
during a process called assembly operation. Because of the
vast variety of components, the boards requiring similar types
of components are usually grouped into one group of boards to
lessen the number of unnecessary setups which are required
whenever the assembly operation is scheduled to transfer from

M.T. Yazdani Sabouni is with the School of Mechanical, Industrial and

Manufacturing Engineering, Oregon State University, OR 97331-2600 USA
(phone: 1-541-207-6721; e-mail: yazdanim@onid.orst.edu).

R. Logendran is with the School of Mechanical, Industrial and
Manufacturing Engineering, Oregon State University, OR 97331-2600 USA
(phone: 1-541-737-5239; fax: 1-541-737-2600; e-mail:
Logen.Logendran@oregonstate.edu).

one group to another, and it implies the existence of group
scheduling (GS) concepts for this problem. The setup time
assumption in PCB studies is the most important factor that
essentially affects the performance of the system. Because of
the inherent complexity involved in evaluating the setup time
in the assembly of PCBs, the setup time has not been exactly
or correctly estimated in all of the traditional studies so far.
However, the carryover sequence-dependent setup time
assumed in this paper accurately captures the actual amount of
setup time required to transfer the assembly operation from
one board group to another. In other words, the setup time
dependency traditionally considered is that it is at most
dependent on the immediately preceding board group, while a
careful investigation of this problem has shown that the
dependency is not only on the immediately preceding board
group, but on all of the previously scheduled board groups and
their sequences. Thus, finding the best sequence of the groups
which are already assigned to the machine to evaluate the
minimum amount of setup time to transfer to the next board
group is translated into solving a Travelling Salesman
Problem which is known to be NP-hard in strong sense. The
complexity gets even worse when this setup operation is
integrated with another operation, namely kitting (as described
below) on two-machine flow shop. The objective is to
sequence all board groups and their boards where the weighted
sum of total weighted flow time and total weighted tardiness is
minimized.

A PCB assembly machine utilizes several feeders on which
components required by boards are placed. Thus, changing the
components which are currently on the feeders with the
components which are required on appropriate feeders by the
next board group, on a frequent basis, results in continuously
updating the component-feeder requirements. These
changeovers begin with the reference group which is the set of
components remained on the feeders from the previous period
and get carried over up to the current group, which implies
that the dependency is carried over throughout all board
groups and introduces the idea of developing carryover
sequence-dependent setup times.

There is another kind of operation called kitting required in
preparing the PCBs for the assembly operation and that must
be performed by kitting staff before the assembly operation
starts. The kitting operation is an essential part of PCB
manufacturing whose impact has always been disregarded
from the total required setup time in the assembly of PCBs by
assuming that all boards have static or zero arrival times.

M. T. Yazdani Sabouni and Rasaratnam Logendran

Genetic Algorithm Application in a Dynamic
PCB Assembly with Carryover Sequence-

Dependent Setups

T

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:4, 2013

599

Thus, as a new direction of research, we are inspired to
investigate the possibility of integrating both types of setups,
which is referred to as integrating internal setup (carryover
sequence-dependent setup operation) and external setup
(kitting operation), and have both of them solely be performed
by the machine operator. To do that, the machine operator is
assigned to perform the kitting operation required by the next
board group during the time he is idle or during the time the
machine is automatically performing the assembly operation
of the current board group. In this research, boards are
simultaneously kitted or introduced to the manufacturing line
at the same time the assembly operation is being performed
and this enables us to focus on a dynamic PCB assembly
system for the first time. The problem investigated in this
research captures all of those operational constraints that can
be found in a typical PCB assembly problem. Capturing all of
the operational constraints introduces much complexity to the
problem which has been known to be complex even with more
simplified assumptions. This necessitates the development of
meta-heuristics which is a GA-based approach in this paper.
The GA developed is capable of solving problems of all sizes
(small to large) considered very effectively and in a very short
period of time which substantiates the industrial applicability
of the research as well as the methodology developed.

There are numerous studies in PCB manufacturing, where
each addresses different characteristics associated with the
problem. However, the most challenging factor differentiating
not only the problem types, but also the corresponding
methods given, is the type of setup time. Thus, setup time is
addressed to provide an overview of some of the studies that
have been performed so far. As mentioned before,
traditionally it is assumed that board groups are totally
sequence-dependent or the dependency is at most on the
immediately preceding board group. While the sequence-
independent cases can be referred to [1] and [2], [3]–[6]
studied sequence dependency. A setup strategy called the
decompose and sequence (DAS) method is proposed in [7],
which changes the feeders not shared by the next board group
while ignoring the board groups and boards themselves.
Reference [8] proposed another method called KTNS (Keep
Tool Needed the Soonest) which only exchanges the required
tools and neglects the positions to which the tools are
assigned.

