
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:4, No:5, 2010

454

 

 

  
Abstract—An alternative iterative computational procedure is 

proposed for internal normal ball loads calculation in statically 
loaded single-row, angular-contact ball bearings, subjected to a 
known thrust load, which is applied in the inner ring at the geometric 
bearing center line. An accurate method for curvature radii at 
contacts with inner and outer raceways in the direction of the motion 
is used. Numerical aspects of the iterative procedure are discussed. 
Numerical examples results for a 218 angular-contact ball bearing 
have been compared with those from the literature. Twenty figures 
are presented showing the geometrical features, the behavior of the 
convergence variables and the following parameters as functions of 
the thrust load: normal ball loads, contact angle, distance between 
curvature centers, and normal ball and axial deflections. 
 

Keywords—Ball, Bearing, Static, Load, Iterative, Numerical, 
Method.  

I. INTRODUCTION 
ALL and roller bearings, generically called rolling 
bearings, are commonly used machine elements. They are 

employed to permit rotary motions of, or about, shafts in 
simple commercial devices such as bicycles, roller skates, and 
electric motors. They are also used in complex engineering 
mechanisms such as aircraft gas turbines, rolling mils, dental 
drills, gyroscopes, and power transmissions. 

The standardized forms of ball or roller bearings permit 
rotary motion between two machine elements and always 
include a complement of ball or rollers that maintain the shaft 
and a usually stationary supporting structure, frequently called 
a housing, in a radially or axially spaced-apart relationship. 
Usually, a bearing may be obtained as a unit, which includes 
two steel rings each of which has a hardened raceway on 
which hardened balls or rollers roll. The balls or rollers, also 
called rolling elements, are usually held in an angularly 
spaced relationship by a cage, also called a separator or 
retainer. 

There are many different kinds of rolling bearings. This 
work is concerned with single-row angular-contact ball 
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bearings (Fig. 1) that are designed to support combined radial 
and thrust loads or heavy thrust loads depending on the 
contact angle magnitude. The bearings having large contact 
angle can support heavier thrust loads. Fig. 1 shows bearings 
having small and large contact angles. The bearings generally 
have groove curvature radii in the range of 52-53% of the ball 
diameter. The contact angle does not usually exceed 40o.  
 

 

 

 

 

 

 

 
Fig. 1 Angular-contact ball bearing 

 
This work is devoted to study of the internal loading 

distribution in statically loaded ball bearings. Several 
researchers have studied the subject as, for example, Stribeck 
[1], Sjoväll [2], Jones [3] and Rumbarger [4]. The methods 
developed by them to calculate distribution of load among the 
balls and rollers of rolling bearings can be used in most 
bearing applications because rotational speeds are usually 
slow to moderate. Under these speed conditions, the effects of 
rolling element centrifugal forces and gyroscopic moments are 
negligible. At high speeds of rotation these body forces 
become significant, tending to alter contact angles and 
clearance. Thus, they can affect the static load distribution to a 
great extension. 

Harris [5] described methods for internal loading 
distribution in statically loaded bearings addressing pure 
radial; pure thrust (centric and eccentric loads); combined 
radial and thrust load, which uses radial and thrust integrals 
introduced by Sjoväll; and for ball bearings under combined 
radial, thrust, and moment load, initially due to Jones. 

There are many works describing the parameters variation 
models under static loads but few demonstrate such variations 
in practice, even under simple static loadings. The author 
believes that the lack of practical examples is mainly due to 
the inherent difficulties of the numerical procedures that, in 
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general, deal with the resolution of several non-linear 
algebraic equations that must to be solved simultaneously. 

In an attempt to cover this gap studies are being developed 
in parallel [6]-[14]. Particularly in this work an alternative 
iterative computational procedure (see [5], p. 245, and [13] for 
traditional procedure) is proposed for internal normal ball 
loads in statically loaded single-row, angular-contact ball 
bearings, subjected to a known thrust load, which is applied in 
the inner ring at the geometric bearing center line. An accurate 
method proposed in [14] for curvature radii at contacts with 
inner and outer raceways in the direction of the motion is 
used. Numerical aspects of the iterative procedure are 
discussed and numerical examples results for a 218 angular-
contact ball bearing have been compared with those from the 
literature. Twenty figures are presented showing the 
geometrical features, the behavior of convergence variables 
and the following parameters as functions of the external 
thrust load: normal ball loads, contact angle, distance between 
curvature centers, and normal ball and axial deflections. 

