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Abstract—We consider a typical problem in the assembly of 

printed circuit boards (PCBs) in a two-machine flow shop system to 
simultaneously minimize the weighted sum of weighted tardiness and 
weighted flow time. The investigated problem is a group scheduling 
problem in which PCBs are assembled in groups and the interest is to 
find the best sequence of groups as well as the boards within each 
group to minimize the objective function value. The type of setup 
operation between any two board groups is characterized as carryover 
sequence-dependent setup time, which exactly matches with the real 
application of this problem. As a technical constraint, all of the 
boards must be kitted before the assembly operation starts (kitting 
operation) and by kitting staff. The main idea developed in this paper 
is to completely eliminate the role of kitting staff by assigning the 
task of kitting to the machine operator during the time he is idle 
which is referred to as integration of internal (machine) and external 
(kitting) setup times. Performing the kitting operation, which is a 
preparation process of the next set of boards while the other boards 
are currently being assembled, results in the boards to continuously 
enter the system or have dynamic arrival times. Consequently, a 
dynamic PCB assembly system is introduced for the first time in the 
assembly of PCBs, which also has characteristics similar to that of 
just-in-time manufacturing. The problem investigated is 
computationally very complex, meaning that finding the optimal 
solutions especially when the problem size gets larger is impossible. 
Thus, a heuristic based on Genetic Algorithm (GA) is employed. An 
example problem on the application of the GA developed is 
demonstrated and also numerical results of applying the GA on 
solving several instances are provided.   
 

Keywords—Genetic algorithm, Dynamic PCB assembly, 
Carryover sequence-dependent setup times, Multi-objective. 

I. INTRODUCTION 
HE main part of every electronic device is PCBs which 
embodies several different types of electronic 

components. PCB assembly simply means to place these 
components which range in very different types and shapes, 
during a process called assembly operation. Because of the 
vast variety of components, the boards requiring similar types 
of components are usually grouped into one group of boards to 
lessen the number of unnecessary setups which are required 
whenever the assembly operation is scheduled to transfer from 
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one group to another, and it implies the existence of group 
scheduling (GS) concepts for this problem. The setup time 
assumption in PCB studies is the most important factor that 
essentially affects the performance of the system. Because of 
the inherent complexity involved in evaluating the setup time 
in the assembly of PCBs, the setup time has not been exactly 
or correctly estimated in all of the traditional studies so far. 
However, the carryover sequence-dependent setup time 
assumed in this paper accurately captures the actual amount of 
setup time required to transfer the assembly operation from 
one board group to another. In other words, the setup time 
dependency traditionally considered is that it is at most 
dependent on the immediately preceding board group, while a 
careful investigation of this problem has shown that the 
dependency is not only on the immediately preceding board 
group, but on all of the previously scheduled board groups and 
their sequences. Thus, finding the best sequence of the groups 
which are already assigned to the machine to evaluate the 
minimum amount of setup time to transfer to the next board 
group is translated into solving a Travelling Salesman 
Problem which is known to be NP-hard in strong sense. The 
complexity gets even worse when this setup operation is 
integrated with another operation, namely kitting (as described 
below) on two-machine flow shop. The objective is to 
sequence all board groups and their boards where the weighted 
sum of total weighted flow time and total weighted tardiness is 
minimized. 

A PCB assembly machine utilizes several feeders on which 
components required by boards are placed. Thus, changing the 
components which are currently on the feeders with the 
components which are required on appropriate feeders by the 
next board group, on a frequent basis, results in continuously 
updating the component-feeder requirements. These 
changeovers begin with the reference group which is the set of 
components remained on the feeders from the previous period 
and get carried over up to the current group, which implies 
that the dependency is carried over throughout all board 
groups and introduces the idea of developing carryover 
sequence-dependent setup times. 

There is another kind of operation called kitting required in 
preparing the PCBs for the assembly operation and that must 
be performed by kitting staff before the assembly operation 
starts. The kitting operation is an essential part of PCB 
manufacturing whose impact has always been disregarded 
from the total required setup time in the assembly of PCBs by 
assuming that all boards have static or zero arrival times. 
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Thus, as a new direction of research, we are inspired to 
investigate the possibility of integrating both types of setups, 
which is referred to as integrating internal setup (carryover 
sequence-dependent setup operation) and external setup 
(kitting operation), and have both of them solely be performed 
by the machine operator. To do that, the machine operator is 
assigned to perform the kitting operation required by the next 
board group during the time he is idle or during the time the 
machine is automatically performing the assembly operation 
of the current board group. In this research, boards are 
simultaneously kitted or introduced to the manufacturing line 
at the same time the assembly operation is being performed 
and this enables us to focus on a dynamic PCB assembly 
system for the first time. The problem investigated in this 
research captures all of those operational constraints that can 
be found in a typical PCB assembly problem. Capturing all of 
the operational constraints introduces much complexity to the 
problem which has been known to be complex even with more 
simplified assumptions. This necessitates the development of 
meta-heuristics which is a GA-based approach in this paper. 
The GA developed is capable of solving problems of all sizes 
(small to large) considered very effectively and in a very short 
period of time which substantiates the industrial applicability 
of the research as well as the methodology developed.  