Another setup strategy called the group setup strategy
ensures the fact that boards are assembled in groups making it
more suitable to be applied in the assembly of PCBs than other
approaches in classical studies. However, since it assumes that
the dependency is only on the immediately preceding
scheduled board group, it may not correctly evaluate the
overall dependencies associated with the problem. References
[9] and [10] proposed methods to minimize the total makespan
while focusing on group setup strategy. A mathematical model
and a GA to minimize makespan on non-identical parallel
machines with sequence-dependent setups are developed [11].
In the work of [12] two strategies to minimize the number of
feeder-changeovers with sequence-dependent board groups are
proposed.

The only research in scheduling that considered the
carryover sequence-dependent setup time is the work of [13],
while focusing on a single objective problem and jobs with
static arrival times. Like in all of the traditional works, their
research also did not take into consideration of the kitting
operation in the evaluation of the total setup time by assuming
that all boards have static arrival times. Consequently, it can
be inferred that minimizing a bi criteria objective function,
integration of internal and external setups, and dynamic arrival
of boards are mainly the factors of considerable significance
that basically differentiate their works and ours.

In this problem, the objective function evaluation on a two-
machine flow shop, when there are two opposing objectives
and dynamic arrival of boards, is a challenging task unlike
most of the typical scheduling problems with static arrival
times of boards. However, we have developed an approach
which is capable of optimally evaluating the objective
function on the first machine for a given sequence of boards
and groups and heuristically on the second machine, yet very
close to the optimal value. The highlighted contribution of the
paper is summarized as following:
1. Introducing a PCB assembly problem with dynamic

arrival times of boards while taking advantage of the idea
of just-in-time manufacturing in the assembly of PCBs.

2. Correctly incorporating the carryover sequence-dependent
setup times in a dynamic PCB assembly.

3. Eliminating the kitting staff by integration of internal and
external setups.

4. Developing an objective function evaluation approach to
optimally evaluate the objective function on the first
machine and heuristically on the second machine.

5. Developing an efficient genetic algorithm to arrange
board groups as well as the boards within each group.

The explanation of objective function evaluation is provided
in the next section. Section III outlines an overview of the GA
developed in this paper. Data generation and a representative
example on the application of the GA are provided in Section
IV. In Section V, computational experiments after solving
several problem instances are provided, followed by the last
section in which an overview of the paper together with future
research are given.

II. OBJECTIVE FUNCTION EVALUATION
Minimizing the weighted sum of weighted flow times and

total weighted tardiness is the objective in this paper. Suppose
there are a total of m board groups, and each has several
boards. We imply G[j], b[j,i] and n[j] as the jth ordered group, ith
ordered board within G[j] and number of boards in G[j],
respectively. The flow time and tardiness of b[j,i] are evaluated
respectively as (O[j,i]k – R[j,i]k) and (O[j,i]2 – d[j,i]) where O[j,i]k,
R[j,i]k, ݓሾ௝,௜ሿ and d[j,i] are respectively the completion time,
finish kitting time, weight and due date of b[j,i] in G[j] on the
kth machine. Consequently the objective function is evaluated
as

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:4, 2013

600

෍ ෍ ෍ ሾ௝,௜ሿሺݓଵߚ ሾܱ௝,௜ሿ௞ െ ܴሾ௝,௜ሿ௞ሻ
ଶ

௞ୀଵ

൅ ሾ௝,௜ሿሺݓଶߚ ሾܱ௝,௜ሿଶ െ ݀ሾ௝,௜ሿሻ
௡ሾೕሿ

௜ୀଵ

௠

௝ୀଵ

where ߚଵ ൅ ଶߚ ൌ 1. n[j] in the objective function is not defined
to be a fixed value and it is possible to do so because this
objective function will be algorithmically calculated.

During the time in between the assembly of the current
board group starts and the machine operator performs the
setup operation required of the next board group, the machine
operator is idle and he can perform the kitting operation of the
next board group. The difference between the finish kitting
time and completion time of any board is reflected in the
objective function, and as a result, finish kitting times should
be correctly evaluated. On the other hand, because of dynamic
arrival times of boards, start kitting times are hard to be
calculated so evaluating the finish kitting times would be
difficult too, and it becomes more difficult when they have to
be determined on the two machines. This issue is addressed in
this paper by developing an approach, including two
properties, which is capable of calculating the objective
function optimally on the first machine, and heuristically on
the second machine. The proof of optimality on the first
machine (not addressed here because of space limitations)
guarantees evaluating the optimal values of finish assembly
and kiting times.

Property 1: Suppose the start time and completion time of
the assembly operation of the board group G[j] on the first
machine be represented, respectively, as T[j] and C[j]1. Assume
the next board group containing n boards assembled after G[j]
is G[j+1]. If the kitting operation of all the boards of G[j+1]
completes before C[j]1 – T[j] then the sequence of the n boards
whose last board’s finish kitting time is exactly C[j]1 dominates
the similar sequences of the n boards whose last board’s finish
kitting time is earlier than C[j]1.

Property 2: Suppose the start time and completion time of
the assembly operation of the board group G[j] on the first
machine be represented respectively as T[j] and C[j]1. Assume
the next board group containing n boards assembled after G[j]
is G[j+1]. If the kitting operation of all the boards of G[j+1]
completes after C[j]1 – T[j] then the sequence of n boards whose
first board’s start kitting time is exactly T[j] dominates similar
sequences of the n boards whose first board’s start kitting time
is after T[j].