II. SYMBOLS 
a Semimajor axis of the projected contact, m 
A Distance between raceway groove curvature centers, 

m 
b Semiminor axis of the projected contact, m 
B fo + fi – 1, Total curvature 
d Raceway diameter, m 
da Bearing outer diameter, m 
db Bearing inner diameter, m 
de Bearing pitch diameter, m 
dm de + 2{[(fo – ½)D + δo]cosβo – (fo – ½)Dcosβf},  

Operating bearing pitch diameter, m 
D Ball diameter, m 
E Modulus of elasticity, N/m2 

E′ Effective elastic modulus, N/m2 
E Elliptic integral of second kind 
f, fs Raceway groove radius ÷ D; shock factor 
F Applied load, N 
k a/b 
K Load-deflection factor, N/m3/2 
K Elliptic integral of first kind 
Pd Diametral clearance, m 
Pe Free endplay, m 
Q Ball-raceway normal load, N 
r Raceway groove curvature radius; solids curvature 

radius, m 
s Distance between loci of inner and outer raceway 

groove curvature centers, m 
R Curvature radius, m 
Z Number of rolling elements 
β, β’, β” Contact angle, rad, o 
βf Free contact angle, rad, o 
γ D cos β / dm 

Γ Curvature difference 
δ Deflection or contact deformation, m 
Δψ Angular spacing between rolling elements, rad,o 

υ Poisson’s ratio 
φ Auxiliary angle 
ψ Azimuth angle, rad, o 
 
Subscripts: 
 
a Refers to solid a or axial direction 
b Refers to solid b 
x,y Refers to coordinate system 
i Refers to inner raceway 
j Refers to rolling element position 
k Refers to inner and outer raceway 
n Refers to direction collinear with normal load 
o Refers to outer raceway 

III. GEOMETRY OF BALL BEARINGS 
In this section, the principal geometrical relationships for an 

unloaded ball bearing are summarized. The radial cross 
section of a single-row ball bearing shown in Fig. 2 depicts 
the diametral clearance and various diameters. The pitch 
diameter, de, is the mean of the inner- and outer-race 
diameters, di and do, respectively, and is given by 

 

( )oie ddd +=
2
1 .        (1) 

 
Fig. 2 Radial cross section of a single-row ball bearing 

 
The diametral clearance, Pd, can be written as 
 

DddP iod 2−−= .         (2) 
 
Race conformity is a measure of the geometrical conformity 

of the race and the ball in a plane passing through the bearing 
axis (also named center line or rotation axis), which is a line 
passing through the center of the bearing perpendicular to its 
plane and transverse to the race. Fig. 3 depicts a cross section 
of a ball bearing showing race conformity, expressed as 

 
Drf /= .            (3) 
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Fig. 3 Cross section of a ball and an outer race showing race 

conformity 
 
Radial bearings have some axial play since they are 

generally designed to have a diametral clearance, as shown in 
Fig. 4(a). Fig. 4(b) shows a radial bearing with contact due to 
the axial shift of the inner and outer rings when no measurable 
force is applied. The radial distance between the curvature 
centers of the two races are the same in the Figs. 4(a) and (b). 
Denoting quantities referred to the inner and outer races by 
subscripts i and o, respectively, this radial distance value can 
be expressed as A – Pd/2, where A = ro + ri – D is the 
curvature centers distance in the shifted position given by Fig. 
4(b). Using (3) we can write A as 

 
A = BD,                  (4) 

 
where B = fo + fi – 1 is known as the total conformity ratio and 
is a measure of the combined conformity of both the outer and 
inner races to the ball. 

The contact angle, β, is defined as the angle made by a line, 
which passes through the curvature centers of both the outer 
and inner raceways and that lies in a plane passing through the 
bearing rotation axis, with a plane perpendicular to the bearing 
axis of rotation. The free-contact angle, βf, (Fig. 4(b)) is the 
contact angle when the line also passes through the points of 
contact of the ball and both raceways and no measurable force 
is applied. From Fig. 4(b), the expression for the free-contact 
angle can be written as 

 
(a)            (b) 

Fig. 4 Cross section of a radial ball bearing showing ball-race 
contact due to axial shift of inner and outer rings. (a) Initial position. 