There are numerous studies in PCB manufacturing, where 
each addresses different characteristics associated with the 
problem. However, the most challenging factor differentiating 
not only the problem types, but also the corresponding 
methods given, is the type of setup time. Thus, setup time is 
addressed to provide an overview of some of the studies that 
have been performed so far. As mentioned before, 
traditionally it is assumed that board groups are totally 
sequence-dependent or the dependency is at most on the 
immediately preceding board group. While the sequence-
independent cases can be referred to [1] and [2], [3]–[6] 
studied sequence dependency. A setup strategy called the 
decompose and sequence (DAS) method is proposed in [7], 
which changes the feeders not shared by the next board group 
while ignoring the board groups and boards themselves. 
Reference [8] proposed another method called KTNS (Keep 
Tool Needed the Soonest) which only exchanges the required 
tools and neglects the positions to which the tools are 
assigned.  

Another setup strategy called the group setup strategy 
ensures the fact that boards are assembled in groups making it 
more suitable to be applied in the assembly of PCBs than other 
approaches in classical studies. However, since it assumes that 
the dependency is only on the immediately preceding 
scheduled board group, it may not correctly evaluate the 
overall dependencies associated with the problem. References 
[9] and [10] proposed methods to minimize the total makespan 
while focusing on group setup strategy. A mathematical model 
and a GA to minimize makespan on non-identical parallel 
machines with sequence-dependent setups are developed [11]. 
In the work of [12] two strategies to minimize the number of 
feeder-changeovers with sequence-dependent board groups are 
proposed.  

The only research in scheduling that considered the 
carryover sequence-dependent setup time is the work of [13], 
while focusing on a single objective problem and jobs with 
static arrival times. Like in all of the traditional works, their 
research also did not take into consideration of the kitting 
operation in the evaluation of the total setup time by assuming 
that all boards have static arrival times. Consequently, it can 
be inferred that minimizing a bi criteria objective function, 
integration of internal and external setups, and dynamic arrival 
of boards are mainly the factors of considerable significance 
that basically differentiate their works and ours.    

In this problem, the objective function evaluation on a two-
machine flow shop, when there are two opposing objectives 
and dynamic arrival of boards, is a challenging task unlike 
most of the typical scheduling problems with static arrival 
times of boards. However, we have developed an approach 
which is capable of optimally evaluating the objective 
function on the first machine for a given sequence of boards 
and groups and heuristically on the second machine, yet very 
close to the optimal value. The highlighted contribution of the 
paper is summarized as following: 
1. Introducing a PCB assembly problem with dynamic 

arrival times of boards while taking advantage of the idea 
of just-in-time manufacturing in the assembly of PCBs.  

2. Correctly incorporating the carryover sequence-dependent 
setup times in a dynamic PCB assembly.  

3. Eliminating the kitting staff by integration of internal and 
external setups.  

4. Developing an objective function evaluation approach to 
optimally evaluate the objective function on the first 
machine and heuristically on the second machine.  

5. Developing an efficient genetic algorithm to arrange 
board groups as well as the boards within each group.  

The explanation of objective function evaluation is provided 
in the next section. Section III outlines an overview of the GA 
developed in this paper. Data generation and a representative 
example on the application of the GA are provided in Section 
IV. In Section V, computational experiments after solving 
several problem instances are provided, followed by the last 
section in which an overview of the paper together with future 
research are given.  

II. OBJECTIVE FUNCTION EVALUATION 
Minimizing the weighted sum of weighted flow times and 

total weighted tardiness is the objective in this paper. Suppose 
there are a total of m board groups, and each has several 
boards. We imply G[j], b[j,i] and n[j] as the jth ordered group, ith 
ordered board within G[j] and number of boards in G[j], 
respectively. The flow time and tardiness of b[j,i] are evaluated 
respectively as (O[j,i]k – R[j,i]k) and (O[j,i]2 – d[j,i]) where O[j,i]k, 
R[j,i]k, ݓሾ௝,௜ሿ and d[j,i] are respectively the completion time, 
finish kitting time, weight and due date of b[j,i] in G[j] on the 
kth machine. Consequently the objective function is evaluated 
as 
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where ߚଵ ൅ ଶߚ ൌ 1. n[j] in the objective function is not defined 
to be a fixed value and it is possible to do so because this 
objective function will be algorithmically calculated. 