Start (finish) kitting times on the second machine are
calculated very differently from the first machine. To
determine the start kitting time of a board group on the second
machine, it is required to identify the start kitting time of the
first board of this group which is dependent on both its
completion time on the first machine and also the completion
time of the last board of the previous group on the second
machine. To tackle this problem, two cases are considered.
The first case reflects the situation where the completion time
of the first board of a group on the first machine is smaller
than the completion time of the previous board group plus the
setup time to transfer to the current board group on the second
machine. As the second case, the completion time of the first
board of a group on the first machine is larger than the

completion time of the previous board group plus the setup
time to transfer to the current board group on the second
machine.

When the first case is present, the kitting operation of the
next board group on the second machine is at a time during the
assembly time of the current board group (similar to the
situations in Properties 1 and 2). In the second case, two
possibilities (Poss1 and Poss2) are assumed to evaluate the
start assembly time of the first board of the current group on
the second machine and eventually they are developed to
heuristically calculate the start times of the assembly operation
of the rest of the boards of the current group on the second
machine. In other words, a general approach can be developed
as a form of an algorithm to heuristically evaluate the start
kitting times on the second machine. As Poss1 shown in Fig.
1, the assembly operation of a board on the second machine
immediately starts after its completion time on the first
machine. As Poss2 shown in Fig. 2, the assembly operation of
a board on the second machine is at the time when the next
board(s) finishes its assembly operation on the first machine.

Fig. 1 Assembly operation of the first board on the second machine

starts right after this board is completed on the first machine
S1 and S2 are respectively the setup times needed to transfer to the

next board group on the first and the second machine

Fig. 2 Assembly operation of the first board on the second machine
finishes exactly at the completion time of the next board on the first

machine

Assume G[c] with nc number of boards, the algorithm below

finds the start kitting times of the boards of G[c]. MinO and
BestKit are respectively the best found contribution of G[c] in
the objective function on the second machine and an array for
storing the best found start kitting times on the second
machine. PossT is a decision variable implying the selection

Previous assembled boards on
the first machine

S1

Previous assembled boards
on the second machine S2

Zero time point

B

A

A

Previous assembled boards on
the first machine

S1

Previous assembled boards
on the second machine

Zero time point

A

S2 A

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:4, 2013

601

of Poss1 or Poss2. i, r, l and NB are positive and integer
variables.
1. Set PossT = 1 and MinO to a very large and positive

value.
2. For i = 1 to nc
3. For r = i to nc
4. If PossT = 1, then let the start assembly time of b[c,i] be

exactly after the completion time of b[c,r] on the first
machine. If i < nc, i < r and PossT = 2 then start the
assembly of b[c,i] at a time such that it finishes at the
completion time of b[c,r] on the previous machine. Set NB
= i. Go to step 3.

5. For l = i – 1 to 1
6. Assemble b[c,l] immediately before b[c,NB]. Set NB = l and

get next l. If l = 0, go to step 4.
7. Put the setup operation exactly before the assembly of

b[c,1] and let the setup follow the kitting operation of b[c,nc].
Set NB = nc. Go to step 5.

8. For l = nc – 1 to 1
9. Kit b[c,l] exactly before b[c,NB]. Set NB = l, and get next l. If

l = 0, go to step 6.
10. For l = i + 1 to nc
11. Calculate the start assembly time of b[c,l] according to the

time progress of the assembly operation on the first and
second machines (the maximum of completion time of
b[c,l] on the first machine and completion time of b[c,l-1] on
the second machine), get next l. If l = nc + 1, go to step 7.

12. Calculate the contribution of G[c] in the objective function
on the second machine with the current start kitting times.
Update MinO if a less value for the contribution of G[c] in
the objective function is found and then update BestKit to
the current start kitting times. Get next r. If r = nc + 1, get
next i. If i = nc + 1, set PossT = 2 and repeat step 2;
otherwise, if i = nc + 1 and PossT = 2, go to step 8.

13. Report BestKit and terminate the algorithm.

III. GENETIC ALGORITHM IMPLEMENTATION
Genetic algorithms (GA) originally developed by [14]

belong to the class of optimization techniques. GA iteratively
improves an objective function through several iterations of
the search by allowing a set of solutions (representatives of
different areas in the solution space) in each iteration to be
combined with each other, resulting in the generation of other
new solutions. Because of the interest in improving the
objective function value, only the best of parents as well as
offspring generated are qualified to be transferred to the next
iteration and the rest are disregarded. A solution is typically
encoded in forms of numbers or character (called genes),
depending upon the type of the solution space. Accordingly,
different solutions are generated by changing the positions of
the genes in sequence while satisfying the feasibility
conditions.