(b) Shifted position 

A
PA d

f
2/cos −

=β .                  (5) 

 
From (5), the diametral clearance, Pd, can be written as 

 
( )fd AP βcos12 −= .           (6) 

 
Free endplay, Pe, is the maximum axial movement of the 

inner race with respect to the outer when both races are 
coaxially centered and no measurable force is applied. Free 
endplay depends on total curvature and contact angle, as 
shown in Fig. 4(b), and can be written as 

 
fe AP βsin2= .         (7) 

 
Considering the geometry of two contacting solids 

(ellipsoids a and b) in a ball bearing we can arrive at the two 
quantities of some importance in the analysis of contact 
stresses and deformations: The curvature sum, 1/R, and 
curvature difference, Γ, which are defined as 

 

yx RRR
111

+= , 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=Γ

yx RR
R 11 , 

where 

bxaxx rrR
111

+= , 

byayy rrR
111

+= , 

 
with rax, rbx, ray and rby, being the radii of curvature for the 
ball-race contact. 

A cross section of a ball bearing operating at a contact 
angle β is shown in Fig. 5. Equivalent radii of curvature for 
both inner- and outer-race contacts in, and normal to, the 
direction of rolling can be calculated from this figure. Here, an 
accurate procedure for determining the sum and difference of 
curvatures at contacts is used [14]. Considering x the direction 
of the motion and y the transverse direction; dm instead de, βk 
instead β, and the elastic deformations at the contacts, the radii 
of curvature for the ball-inner-race contact are 

 
2/Drr ayax == , 

( )
i

iim
bx

Ddr
β

βδ
cos2

cos2−−
= , 

iiby rDfr −=−= . 

 
The radii of curvature for the ball-outer-race contact are 
 

2/Drr ayax == , 
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Fig. 5 Cross section of a ball bearing 
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Let 
( )

m

kk
k d

D βδγ cos2−
= ,  k = i, o, 

 
where βk = β is the operating contact angle at the contact k. 
Then 

( )
i

i
ibx Dr

γ
γδ −

−=
12

2
1 , 

⎟⎟
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for the ball-inner-race contact, and 
 

( )
o

o
obx Dr

γ
γδ +

−−=
12

2
1 , 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

−−=+++=
o

o

oobyaybxaxo D
D

fDrrrrR γ
γ

δ 1
2

2
14111111 , (10) 

o

o

oo

o

o

oo

byaybxax
o

D
D

f

D
D

f
rrrr

R

γ
γ

δ

γ
γ

δ

+−
−−

+−
−

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−+=Γ

1
2

2
14

1
2

2
1

1111 ,    (11) 

for the ball-outer-race contact. 

IV. CONTACT STRESS AND DEFORMATIONS 
When two elastic solids are brought together under a load, a 

contact area develops, the shape and size of which depend on 
the applied load, the elastic properties of the materials, and the 
curvatures of the surfaces. For two ellipsoids in contact the 
shape of the contact area is elliptical, with a being the semi-

major axis in the y direction (transverse direction) and b being 
the semi-minor axis in the x direction (direction of motion). 

The elliptical eccentricity parameter, k, is defined as 
 

k = a/b. 
 
From [5], k can be written in terms of the curvature 

difference, Γ, and the elliptical integrals of the first and 
second kind, K and Ε, as 

 

( ) ( )
( )Γ−

Γ+−
=

1
12

E
EKkJ , 

where 

∫
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A one-point iteration method, which has been used 

successfully in the past [15], is used here, where 
 

kn+1 = J(kn). 
 
When the ellipticity parameter, k, the elliptic integrals of 

the first and second kinds, K and Ε, respectively, the normal 
applied load, Q, Poisson’s ratio, ν, and the modulus of 
elasticity, E, of the contacting solids are known, we can write 
the semi-major and -minor axes of the contact ellipse and the 
maximum deformation at the center of the contact, from the 
analysis of Hertz [16], as 

 
3/126
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where 

b

b

a

a

EE

E 22 11
2

υυ −
+

−
=′ . 

V. STATIC LOAD DISTRIBUTION UNDER CENTRIC THRUST 

LOAD 
Methods to calculate distribution of load among the balls 

and rollers of rolling bearings statically loaded can be found in 
various papers, [17]. The methods have been limited to, at 
most, three degrees of freedom in loading and demand the 
solution of a simultaneous nonlinear system of algebraic 
equations for higher degrees of freedom. Solution of such 
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equations generally necessitates the use of a digital computer. 
In certain cases, however – for example, applications with 
pure radial, pure thrust or radial and thrust loading with 
nominal clearance – the simplified methods will probably 
provide sufficiently accurate calculational results. 