During the time in between the assembly of the current 
board group starts and the machine operator performs the 
setup operation required of the next board group, the machine 
operator is idle and he can perform the kitting operation of the 
next board group. The difference between the finish kitting 
time and completion time of any board is reflected in the 
objective function, and as a result, finish kitting times should 
be correctly evaluated. On the other hand, because of dynamic 
arrival times of boards, start kitting times are hard to be 
calculated so evaluating the finish kitting times would be 
difficult too, and it becomes more difficult when they have to 
be determined on the two machines. This issue is addressed in 
this paper by developing an approach, including two 
properties, which is capable of calculating the objective 
function optimally on the first machine, and heuristically on 
the second machine. The proof of optimality on the first 
machine (not addressed here because of space limitations) 
guarantees evaluating the optimal values of finish assembly 
and kiting times.  

Property 1: Suppose the start time and completion time of 
the assembly operation of the board group G[j] on the first 
machine be represented, respectively, as T[j] and C[j]1. Assume 
the next board group containing n boards assembled after G[j] 
is G[j+1]. If the kitting operation of all the boards of G[j+1] 
completes before C[j]1 – T[j] then the sequence of the n boards 
whose last board’s finish kitting time is exactly C[j]1 dominates 
the similar sequences of the n boards whose last board’s finish 
kitting time is earlier than C[j]1.   

Property 2: Suppose the start time and completion time of 
the assembly operation of the board group G[j] on the first 
machine be represented respectively as T[j] and C[j]1. Assume 
the next board group containing n boards assembled after G[j] 
is G[j+1]. If the kitting operation of all the boards of G[j+1] 
completes after C[j]1 – T[j] then the sequence of n boards whose 
first board’s start kitting time is exactly T[j] dominates similar 
sequences of the n boards whose first board’s start kitting time 
is after T[j].  

Start (finish) kitting times on the second machine are 
calculated very differently from the first machine. To 
determine the start kitting time of a board group on the second 
machine, it is required to identify the start kitting time of the 
first board of this group which is dependent on both its 
completion time on the first machine and also the completion 
time of the last board of the previous group on the second 
machine. To tackle this problem, two cases are considered. 
The first case reflects the situation where the completion time 
of the first board of a group on the first machine is smaller 
than the completion time of the previous board group plus the 
setup time to transfer to the current board group on the second 
machine. As the second case, the completion time of the first 
board of a group on the first machine is larger than the 

completion time of the previous board group plus the setup 
time to transfer to the current board group on the second 
machine.   

When the first case is present, the kitting operation of the 
next board group on the second machine is at a time during the 
assembly time of the current board group (similar to the 
situations in Properties 1 and 2). In the second case, two 
possibilities (Poss1 and Poss2) are assumed to evaluate the 
start assembly time of the first board of the current group on 
the second machine and eventually they are developed to 
heuristically calculate the start times of the assembly operation 
of the rest of the boards of the current group on the second 
machine. In other words, a general approach can be developed 
as a form of an algorithm to heuristically evaluate the start 
kitting times on the second machine. As Poss1 shown in Fig. 
1, the assembly operation of a board on the second machine 
immediately starts after its completion time on the first 
machine. As Poss2 shown in Fig. 2, the assembly operation of 
a board on the second machine is at the time when the next 
board(s) finishes its assembly operation on the first machine. 

 

 
Fig. 1 Assembly operation of the first board on the second machine 

starts right after this board is completed on the first machine 
S1 and S2 are respectively the setup times needed to transfer to the 

next board group on the first and the second machine 
 

 
Fig. 2 Assembly operation of the first board on the second machine 
finishes exactly at the completion time of the next board on the first 

machine 
 
Assume G[c] with nc number of boards, the algorithm below 

finds the start kitting times of the boards of G[c]. MinO and 
BestKit are respectively the best found contribution of G[c] in 
the objective function on the second machine and an array for 
storing the best found start kitting times on the second 
machine. PossT is a decision variable implying the selection 
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of Poss1 or Poss2. i, r, l and NB are positive and integer 
variables.   
1. Set PossT = 1 and MinO to a very large and positive 

value.  
2. For i = 1 to nc 
3. For r = i to nc  
4. If PossT = 1, then let the start assembly time of b[c,i] be 

exactly after the completion time of b[c,r] on the first 
machine. If i < nc, i < r and PossT = 2 then start the 
assembly of b[c,i] at a time such that it finishes at the 
completion time of b[c,r] on the previous machine. Set NB 
= i. Go to step 3. 