A. Algorithm Structure and Implementation
In an iteration of the GA implemented in this research, there

are pop number of solutions or individuals which are initially
randomly generated. At each iteration, (crossover rate) × pop

(rounded up to the first integer and even value) numbers of
individuals are randomly chosen and they are randomly
assigned to the pairs of two (only two parents are allowed for
each mate) to select the parents that can be mated with each
other. Crossover rate is a number between 0 and 1 implying
the ratio of the individuals in the population that can be mated.
Selected parents are mated using crossover operator and
generate new children. New children generated are added at
the end of the current population and this population is sorted
based on the increasing value of the objective function. Then,
the first pop solutions are selected and among them (mutation
rate) × pop (rounded up to the first integer value) individuals
are randomly selected for the mutation, where mutation rate is
a number between 0 and 1 implying the rate of individuals that
can be mutated. The children generated by mutation operator
are added to the end of the current population and, again, the
population is sorted and the first pop individuals are chosen
and are transferred as the population starting the next iteration.
The best solution identified at each iteration called “elite”
deserves to survive in the population of the next iteration after
implementing the crossover and mutation operators in the next
iteration and if its objective function value is better than that
of the worst solution identified in the next iteration. The
process explained happens at an iteration of the search and is
repeated until a maximum allowable number of iterations is
reached or number of iterations without improvement reaches
to a pre-determined value. The search starts by applying the
algorithm to identify the best sequence of the boards within
each group by assigning a group immediately after the
reference group and examining different objective function
values of having different board sequences within this group
and there is no group scheduled after this group. The best
sequence of the boards identified for each group will be kept
and it remains fixed when the search is advanced to
identifying the best sequence of the groups themselves. Based
upon the observation in [15] and reported by [16], pop is
assumed to be 25, crossover rate is 0.6, mutation rate is 0.05,
maximum number of iterations allowed is 500 and number of
iterations without improvement is 75.

B. Crossover
Non-Wrapping Order Crossover (NWOX) operator

proposed by [17] is a successful crossover that has the
characteristics of position-based and relative order-based
crossovers when the interest is not only in the absolute
position of the elements in the sequence, but also is in their
relative positions (for more information refer to [17]). The
functionality of this crossover is also compared against five
other different types: Uniform Crossover Operator (UXO),
Partially-Mapped Crossover (PMX), Uniform Partially-
Mapped Crossover (UPMX), CX and OX in [18], and it
showed promising results.
Without the loss of generality, suppose the search is in group
level. Thus there are chromosomes of N genes where N is the
number of board groups. Using this crossover, two
chromosomes are mated to generate two children. It randomly
selects two points (p1 and p2 where p1 ≤ p2) among the N

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:4, 2013

602

positions. Suppose that the gene in position i of parent j is
represented by gj(i) where i = 1,…,N and j = 1, 2 (see Table I
where p1 = 2 and p2 = 4). First, two children C1 and C2 are
initialized with copies of the first and second parent (the
second column in Table I). Then, the locations of g2(p1),
g2(p1+1),…, g2(p2) are identified in C1 and are replaced with
empty slots. Similarly, the location of g1(p1), g1(p1+1),…,

g1(p2) are replaced with empty slots in C2 (the third column in
Table I). Then, the empty slots are moved to the p1,…, p2 part,
resulting in all empty slots to be located in this part of each
child (the fourth column). Finally, p1,…, p2 part of C1 is filled
with g2(p1), g2(p1+1),…, g2(p2) respectively and similarly this
part is filled with g1(p1), g1(p1+1),…, g1(p2) in C2 (the last
column).

TABLE I

 APPLICATION OF CROSSOVER OPERATOR
Sol
No. Parent chromosomes Replacing the groups with

empty slots
Moving the empty slots

to p1 and p2 part
Replacing empty slots with

groups in p1 and p2 part
1 G5-G3-G2-G1-G4-G6 - -G2-G1- -G6 G2- - - -G1-G6 G2-G5-G3-G4-G1-G6
2 G2-G5-G3-G4-G6-G1 -G5- -G4-G6- G5- - - -G4-G6 G5-G3-G2-G1-G4-G6

C. Mutation
This operator selects two points at random in a chromosome

and exchanges their associated genes. For example, in the first
parent in Table I, when the groups in the first and the fifth
positions exchange the result would be G4-G3-G2-G1-G5-G6.

IV. DATA GENERATION
The process used to generate the data and an example

problem used to demonstrate the application of GA is
provided in this section. The same approach as given in [13]
is used to obtain the number of boards within each group,
number of units of each board to produce, run times (assembly
times) of boards and component-feeder assignments. Run time
of a board is random number from the interval U[5, 20]. There
are the total of 125 different types of components that must be
located on boards, out of which 75 components are assembled
on the first machine and 50 components on the second
machine. Number of components in each board is selected
from U[5, 12] and U[1, 5], respectively, for the first and the
second machine. The weight of a board in the objective
function is an integer number generated from the uniform
interval [1, 3]. Since most of the producers are customer
oriented, a greater importance is assigned to the tardiness
factor in the objective function by assuming that ߚଵ and ߚଶ are
respectively 0.4 and 0.6.