Having defined a simple analytical expression for the 
deformation in terms of load in the previous section, it is 
possible to consider how the bearing load is distributed among 
the rolling elements. Most rolling-element bearing 
applications involve steady-state rotation of either the inner or 
outer race or both; however, the speeds of rotation are usually 
not so great as to cause ball or roller centrifugal forces or 
gyroscopic moments of significant magnitudes. In analyzing 
the loading distribution on the rolling elements, it is usually 
satisfactory to ignore these effects in most applications. In this 
section the load deflection relationships for ball bearings are 
given, along with a specific load distribution consisting of a 
centric thrust load of statically loaded rolling elements. 

A. Load-Deflection Relationships for Ball Bearings 
From (14) it can be seen that for a given ball-raceway 

contact (point loading) 
 

2/3δKQ = ,         (15) 
where 

39
2
K
EREkK ′= π . 

 
The total normal approach between two raceways under 

load separated by a rolling element is the sum of the 
approaches between the rolling element and each raceway. 
Hence 

oin δδδ += . 
Therefore, 

2/3

3/23/2 /1/1
1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
=

oi
n KK

K  

and 
2/3

nnKQ δ= .        (16) 

B. Ball Bearings under Centric Thrust Load 
Let a ball bearing with a number of balls, Z, symmetrically 

distributed about a pitch circle according to Fig. 6, to be 
subjected to a centric thrust load. Then, a relative axial 
displacement, δa, between the inner and outer ring raceways 
may be expected. 

Fig. 7 shows the positions of ball center and raceway 
groove curvature centers at any angular position ψ, before and 
after loading, whereas the curvature centers of the raceway 
grooves are fixed with respect to the corresponding raceway. 

From Fig. 7 
 

0cos])5.0[(cos])5.0[(cos =+−−+−− oooiiif DfDfA βδβδβ   (17) 

 
and 

 
    0sin])5.0[(sin])5.0[(sin =+−−+−−+ oooiiiaf DfDfA βδβδδβ .   (18) 

 
The normal ball loads are related to normal contact 

deformations as follow 
 

2/3
ooo KQ δ=            (19) 

and 
2/3

iii KQ δ= .           (20) 
 

 
Fig. 6 Ball angular positions in the radial plane that is perpendicular 

to the bearing’s axis of rotation, Δψ = 2π/Z, ψj = 2π/Z(j−1) 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7 Positions of ball center and raceway groove curvature centers 

at angular position ψ, with and without applied load 
 

The equilibrium of the ball loads in the horizontal and 
vertical directions, at angular position ψ, is given by 

 
0sinsin =− ooii QQ ββ         (21) 

βf 

Initial position, inner 
raceway groove 
curvature center 
 
Ball center, initial position 
 
 

A 

Final position, 
inner raceway 
groove 
curvature center 

δa  

s = A + δn βo 
A − Pd/2 

(fi − ½)D + δi 

(fo − ½)D + δo 
Outer raceway groove 
curvature center, fixed 

Ball center, final 
position 

(fi − ½)D  

(fo − ½)D  

βi 
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and 
0coscos =− ooii QQ ββ .       (22) 

 
Substituting (19) and (20) into (21) and (22) yields 
 

0sinsin 2/32/3 =− oooiii KK βδβδ       (23) 
and 

0coscos 2/32/3 =− oooiii KK βδβδ .      (24) 
 
Equations (17), (18), (23) and (24) may be solved 

simultaneously for βk and δk, k = i, o, once the value for δa is 
assumed. Since Kk are functions of final contact angles, βk, the 
equations must be solved iteratively to yield an exact solution 
for βk and δk. Taking Kk as constants the equations may be 
solved numerically by the Newton-Raphson method. For each 
new values βk and δk, new values for Kk are obtained, until 
there are no measurable differences in the Kk values. This can 
be achieved through two numerical loops – an outer loop and 
an inner loop – where the goal is to make the differences βk” – 
βk, for the outer loop, and βk’ – βk, for the inner loop, to 
vanish, where βk’ and βk” are auxiliary variables. 