5. For l = i – 1 to 1  
6. Assemble b[c,l] immediately before b[c,NB]. Set NB = l and 

get next l. If l = 0, go to step 4.  
7. Put the setup operation exactly before the assembly of 

b[c,1] and let the setup follow the kitting operation of b[c,nc]. 
Set NB = nc. Go to step 5.  

8. For l = nc – 1 to 1 
9. Kit b[c,l] exactly before b[c,NB]. Set NB = l, and get next l. If 

l = 0, go to step 6. 
10. For l = i + 1 to nc 
11. Calculate the start assembly time of b[c,l] according to the 

time progress of the assembly operation on the first and 
second machines (the maximum of completion time of 
b[c,l] on the first machine and completion time of b[c,l-1] on 
the second machine), get next l. If l = nc + 1, go to step 7.    

12. Calculate the contribution of G[c] in the objective function 
on the second machine with the current start kitting times. 
Update MinO if a less value for the contribution of G[c] in 
the objective function is found and then update BestKit to 
the current start kitting times. Get next r. If r = nc + 1, get 
next i. If i = nc + 1, set PossT = 2 and repeat step 2; 
otherwise, if i = nc + 1 and PossT = 2, go to step 8.  

13. Report BestKit and terminate the algorithm.  

III. GENETIC ALGORITHM IMPLEMENTATION 
Genetic algorithms (GA) originally developed by [14] 

belong to the class of optimization techniques. GA iteratively 
improves an objective function through several iterations of 
the search by allowing a set of solutions (representatives of 
different areas in the solution space) in each iteration to be 
combined with each other, resulting in the generation of other 
new solutions. Because of the interest in improving the 
objective function value, only the best of parents as well as 
offspring generated are qualified to be transferred to the next 
iteration and the rest are disregarded. A solution is typically 
encoded in forms of numbers or character (called genes), 
depending upon the type of the solution space. Accordingly, 
different solutions are generated by changing the positions of 
the genes in sequence while satisfying the feasibility 
conditions.  

A.  Algorithm Structure and Implementation 
In an iteration of the GA implemented in this research, there 

are pop number of solutions or individuals which are initially 
randomly generated. At each iteration, (crossover rate) × pop 

(rounded up to the first integer and even value) numbers of 
individuals are randomly chosen and they are randomly 
assigned to the pairs of two (only two parents are allowed for 
each mate) to select the parents that can be mated with each 
other. Crossover rate is a number between 0 and 1 implying 
the ratio of the individuals in the population that can be mated. 
Selected parents are mated using crossover operator and 
generate new children. New children generated are added at 
the end of the current population and this population is sorted 
based on the increasing value of the objective function. Then, 
the first pop solutions are selected and among them (mutation 
rate) × pop (rounded up to the first integer value) individuals 
are randomly selected for the mutation, where mutation rate is 
a number between 0 and 1 implying the rate of individuals that 
can be mutated. The children generated by mutation operator 
are added to the end of the current population and, again, the 
population is sorted and the first pop individuals are chosen 
and are transferred as the population starting the next iteration. 
The best solution identified at each iteration called “elite” 
deserves to survive in the population of the next iteration after 
implementing the crossover and mutation operators in the next 
iteration and if its objective function value is better than that 
of the worst solution identified in the next iteration. The 
process explained happens at an iteration of the search and is 
repeated until a maximum allowable number of iterations is 
reached or number of iterations without improvement reaches 
to a pre-determined value. The search starts by applying the 
algorithm to identify the best sequence of the boards within 
each group by assigning a group immediately after the 
reference group and examining different objective function 
values of having different board sequences within this group 
and there is no group scheduled after this group. The best 
sequence of the boards identified for each group will be kept 
and it remains fixed when the search is advanced to 
identifying the best sequence of the groups themselves.  Based 
upon the observation in [15] and reported by [16], pop is 
assumed to be 25, crossover rate is 0.6, mutation rate is 0.05, 
maximum number of iterations allowed is 500 and number of 
iterations without improvement is 75. 

B. Crossover 
Non-Wrapping Order Crossover (NWOX) operator 

proposed by [17] is a successful crossover that has the 
characteristics of  position-based and relative order-based 
crossovers when the interest is not only in the absolute 
position of the elements in the sequence, but also is in their 
relative positions (for more information refer to [17]). The 
functionality of this crossover is also compared against five 
other different types: Uniform Crossover Operator (UXO), 
Partially-Mapped Crossover (PMX), Uniform Partially-
Mapped Crossover (UPMX), CX and OX in [18], and it 
showed promising results. 
Without the loss of generality, suppose the search is in group 
level. Thus there are chromosomes of N genes where N is the 
number of board groups. Using this crossover, two 
chromosomes are mated to generate two children. It randomly 
selects two points (p1 and p2 where p1 ≤ p2) among the N 
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positions. Suppose that the gene in position i of parent j is 
represented by gj(i) where i = 1,…,N and j = 1, 2 (see Table I 
where p1 = 2 and p2 = 4). First, two children C1 and C2 are 
initialized with copies of the first and second parent (the 
second column in Table I). Then, the locations of g2(p1), 
g2(p1+1),…, g2(p2) are identified in C1 and are replaced with 
empty slots. Similarly, the location of g1(p1), g1(p1+1),…, 