The number of boards in a group is determined by
generating a random number p from U[0, 1]. The number of
boards is 3, 4 or 5 when p ≤ 1/3, 1/3 < p ≤ 2/3 and p > 2/3,
respectively. The number of groups that can have the same
number of boards is ۀ3/ܰڿ where N is the number of groups.
The feeder capacities on the first and second machine are
assumed to be 20 and 10, respectively. Also, the number of
units of each board is randomly generated from U[3, 15]. To
generate the kitting times, the study by [19] is used to obtain
the ratio of run time to kitting time evaluated as 45/12 = 3.75.
A mechanism given in [20] is used to generate meaningful due
dates. Two intervals [ҧ݀ – R ҧ݀, ҧ݀] and [ҧ݀, ҧ݀+ (Cmax – ҧ݀)R] are
randomly selected using a deciding random number from [0,
1]. The first interval is selected if this random number falls in
[0, τ]; otherwise the second interval is chosen. Notations τ, R,

ҧ݀ and Cmax are respectively tardiness factor, range factor,
average due dates and estimated maximum completion time of

the last board on the second machine. Loose due dates and
narrow range of due dates are generated by respectively
selecting τ and R to be small. τ and R are deliberately assumed
to be 0.8 and 0.2 to test the GA on tight and narrow range of
due dates. To calculate Cmax, approximate values of boards’
completion times on the machines as well as an estimate of
carryover over sequence dependent setup times for each of the
groups are required. Approximate completion times of the
boards on the machines are calculated using the dynamic
programming algorithm below, by assuming that Sതgk is the
average carryover sequence-dependent setup time for the gth
board group to be assigned in different positions on the kth
machine. Og,b,k is the completion time of board b of group g
on machine k.

Og,1,k = max ቄOg-1, ng-1,k + βgk × Sതgk, Og,1,k-1ቅ + rtg,1,k (1)

 g; k = 1, 2; b = 1׊

Og,b,k = max൛Og,b,k-1, Og,b-1,kൟ + rtg,b,k (2)

 g; k = 1, 2; b > 1׊

where ܵҧ௚௞ ൌ
∑ ∑ ௌഏೕ,೒,ೖ

ಿషభ
ೕసభഏೕא೵ሺೕሻ

ேൈ௤
, Og,b,0 ൌ 0 , Og,1,0 ൌ 0

and O0, ng‐1,k
ൌ 0.

Π(j) is a set of q > 0 random group sequences in which board
group g is assigned to the jth slot and ܵగೕ,௚,௞ is the setup time
required to transfer to the board group g after the partial
sequence ߨ௝ on machine k. To obtain ܵҧ௚௞, a number of random
sequences of groups are generated and in each of the
sequences the carryover sequence-dependent setup time for
assigning the gth group in the jth slot (ܵగೕ,௚,௞) is evaluated.
Then, all of the obtained setup time values for all slots in all
random sequences are added up. This value is divided by the
sum of the total number of partial sequences that can be
assumed. There is a linear relationship between ߚ௚௞ and CVgk
and it is used to obtain ߚ௚௞. CVgk = ݏ/Sതgk where ݏ and Sതgk are
respectively the standard deviation and average values of the
carryover sequence-dependent setup times for assigning group
g on machine k in different positions. ҧ݀ is also determined

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:4, 2013

603

using the formula τ = 1− ҧ݀/ Cmax. Using the process outlined
above to generate the data, an example problem with number
of board groups of six is generated and its associated
information is provided in Tables II and III. To provide a
simple example for better understanding, the number of boards
in a group is assumed to be at most 2. However, it is 3, 4 or 5
in the instance problems generated in the computational
experiments section. Table II presents number of boards in
each group, run times and kitting times of the boards on the

two machines, weights and also due dates of the boards. Table
III displays the feeder-component assignments required of the
six board groups as well as the reference board group on the
two machines. The setup time per feeder is the amount of time
needed to change from a component required by the current
group to a component required of the next board group on the
same feeder and, based on the research in [13], it is assumed
to be 180 and 200 seconds, respectively, on the first and the
second machine.

TABLE ΙΙ

RUN TIMES, KITTING TIMES, WEIGHTS AND DUE DATES OF BOARDS

Group Board Run time Kitting time Weights Due date M1 M2 M1 M2
1 1 1121 100 299 27 1 2925

2 1474 3 393 1 2 2740
2 1 457 250 122 67 1 3348

2 604 113 161 30 2 3194
3 1 61 141 16 38 3 2920

2 787 325 210 87 3 2755
4 1 854 9 228 2 2 3304
5 1 1257 128 335 34 2 3285
6 1 423 291 113 78 2 2736