From Fig. 7 it can be determined that s, the distance 
between the curvature centers of the inner and outer ring 
raceway grooves at any rolling element position ψ, is given by 

 

oin AAs δδδ ++=+= .      (25) 
 

If the external thrust load, Fa, is applied in the inner ring at 
the bearing’s axis of rotation then, for static equilibrium to 
exist 

    iia ZQF βsin= .          (26) 

VI. NUMERICAL RESULTS 
The Newton-Rhapson method was chosen to solve the 

nonlinear equations (17), (18), (23) and (24). Chosen the 
rolling bearing, as input must be given the geometric 
parameters: dk, D, Z, and rk, in accordance with the Figs. 2 and 
4, and the elastic properties Ea, Eb, νa and νb. Next, the 
following parameters must be obtained: fk, B, A, E’, de, Pd and 
βf. 

The interest here is to observe the behavior of an angular-
contact ball bearing under a known thrust load, which is to be 
applied statically in the inner ring at the geometric bearing 
centerline. Let δa ranges from zero up to the last valid value in 
meters. 

Initially the values for βk, βk’ and βk”, k = i, o, were adopted 
as being equal βf and δk = 1x10-9. Then, for each new value of 
δa ranging from zero, do βk = fsβk, where fs is the shock factor. 
While the outer loop differences βk”– βk are greater than a 
minimal error, do βk” = βk and the values: 1/R|k, Γk, kk, Kk, Ek, 
and Kk, are calculated, in according to previous sections. Do βk 
= fsβk and go to the inner loop. If the differences βk”– βk are 
lesser than the minimal error, a new axial deflection value is 

acquired and the procedure is repeated up to the last valid 
axial deflection value, when the program ends. 

For each iteration in the outer loop new values for βk’ are 
obtained in the inner loop. The new βk’ values are compared 
with the olds, βk, and if the differences βk’– βk are greater than 
a minimal error a new iteration in the inner loop occurs. If the 
differences βk’– βk are lesser than the minimal error, the inner 
loop ends.  

To show an application of the theory developed in this 
work a numerical example is presented here. It was chosen the 
218 angular-contact ball bearing that was also used by Harris 
[5]. Thus, the results generated here can be compared to a 
certain degree with the Harris results. The input data for this 
rolling bearing were the following: 
 

Inner raceway diameter,   di = 0.10279 m 
Outer raceway diameter,   do = 0.14773 m 
Ball diameter,       D = 0.02223 m 
Ball number,       Z = 16 
Inner groove radius,    ri = 0.01163 m 
Outer groove radius,   ro = 0.01163 m 
Modulus of elasticity for both balls and races, 

E = 2.075 × 1011 N/m2 
Poisson’s ratio for both balls and races,  υ = 0.3 

 
The remaining parameters has been calculated, yielding 
 
Inner race conformity,    fi = 0.523166891587944 
Outer race conformity,    fo = 0.523166891587944 
Total conformity ratio,    B = 0.046333783175888 
Initial curvature centers distance,    A = 0.00103 m 
Effective elastic modulus,  E´ = 228021978021.978 N/m2 

Bearing pitch diameter,   de = 0.12526 m 
Diametral clearance,     Pd = 0.00048 m 
Free-contact angle,     βf = 39.915616407992260o 

 
The initial estimates were the following: 

 
Contact angles,       βk = βk’ = βk” = βf,    
Maximum displacement at race contact,  δk = 0. 
 
Since it is the qualitative behavior of solutions that is the 

interest, the results are presented here in graphical form. 
The Fig. 8 shows the normal ball load, Qi, as a function of 

the external thrust load, Fa. For a 17,800 N external thrust 
load Harris found the magnitude of 1,676 N for all balls (p. 
249). This work found the magnitude of 1,681.663647730694 
N for all balls for the same external thrust load. Assuming 
correct the results of this work, this means that Harris made an 
error of about –0.34% in the normal ball load determination. 

The Fig. 9 shows the contact angle, βi, as a function of the 
external thrust load, Fa. While Harris has been found a contact 
angle magnitude of 41.6o for all balls and for a 17,800 N 
external thrust load (p. 249), this work found the magnitude of 
41.417983635575901o for all balls for the same external thrust 
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load. This represents an error of 0.44% in the contact angle 
determination. 