g1(p2)  are replaced with empty slots in C2 (the third column in 
Table I). Then, the empty slots are moved to the p1,…, p2 part, 
resulting in all empty slots to be located in this part of each 
child (the fourth column). Finally, p1,…, p2 part of C1 is filled 
with g2(p1), g2(p1+1),…, g2(p2) respectively and similarly this 
part is filled with g1(p1), g1(p1+1),…, g1(p2) in C2 (the last 
column).  

 
TABLE I 

 APPLICATION OF CROSSOVER OPERATOR 
Sol 
No. Parent chromosomes Replacing the groups with 

empty slots 
Moving the empty slots  

to p1 and p2 part 
Replacing empty slots with 

groups in p1 and p2 part 
1 G5-G3-G2-G1-G4-G6 - -G2-G1- -G6 G2-  -  -  -G1-G6 G2-G5-G3-G4-G1-G6 
2 G2-G5-G3-G4-G6-G1 -G5- -G4-G6-  G5-  -  -  -G4-G6 G5-G3-G2-G1-G4-G6 

  
C. Mutation 
This operator selects two points at random in a chromosome 

and exchanges their associated genes. For example, in the first 
parent in Table I, when the groups in the first and the fifth 
positions exchange the result would be G4-G3-G2-G1-G5-G6. 

IV. DATA GENERATION 
The process used to generate the data and an example 

problem used to demonstrate the application of GA is 
provided in this section. The same approach as given in  [13] 
is used to obtain the number of boards within each group, 
number of units of each board to produce, run times (assembly 
times) of boards and component-feeder assignments. Run time 
of a board is random number from the interval U[5, 20]. There 
are the total of 125 different types of components that must be 
located on boards, out of which 75 components are assembled 
on the first machine and 50 components on the second 
machine. Number of components in each board is selected 
from U[5, 12] and U[1, 5], respectively, for the first and the 
second machine. The weight of a board in the objective 
function is an integer number generated from the uniform 
interval [1, 3]. Since most of the producers are customer 
oriented, a greater importance is assigned to the tardiness 
factor in the objective function by assuming that ߚଵ and ߚଶ are 
respectively 0.4 and 0.6.    

The number of boards in a group is determined by 
generating a random number p from U[0, 1]. The number of 
boards is 3, 4 or 5 when p ≤ 1/3, 1/3 < p ≤ 2/3 and p > 2/3, 
respectively. The number of groups that can have the same 
number of boards is ۀ3/ܰڿ where N is the number of groups. 
The feeder capacities on the first and second machine are 
assumed to be 20 and 10, respectively. Also, the number of 
units of each board is randomly generated from U[3, 15].   To 
generate the kitting times, the study by [19] is used to obtain 
the ratio of run time to kitting time evaluated as 45/12 = 3.75. 
A mechanism given in [20] is used to generate meaningful due 
dates. Two intervals [ ҧ݀ – R ҧ݀, ҧ݀] and [ ҧ݀, ҧ݀+ (Cmax – ҧ݀)R] are 
randomly selected using a deciding random number from [0, 
1]. The first interval is selected if this random number falls in 
[0, τ]; otherwise the second interval is chosen. Notations τ, R, 

ҧ݀ and Cmax are respectively tardiness factor, range factor, 
average due dates and estimated maximum completion time of 

the last board on the second machine. Loose due dates and 
narrow range of due dates are generated by respectively 
selecting τ and R to be small. τ and R are deliberately assumed 
to be 0.8 and 0.2 to test the GA on tight and narrow range of 
due dates. To calculate Cmax, approximate values of boards’ 
completion times on the machines as well as an estimate of 
carryover over sequence dependent setup times for each of the 
groups are required. Approximate completion times of the 
boards on the machines are calculated using the dynamic 
programming algorithm below, by assuming that Sതgk is the 
average carryover sequence-dependent setup time for the gth 
board group to be assigned in different positions on the kth 
machine. Og,b,k is the completion time of board b of group g 
on machine k.  