TABLE ΙΙΙ

COMPONENTS ASSIGNED ON FEEDERS

Feeder M1 M2
R G1 G2 G3 G4 G5 G6 R G1 G2 G3 G4 G5 G6

1 C-36 C-56 C-14 C-10 C-12 C-29
2 C-37 C-19 C-42 C-12 C-13 C-14 C-11 C-06
3 C-16 C-23 C-74 C-29 C-04 C-49 C-20 C-22
4 C-42 C-19 C-31 C-33 C-16 C-50 C-13
5 C-10 C-28 C-55 C-68 C-23 C-10 C-35 C-17
6 C-67 C-62 C-44 C-15 C-29 C-15 C-48 C-39 C-16 C-20
7 C-19 C-42 C-34 C-15 C-10
8 C-10 C-58 C-52
9 C-47 C-65 C-40 C-48 C-12
10 C-48 C-11 C-73 C-31 C-30
11 C-67 C-42
12 C-52 C-09
13 C-72 C-15 C-07 C-21
14 C-43 C-50 C-34
15 C-40 C-16 C-32
16 C-38 C-61 C-58 C-16
17 C-17 C-56 C-65 C-61
18 C-19 C-06 C-23 C-29
19 C-37 C-13 C-71 C-54 C-66
20 C-37 C-15 C-07 C-41

V. APPLICATION OF THE GENETIC ALGORITHM

In this section, the application of the GA on an example
problem generated in the previous section is presented. Since
GA is an iterative-greedy search, meaning that the same
operations are employed in each iteration of the search, the
application of different operations used in this algorithm is
demonstrated in only one iteration of the search. Also, as
mentioned before, the algorithm first identifies the best
sequence of the boards within the groups and using those
sequences the search continues to find the best sequence of the
groups themselves. Implementation of GA only makes sense
when chromosomes have at least 4 genes; otherwise, there
would be a very small solution space. On the other hand, since
the GA structure in this paper is similar in both the group and
board levels, the highest number of boards in a group in this
example was assumed to be 2 to enable focusing only on

applying GA to the group level. Out of the six considered
board groups, the last three groups have only one board
implying that there is no need of GA in the board level for
these groups. However, the first three groups have two boards
where the best board sequence can be obtained by examining
only two possible sequences which again satisfy the need of
employing GA in the board level. The best sequence identified
for the boards inside G1, G2 and G3 are respectively b12-b11,
b22-b21 and b31-b32 where Gj implies the jth group and bji-bjk
implies the kth board follows the ith board within Gj. In Table
IV, the population of 10 individuals for the 6 board groups
problem is presented. This population can be initially
randomly generated or be the population received from the
previous iteration. Section “Current population” of this table
shows 10 individuals that can be mated to generate a number
of children. The second column represents different solutions
with different configurations. The parents that can be mated

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:4, 2013

604

with each other are shown in the third column with the same
number of “X” (for example, P5 with three “X” can only be
mated with P6 with three “X”). In the fourth column, two
crossover points for each of the chromosomes in a mating-pair
are given. The last column shows the associated objective
function value for each of the solutions. The selected parents
((P8, P9), (P3, P7) and (P5, P6)) are mated using the crossover
operator resulting in 6 (0.6*10) new solutions which are given
in the “Crossover application” section of Table IV. The third
column of this section displays the parents that have been
selected to produce the corresponding generated child (for
example, P8 and P9 are parents of P11 and P12). So far, a total of
16 solutions (P1 to P16) are generated, resulting in an
extended population with 16 individuals. Then, this population
is sorted based on increasing OFV (objective function value)

and the first 10 individuals are selected and stored in the
section “Sorted population”. The third column of this section
shows (0.01*10 ≈ 1) individuals which are randomly selected
for mutation and their associated mutation points are provided
in the fourth column. Accordingly, the chromosome P12 is
selected for mutation generating P17 which is presented in
section “Mutation application” of the table. Finally, a total of
11 individuals, shown in the last two sections of the table, are
sorted and the first top 10 are transferred as the population for
the next iteration. The best chromosome or P4 with the OFV of
85190 is the elite chromosome identified in this iteration that
can survive in the next iteration (after the crossover and
mutation operators are performed) if it had an OFV better than
that of the worst solution identified at the end of the next
iteration.

TABLE IV

 DEMONSTRATION OF GENETIC ALGORITHM’S OPERATORS
Current population Sorted population

Solution Configuration Indvs for crossover Crossover
points OFV Soluti

on Configuration Indvs for
mutation

Mutation
points OFV

P1 G4-G1-G5-G3-G6-G2 126048 P4 G3-G4-G6-G2-G5-G1 85190
P2 G3-G6-G1-G5-G4-G2 95577 P8 G6-G3-G5-G1-G2-G4 92657
P3 G4-G2-G5-G6-G3-G1 XX 2, 4 109296 P2 G3-G6-G1-G5-G4-G2 95577
P4 G3-G4-G6-G2-G5-G1 85190 P10 G3-G1-G6-G5-G2-G4 96268
P5 G3-G1-G5-G2-G4-G6 XXX 1, 3 99449 P5 G3-G1-G5-G2-G4-G6 99449
P6 G5-G1-G4-G3-G6-G2 XXX 1, 3 126987 P15 G3-G1-G5-G4-G6-G2 99742
P7 G5-G4-G1-G2-G6-G3 XX 2, 4 133904 P12 G4-G3-G5-G1-G2-G6 * 3, 6 104449
P8 G6-G3-G5-G1-G2-G4 X 2, 5 92657 P3 G4-G2-G5-G6-G3-G1 109296
P9 G1-G5-G4-G3-G6-G2 X 2, 5 132192 P13 G4-G2-G5-G6-G1-G3 125044
P10 G3-G1-G6-G5-G2-G4 96268 P1 G4-G1-G5-G3-G6-G2 126048