The Fig. 10 shows the relative axial displacement between 
inner and outer ring raceways, δa, as a function of the external 
thrust load, Fa. While Harris has been found an axial 
displacement magnitude of 0.0386 mm (p. 249), this work 
found the magnitude of 0.0360110318586865 mm for the 
same external thrust load. This represents an error of 7.19% in 
the relative axial displacement determination. 
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Fig. 8 Normal ball load, Qi, as a function of the thrust load, Fa. 
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Fig. 9 Contact angle, βi, as a function of the thrust load, Fa 
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Fig. 10 Axial deflection, δa, as a function of the external thrust load, 

Fa 
 
The Fig. 11 shows the distance between curvature centers, 

s, and the Fig. 12 show the partials and the total ball 
deflections, δi, δo and δn, respectively, as functions of the 
external thrust load, Fa. The total normal ball deflection can 
be obtained by summing the maximum normal elastic 
compressions on the inner and outer races, δi and δo, or by 
subtracting A from s, once δn = s – A. 

The Figs. 13 and 14 show the behavior of the contact angle 
βi and the outer loop auxiliary variable βi” during the outer 
loop numerical procedure. The shock factor adopted was 

1.001. The procedure demanded 802 outer loop iterations to 
cover the range from zero to 4x10-5 m for the axial 
displacement, with steps of 1x10-7 m. The Figs. 15 and 16 
show the behavior of the difference between the outer loop 
auxiliary variable βi” and the contact angle βi. 
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Fig. 11 Distance between curvature centers, s, as a function of the 

external thrust load, Fa 
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Fig. 12 Partials and total ball deflections, δi, δo and δn, as functions 

of the external thrust load, Fa 
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Fig. 13 Convergence procedure of the contact angle βi and the outer 

loop auxiliary variable βi” 
 
The Figs. 17 and 18 show the behavior of the contact angle 

βi and the inner loop auxiliary variable βi’ during the inner 
loop numerical procedure. The shock factor adopted was 
1.001 and every level, shown in detail, represents a constant 
value of the external thrust load (axial displacement). The 
procedure demanded 3,590 inner loop iterations to cover the 
range from zero to 4x10-5 m for the axial displacement, with 
steps of 1x10-7 m. The Figs. 19 and 20 show the behavior of 
the difference between the inner loop auxiliary variable βi’ 
and the contact angle βi. 
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Fig. 14 Convergence procedure of the contact angle βi and the outer 

loop auxiliary variable βi” (detail) 
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Fig. 15 Convergence procedure of the difference between the outer 

loop auxiliary variable βi” and the contact angle βi 
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Fig. 16 Convergence procedure of the difference between the outer 

loop auxiliary variable βi” and the contact angle βi (detail) 

VII. CONCLUSION 
A alternative iterative computational procedure was used to 

internal normal ball loads calculation in statically loaded 
single-row, angular-contact ball bearings, subjected to a 
known thrust load which is applied in the inner ring at the 
geometric bearing center line. An accurate method for 
curvature radii at contacts with inner and outer raceways in 
the direction of the motion was used. Aspects of the numerical 
procedure and the behavior of the convergence variables were 
discussed. Results for a 218 angular-contact ball bearing were 
compared with literature data. Precise applications, as for 
example, space applications, require a precise determination 
of the static loading. Models available in literature are 
approximate and often are not compatible with the desired 
degree of accuracy. This work can be extended to determine 
the loading on high-speed bearings where centrifugal and 
gyroscopic forces do not be discarded. The results of this 
work can be used in the accurate determination of the friction 

torque of the ball bearings, under any operating condition of 
temperature and speed. 

 

0 500 1000 1500 2000 2500 3000 3500

0.7

0.705

0.71

0.715

0.72

0.725

Inner loop iterations

β i, β
' i  [

rd
]

Centric Thrust Load - 218 Angular-contact Ball Bearing

fs = 1.001

 
Fig. 17 Convergence procedure of the contact angle βi and the inner 

loop auxiliary variable βi’ 
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Fig. 18 Convergence procedure of the contact angle βi and the inner 

loop auxiliary variable βi’ (detail) 
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Fig. 19 Convergence procedure of the difference between the inner 

loop auxiliary variable βi’ and the contact angle βi 
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Fig. 20 Convergence procedure of the difference between the inner 

loop auxiliary variable βi’ and the contact angle βi (detail) 
 

 