 
Og,1,k = max ቄOg-1, ng-1,k + βgk × Sതgk, Og,1,k-1ቅ + rtg,1,k      (1)  

 
  g; k = 1, 2; b = 1׊

 
Og,b,k = max൛Og,b,k-1, Og,b-1,kൟ + rtg,b,k                 (2) 

 
         g; k = 1, 2; b > 1׊ 
 

where ܵҧ௚௞ ൌ
∑ ∑ ௌഏೕ,೒,ೖ

ಿషభ
ೕసభഏೕא೵ሺೕሻ

ேൈ௤ 
, Og,b,0 ൌ 0 , Og,1,0 ൌ 0 

and O0, ng‐1,k
ൌ 0. 

Π(j) is a set of q > 0 random group sequences in which board 
group g is assigned to the jth slot and ܵగೕ,௚,௞ is the setup time 
required to transfer to the board group g after the partial 
sequence ߨ௝ on machine k. To obtain ܵҧ௚௞, a number of random 
sequences of groups are generated and in each of the 
sequences the carryover sequence-dependent setup time for 
assigning the gth group in the jth slot (ܵగೕ,௚,௞) is evaluated. 
Then, all of the obtained setup time values for all slots in all 
random sequences are added up. This value is divided by the 
sum of the total number of partial sequences that can be 
assumed. There is a linear relationship between ߚ௚௞ and CVgk 
and it is used to obtain ߚ௚௞. CVgk = ݏ/Sതgk where ݏ and Sതgk are 
respectively the standard deviation and average values of the 
carryover sequence-dependent setup times for assigning group 
g on machine k in different positions. ҧ݀ is also determined 
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using the formula τ = 1− ҧ݀/ Cmax. Using the process outlined 
above to generate the data, an example problem with number 
of board groups of six is generated and its associated 
information is provided in Tables II and III. To provide a 
simple example for better understanding, the number of boards 
in a group is assumed to be at most 2. However, it is 3, 4 or 5 
in the instance problems generated in the computational 
experiments section. Table II presents number of boards in 
each group, run times and kitting times of the boards on the 

two machines, weights and also due dates of the boards. Table 
III displays the feeder-component assignments required of the 
six board groups as well as the reference board group on the 
two machines. The setup time per feeder is the amount of time 
needed to change from a component required by the current 
group to a component required of the next board group on the 
same feeder and, based on the research in [13], it is assumed 
to be 180 and 200 seconds, respectively, on the first and the 
second machine. 

 
TABLE ΙΙ 

RUN TIMES, KITTING TIMES, WEIGHTS AND DUE DATES OF BOARDS 

Group Board Run time Kitting time Weights Due date M1 M2 M1 M2 
1 1 1121 100 299 27 1 2925 

2 1474 3 393 1 2 2740 
2 1 457 250 122 67 1 3348 

2 604 113 161 30 2 3194 
3 1 61 141 16 38 3 2920 

2 787 325 210 87 3 2755 
4 1 854 9 228 2 2 3304 
5 1 1257 128 335 34 2 3285 
6 1 423 291 113 78 2 2736 

 
TABLE ΙΙΙ 

COMPONENTS ASSIGNED ON FEEDERS 

Feeder M1 M2 
R G1 G2 G3 G4 G5 G6 R G1 G2 G3 G4 G5 G6 

1  C-36   C-56   C-14 C-10 C-12    C-29 
2  C-37  C-19 C-42 C-12  C-13 C-14 C-11    C-06 
3 C-16 C-23  C-74  C-29 C-04   C-49 C-20   C-22 
4 C-42 C-19 C-31      C-33 C-16   C-50 C-13 
5 C-10 C-28 C-55 C-68 C-23    C-10  C-35   C-17 
6 C-67 C-62  C-44 C-15 C-29 C-15  C-48  C-39 C-16 C-20  
7  C-19 C-42     C-34 C-15 C-10     
8  C-10 C-58   C-52         
9 C-47 C-65  C-40 C-48        C-12  
10   C-48  C-11  C-73      C-31 C-30 
11 C-67    C-42          
12 C-52  C-09            
13  C-72 C-15 C-07 C-21          
14 C-43  C-50   C-34         
15  C-40    C-16 C-32        
16 C-38 C-61 C-58 C-16           
17 C-17 C-56  C-65   C-61        
18 C-19 C-06  C-23 C-29          
19 C-37 C-13 C-71 C-54  C-66         
20 C-37    C-15 C-07 C-41        