Crossover application Mutation application

Solution Configuration Associated parents OFV Soluti
on Configuration Associated parent OFV

P11 G1-G5-G4-G3-G6-G2 (P8,P9) 132192 P17 G4-G3-G6-G1-G2-G5 P12 100009
P12 G4-G3-G5-G1-G2-G6 (P8,P9) 104449
P13 G4-G2-G5-G6-G1-G3 (P3,P7) 125044
P14 G5-G4-G1-G2-G6-G3 (P3,P7) 133904
P15 G3-G1-G5-G4-G6-G2 (P5,P6) 99742
P16 G5-G1-G4-G3-G2-G6 (P5,P6) 127715

VI. COMPUTATIONAL RESULTS
To evaluate the performance of the GA, it was tested on

solving several problem instances with number of groups of 3,
4, 5 and 6 with the average setup time per feeder of 30 and
180. For each of these problems differentiated by the number
of groups and average setup time per feeder, two instance
problem instances were randomly generated. A general
mathematical model for this problem is presented in [21], and
by taking advantage of that model, the associated
mathematical model for each of the considered problem
instances was formulated and optimally solved using ILOG
CPLEX [22]. CPLEX found the optimal solution for all of the
considered problems except the problems with number of
groups of 6. For these two problems, CPLEX failed to find the
optimal solution even after spending the maximum time limit
of 3 days. Consequently, for these problems only the best
objective value and the best lower bound found by CPLEX
were reported. The results after implementing GA on the
problems and comparing against the optimal values are
provided in Table V. The first and second columns of this

table respectively show the average setup time per feeder and
number of groups. The objective function values found by
CPLEX and GA are provided in the third and fourth columns
together with their percentage deviation (GAିCPLEX

CPLEX
ൈ 100%),

which is given in the fifth column. The rest of the columns
show computation times (in seconds) and number of
enumerated solutions for both the approaches. As it can be
observed, GA found the optimal solution in most of the cases;
however, the largest and the average deviation are
respectively, 1.39% and 0.35%, which are considerably small.
The average computation time and number of enumerated
solutions for CPLEX and GA are respectively 38595 s, 0.81 s
and 1.71×108, 3642 which substantiates the fact that the
performance of GA is both effective and very efficient in
terms of solution quality and negligible computation times
required to solve all of the problems.

VII. CONCLUSION
A bicriteria scheduling problem in the assembly of PCBs in

a two-machine flow shop system is considered in this paper.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:4, 2013

605

The type of setup time assumed in this study called carryover
sequence-dependent exactly complies with the real application
of this problem and assumes the dependency to be carried
through the entire sequence of board groups. The kitting
operation, which has been traditionally ignored in PCB
studies, is brought to light by simultaneously performing the
kitting operation and the assembly operation, which is
characterized as “integration of external and internal setups”.
Consequently, the boards’ ready times which have always
been assumed to be static become dynamic in this paper,
which also enables applying the concepts of just-in-time
manufacturing. Objective function evaluation is a difficult task
in this research because of the requirement of evaluating the
start (finish) kitting times and completion times on both

machines. Thus, an approach capable of evaluating the
objective function optimally on the first machine and
heuristically on the second machine is developed. In
attempting to embrace all of the operational constraints in the
real application, this problem has become extremely complex
to be solved by optimal solution finding mechanisms. As a
result, a meta-heuristic based on genetic algorithm is
developed and its application is demonstrated by solving an
example problem. Also, to test the effectiveness of the
algorithm, several problem instances were solved and the GA
showed very promising results. As future research, a lower-
bounding mechanism would be developed for providing a
benchmark for solving large-size problems in which CPLEX
fails to provide the optimal solution.

TABLE V
 RESULTS OBTAINED FOR CPLEX AND GA BY SOLVING PROBLEM INSTANCES

AST N Solution value CPU time Solution number
CPLEX GA Deviation (%) CPLEX GA CPLEX GA

180 3 77315 77315 0 0.1 0.54 615 3169
3 95476 95476 0 1.9 0.69 9316 3457
4 210276 210276 0 31 0.75 1.02×106 3469
4 231581 231581 0 239 0.79 7.38×106 3697
5 366306 366514 0.06 3841 0.97 6.14×107 3745
5 309019 309019 0 2735 0.96 7.18×107 3835

 6 530861*
507954** 530977 259200 0.96 1.01×109 3734

30 3 39338 39338 0 0.61 0.69 847 3265
3 42152 42152 0 1.6 0.71 815 3265
4 154035 154581 0.35 102 0.81 2.69×106 3505
4 141702 144267 1.81 65 0.83 1.92×106 3697
5 189901 191090 0.63 14881 0.97 2.36×108 4032
5 137828 139743 1.39 78 0.82 1.82×106 3704

 6 376471*
358971** 377424 259200 1.16 1.00×109 4425

Average 0.35 38598 0.81 1.71×108 3642
 The numbers represented by ‘*’ and ‘**’respectively imply the best objective value and the best lower bound found by CPLEX

ACKNOWLEDGMENT

This research is funded in part by the National Science
Foundation (USA) Grant No. CMMI-1029471. Their support
is gratefully acknowledged.

REFERENCES

[1] J.E. Schaller, “A new lower bound for the flow shop group scheduling
problem,” Computers and Industrial Engineering, vol. 41, pp. 151–161,
2001.

[2] S.W. Choi, and Y.D. Kim, “Minimizing total tardiness on a two-
machine re-entrant flowshop,” European Journal of Operational
Research, vol. 199, pp. 375–384, 2009.

[3] V.A. Strusevic, “Group technology approach to the open shop
scheduling problem with batch setup times,” Operations Research
Letters, vol. 26, pp. 181–192, 2000.

[4] D.H. Eom, H.J. Shin, I.H. Kwun, J.K. Shim, and S.S. Kim, “Scheduling
jobs on parallel machines with sequence-dependent family setup times,”
International Journal of Advanced Manufacturing Technology, vol. 19,
pp. 926–932, 2002.

[5] J.E. Schaller, J.N.D. Gupta, and A.J. Vakharia, “Scheduling a flowline
manufacturing cell with sequence dependent family setup times,”
European Journal of Operational Research, vol. 125, pp. 324–339,
2000.

[6] Y.D. Kim, H.G. Lim, and M.W. Park, “Search heuristics for a flowshop
scheduling problem in a printed circuit board assembly process,”
European Journal of Operational Research, vol. 91, pp. 124–143, 1996.

[7] L.F. McGinnis, J.C. Ammons, M. Carlyle, L. Cranmer, G.W. Depuy,
K.P. Ellis, C.A. Tovey, and H. Xu, “Automated process planning for

printed circuit card assembly,” IIE Transactions, vol. 24, pp. 18–30,
1992.

[8] C.S. Tang, and E.V. Denardo, “Models arising from a flexible
manufacturing machine, part 1: Minimization of the number of tool
switches,” Operations Research, vol. 36, pp. 767–777, 1988.

[9] I.O. Yilmaz, and H.O. Günther, “A group setup strategy for PCB
assembly on a single automated placement machine,” Operations
Research Proceedings, Bremen, 2005, pp.143–148.

[10] V.J. Leon, and I.J. Jeong, “An improved group setup strategy for PCB
assembly," International Conference on Computational Science and its
Applications, Singapore, 2005, pp. 312–321.

[11] N. Van Hop, and N.N. Nagarur, “The scheduling problem of PCBs for
multiple non-identical parallel machines,” European Journal of
Operational Research, vol. 158, pp. 577–594, 2004.

[12] J. Ashayeri, and W. Selen, “ A planning and scheduling model for
onsertion in printed circuit board assembly,” European Journal of
Operational Research, vol. 183, pp. 909–925, 2007.

[13] C.A. Gelogullari, and R. Logendran, “Group-scheduling problems in
electronics manufacturing,” Journal of Scheduling, vol. 13, pp. 177–202,
2010.

[14] J.A. Holland, Adaptation in natural and artificial systems, University of
Michigan, Ann Arbor, 1975.

[15] K.A. De Jong, Analysis of the behavior of a class of genetic adaptive
systems, Doctoral Dissertation, University of Michigan, USA, 1975.

[16] D.E. Goldberg, Genetic algorithms in search, optimization and machine
learning, Massachusetts: Wesley, 1989.

[17] V.A. Cicirello, “Non-wrapping order crossover: An order preserving
crossover operator that respects absolute position,” Proceedings of
Genetic and Evolutionary Computation Conference, GECCO, USA,
2006, pp. 1125–1131.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:4, 2013

606

[18] O. Abdoun, and J. Abouchabaka, “A comparative study of adaptive
crossover operators for genetic algorithms to resolve the traveling
salesman problem,” International Journal of Computer Applications,
vol. 31, pp. 49–57, 2011.

[19] S.S. Joshi, Phadnis, K. Srihari, and R. Seeniraj, “Use of simulation to
improve the kitting process at an EMS provider's facility,” Computers
and Industrial Engineering Conference, Singapore, 2002.

[20] V. Pandya, and R. Logendran, “Weighted tardniess minimization in
flexible flow shops,” Proceedings (CD-ROM), 19th Annual Industrial
Engineering Research Conference, Cancun, Mexico, 2010.

[21] M.T. Yazdani Sabouni, and R. Logendran, “Bicriteria carryover
sequence-dependent group scheduling in PCB manufacturing,”
Proceedings (CD-ROM), 20th Annual Industrial Engineering Research
Conference (IERC), Reno, NV, USA, 2011.

[22] ILOG CPLEX. IBM, Version 12.2, 2010.