 
V. APPLICATION OF THE GENETIC ALGORITHM 

In this section, the application of the GA on an example 
problem generated in the previous section is presented. Since 
GA is an iterative-greedy search, meaning that the same 
operations are employed in each iteration of the search, the 
application of different operations used in this algorithm is 
demonstrated in only one iteration of the search. Also, as 
mentioned before, the algorithm first identifies the best 
sequence of the boards within the groups and using those 
sequences the search continues to find the best sequence of the 
groups themselves. Implementation of GA only makes sense 
when chromosomes have at least 4 genes; otherwise, there 
would be a very small solution space. On the other hand, since 
the GA structure in this paper is similar in both the group and 
board levels, the highest number of boards in a group in this 
example was assumed to be 2 to enable focusing only on 

applying GA to the group level. Out of the six considered 
board groups, the last three groups have only one board 
implying that there is no need of GA in the board level for 
these groups. However, the first three groups have two boards 
where the best board sequence can be obtained by examining 
only two possible sequences which again satisfy the need of 
employing GA in the board level. The best sequence identified 
for the boards inside G1, G2 and G3 are respectively b12-b11, 
b22-b21 and b31-b32 where Gj implies the jth group and bji-bjk 
implies the kth board follows the ith board within Gj. In Table 
IV, the population of 10 individuals for the 6 board groups 
problem is presented. This population can be initially 
randomly generated or be the population received from the 
previous iteration. Section “Current population” of this table 
shows 10 individuals that can be mated to generate a number 
of children. The second column represents different solutions 
with different configurations. The parents that can be mated 
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with each other are shown in the third column with the same 
number of “X” (for example, P5 with three “X” can only be 
mated with P6 with three “X”). In the fourth column, two 
crossover points for each of the chromosomes in a mating-pair 
are given. The last column shows the associated objective 
function value for each of the solutions. The selected parents 
((P8, P9), (P3, P7) and (P5, P6)) are mated using the crossover 
operator resulting in 6 (0.6*10) new solutions which are given 
in the “Crossover application” section of Table IV. The third 
column of this section displays the parents that have been 
selected to produce the corresponding generated child (for 
example, P8 and P9 are parents of P11 and P12). So far, a total of 
16 solutions (P1 to P16) are generated, resulting in an 
extended population with 16 individuals. Then, this population 
is sorted based on increasing OFV (objective function value) 

and the first 10 individuals are selected and stored in the 
section “Sorted population”. The third column of this section 
shows (0.01*10 ≈ 1) individuals which are randomly selected 
for mutation and their associated mutation points are provided 
in the fourth column. Accordingly, the chromosome P12 is 
selected for mutation generating P17 which is presented in 
section “Mutation application” of the table. Finally, a total of 
11 individuals, shown in the last two sections of the table, are 
sorted and the first top 10 are transferred as the population for 
the next iteration. The best chromosome or P4 with the OFV of 
85190 is the elite chromosome identified in this iteration that 
can survive in the next iteration (after the crossover and 
mutation operators are performed) if it had an OFV better than 
that of the worst solution identified at the end of the next 
iteration.  

 
TABLE IV 

 DEMONSTRATION OF GENETIC ALGORITHM’S OPERATORS 
Current population  Sorted population 

Solution Configuration Indvs for crossover Crossover 
points OFV Soluti

on Configuration Indvs for 
mutation 

Mutation 
points OFV 

P1 G4-G1-G5-G3-G6-G2   126048 P4 G3-G4-G6-G2-G5-G1   85190 
P2 G3-G6-G1-G5-G4-G2   95577 P8 G6-G3-G5-G1-G2-G4   92657 
P3 G4-G2-G5-G6-G3-G1 XX 2, 4 109296 P2 G3-G6-G1-G5-G4-G2   95577 
P4 G3-G4-G6-G2-G5-G1   85190 P10 G3-G1-G6-G5-G2-G4   96268 
P5 G3-G1-G5-G2-G4-G6 XXX 1, 3 99449 P5 G3-G1-G5-G2-G4-G6   99449 
P6 G5-G1-G4-G3-G6-G2 XXX 1, 3 126987 P15 G3-G1-G5-G4-G6-G2   99742 
P7 G5-G4-G1-G2-G6-G3 XX 2, 4 133904 P12 G4-G3-G5-G1-G2-G6 * 3, 6 104449 
P8 G6-G3-G5-G1-G2-G4 X 2, 5 92657 P3 G4-G2-G5-G6-G3-G1   109296 
P9 G1-G5-G4-G3-G6-G2 X 2, 5 132192 P13 G4-G2-G5-G6-G1-G3   125044 
P10 G3-G1-G6-G5-G2-G4   96268 P1 G4-G1-G5-G3-G6-G2   126048 

Crossover application Mutation application 

Solution Configuration Associated parents OFV Soluti
on Configuration Associated parent OFV 

P11  G1-G5-G4-G3-G6-G2 (P8,P9) 132192 P17 G4-G3-G6-G1-G2-G5 P12 100009 
P12 G4-G3-G5-G1-G2-G6 (P8,P9) 104449     
P13 G4-G2-G5-G6-G1-G3 (P3,P7) 125044     
P14 G5-G4-G1-G2-G6-G3 (P3,P7) 133904     
P15 G3-G1-G5-G4-G6-G2 (P5,P6) 99742     
P16 G5-G1-G4-G3-G2-G6 (P5,P6) 127715     

 

VI. COMPUTATIONAL RESULTS 
To evaluate the performance of the GA, it was tested on 

solving several problem instances with number of groups of 3, 
4, 5 and 6 with the average setup time per feeder of 30 and 
180. For each of these problems differentiated by the number 
of groups and average setup time per feeder, two instance 
problem instances were randomly generated. A general 
mathematical model for this problem is presented in [21], and 
by taking advantage of that model, the associated 
mathematical model for each of the considered problem 
instances was formulated and optimally solved using ILOG 
CPLEX [22]. CPLEX found the optimal solution for all of the 
considered problems except the problems with number of 
groups of 6. For these two problems, CPLEX failed to find the 
optimal solution even after spending the maximum time limit 
of 3 days. Consequently, for these problems only the best 
objective value and the best lower bound found by CPLEX 
were reported. The results after implementing GA on the 
problems and comparing against the optimal values are 
provided in Table V. The first and second columns of this 

table respectively show the average setup time per feeder and 
number of groups. The objective function values found by 
CPLEX and GA are provided in the third and fourth columns 
together with their percentage deviation (GAିCPLEX

CPLEX
ൈ 100%), 

which is given in the fifth column. The rest of the columns 
show computation times (in seconds) and number of 
enumerated solutions for both the approaches. As it can be 
observed, GA found the optimal solution in most of the cases; 
however, the largest and the average deviation are 
respectively, 1.39% and 0.35%, which are considerably small. 
The average computation time and number of enumerated 
solutions for CPLEX and GA are respectively 38595 s, 0.81 s 
and 1.71×108, 3642 which substantiates the fact that the 
performance of GA is both effective and very efficient in 
terms of solution quality and negligible computation times 
required to solve all of the problems.  

VII. CONCLUSION 
A bicriteria scheduling problem in the assembly of PCBs in 

a two-machine flow shop system is considered in this paper. 
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The type of setup time assumed in this study called carryover 
sequence-dependent exactly complies with the real application 
of this problem and assumes the dependency to be carried 
through the entire sequence of board groups. The kitting 
operation, which has been traditionally ignored in PCB 
studies, is brought to light by simultaneously performing the 
kitting operation and the assembly operation, which is 
characterized as “integration of external and internal setups”. 
Consequently, the boards’ ready times which have always 
been assumed to be static become dynamic in this paper, 
which also enables applying the concepts of just-in-time 
manufacturing. Objective function evaluation is a difficult task 
in this research because of the requirement of evaluating the 
start (finish) kitting times and completion times on both 

machines. Thus, an approach capable of evaluating the 
objective function optimally on the first machine and 
heuristically on the second machine is developed. In 
attempting to embrace all of the operational constraints in the 
real application, this problem has become extremely complex 
to be solved by optimal solution finding mechanisms. As a 
result, a meta-heuristic based on genetic algorithm is 
developed and its application is demonstrated by solving an 
example problem. Also, to test the effectiveness of the 
algorithm, several problem instances were solved and the GA 
showed very promising results. As future research, a lower-
bounding mechanism would be developed for providing a 
benchmark for solving large-size problems in which CPLEX 
fails to provide the optimal solution.  
 

TABLE V 
 RESULTS OBTAINED FOR CPLEX AND GA BY SOLVING PROBLEM INSTANCES 

AST N Solution value  CPU time  Solution number 
CPLEX GA Deviation (%) CPLEX GA CPLEX GA 

180 3 77315 77315 0  0.1 0.54  615 3169 
3 95476 95476 0  1.9 0.69  9316 3457 
4 210276 210276 0  31 0.75  1.02×106 3469 
4 231581 231581 0  239 0.79  7.38×106 3697 
5 366306 366514 0.06  3841 0.97  6.14×107 3745 
5 309019 309019 0  2735 0.96  7.18×107 3835 

 6 530861* 
507954** 530977   259200 0.96  1.01×109 3734 

30 3 39338 39338 0  0.61 0.69  847 3265 
3 42152 42152 0  1.6 0.71  815 3265 
4 154035 154581 0.35  102 0.81  2.69×106 3505 
4 141702 144267 1.81  65 0.83  1.92×106 3697 
5 189901 191090 0.63  14881 0.97  2.36×108 4032 
5 137828 139743 1.39  78 0.82  1.82×106 3704 

 6 376471* 
358971** 377424   259200 1.16  1.00×109 4425 

Average 0.35  38598 0.81  1.71×108 3642 
 The numbers represented by ‘*’ and ‘**’respectively imply the best objective value and the best lower bound found by CPLEX 
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