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Abstract— Automated operations based on voice commands will 

become more and more important in many applications, including 
robotics, maintenance operations, etc. However, voice command 
recognition rates drop quite a lot under non-stationary and chaotic 
noise environments. In this paper, we tried to significantly improve 
the speech recognition rates under non-stationary noise 
environments. First, 298 Navy acronyms have been selected for 
automatic speech recognition. Data sets were collected under 4 types 
of noisy environments: factory, buccaneer jet, babble noise in a 
canteen, and destroyer. Within each noisy environment, 4 levels (5 
dB, 15 dB, 25 dB, and clean) of Signal-to-Noise Ratio (SNR) were 
introduced to corrupt the speech. Second, a new algorithm to 
estimate speech or no speech regions has been developed, 
implemented, and evaluated. Third, extensive simulations were 
carried out. It was found that the combination of the new algorithm, 
the proper selection of language model and a customized training of 
the speech recognizer based on clean speech yielded very high 
recognition rates, which are between 80% and 90% for the four 
different noisy conditions. Fourth, extensive comparative studies 
have also been carried out. 
 

Keywords—non-stationary; speech recognition; voice 
commands  

I. INTRODUCTION 
XISTING speech recognition software such as IBM via 
Voice or Dragon Naturally Speaking works well in quiet 
and stationary background noise environments. However, 

the recognition performance drops quite significantly in 
crowded and noisy control room, battle stations, emergency 
room, factory floor, etc. The main reason is that the noise is 
non-stationary and chaotic. When speech is corrupted by 
environmental noise, the distribution of the feature vectors of 
the corrupted speech is no longer similar to the distributions 
learned from the training data. This mismatch results in mis-
classification and poor recognition [1], [2].  

 
   To reduce the effect of mismatch, various techniques have 
been proposed in the literature, which can be broadly 
categorized as:  
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• Noise estimation and filtering that reconditions the 
speech signal or reconstruct speech feature based on 
noise characteristics [3]-[6];  

• On-line model adaptation to reduce the effect of 
mismatch in training and test environments [7]; _  

• Extraction of speech features robust to noise [8], [9], 
including features based on human auditory and 
perception modeling [10]-[12]. 

 
To improve the speech recognition rate in chaotic and non-

stationary environment, a promising approach has been 
proposed in the dissertation of Ramakrishnan [1] and master 
thesis of Selzer [2] at Carnegie Mellon University (CMU). We 
call this approach Robust Speech Recognition (RSR) method, 
which consists of two steps. First, the noisy regions of the 
speech spectrograms (time-frequency plot of speech signals) 
are identified and deleted. That is, spectral bands with very 
low signal-to-noise ratios (SNR) in the spectrogram are 
deleted. Second, the deleted regions are reconstructed, cepstral 
features are computed, and then speech is recognized. This 
spectrogram reconstruction part is done by using statistics and 
speech characteristics in the remaining high SNR bands. 
Simulations and experiments performed by researchers at 
CMU [1], [2] demonstrated that RSR yielded the best 
performance as compared to other techniques in the literature. 
However, one limiting factor is in step 1. If the noisy regions 
are wrongly identified and deleted, the speech recognition 
performance will be degraded.  

In [2], a classifier based approach was developed to 
estimate the unreliable regions in the spectrogram. This 
process is termed as the identification of spectrographic mask. 
Extensive simulations in [2] clearly demonstrated the 
advantages and power of the new method. However, there is 
still room for improvement. 

In this work, we propose a novel system to improve the 
speech recognition performance in chaotic and non-stationary 
environment. The core technology will be the RSR method 
described earlier. However, we will make one important 
improvement. The key idea is to use a new sensor called 
General Electromagnetic Movement Sensor (GEMS), which 
can be attached to the neck, to identify voiced and un-voiced 
regions in the speech. GEMS was designed and built by Aliph 
in San Francisco. We purchased one GEMS and used it for an 
Army project on multi-modal speech enhancement project. 
Based on the GEMS outputs, we can delete the un-voiced and 
unreliable spectral bands that contain only the background 
noise.  

The paper is organized as follows. Section II describes our 
proposed algorithm for enhancing the speech recognition rates 
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in non-stationary noise environments. In Section III, we will 
summarize the experimental results and the comparative 
studies. Finally, conclusions will be drawn in Section IV. 

II. NOVEL SPEECH RECOGNITION APPROACH 
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Fig. 1 Architecture of the proposed speech recognition system 
 

As shown in Fig. 1, there are five parts in the proposed 
robust speech recognition system: an algorithm to identify low 
SNR regions in the spectrogram, an external sensor called 
GEMS to assist the identification of low SNR regions that will 
be deleted, an algorithm to reconstruct spectrogram, a cepstral 
feature generator, and a speech recognition system.  

The main objective of the identification module is to 
identify low SNR spectral bands in the spectrogram and 
eliminate them. The background noise level is very high in 
some applications such as construction sites, helicopter and 
aircraft cockpits, tanks, factory floor, etc. The presence of 
noise seriously affects the intelligibility of speech. This is the 
most critical component of the RSR.  Here we propose to 
exploit external sensors such as General Electromagnetic 
Movement Sensor (GEMS). The external sensor can provide 
independent information about where the speech is and this 
information consequently will help us capture the noise 
characteristics when there is no speech. 

In the spectrogram reconstruction module, the main 
objective is to optimally reconstruct the regions in the 
spectrogram. This module has been well developed by Prof. 
Rich Stern and his students at Carnegie Mellon University. 
The algorithm known as cluster-based reconstruction has the 
following advantages. First, it is computationally simple as 
compared to other techniques. Second, it allows us to generate 
cepstral features, which have been proven to yield better 
recognition performance. Third, it yielded the best 
performance than conventional methods. 

In the cepstral feature generation module, a standard 
approach is used. In the past two years, we used cepstral 
features in two projects. One is for speaker verification and 
the other one is for bird classification. The cepstral features 
yielded excellent recognition performance. 

In the speech recognition module, we used the CMU 
SPHINX speech recognition software, which is open-source. 
We believe this is more flexible as we can directly adjust 
some key parameters in the software.  

Details of each module will be described below.  

A. GEMS for Estimating Low SNR Regions 
One problem in identifying the low SNR regions is that it is 

hard to estimate which portion of microphone signal is speech 
and which part is not. This problem is even acute in chaotic 

and non-stationary noise environment. If we can correctly 
locate speech regions, then it is easy to decide which regions 
in the spectrogram that we want to delete.  

The key idea here is to use an external sensor which can 
correctly identify speech regions and is independent of 
background noise. The GEMS developed by Aliph satisfies 
our needs. We purchased this sensor about 2 years ago and 
has used it for a multi-modal speech enhancement project for 
Army Research Laboratory. The GEMS can detect vibratory 
motion of human tissue. The sensor is an extremely sensitive 
phase-modulated quadrature motion detector that accurately 
determines the motion vs. time of one or more moving objects 
in its field of view. In our application, we will restrict GEMS 
to detect the motions caused by voiced speech in the sub-
glottal or cheek/jaw areas, so we can use GEMS to improve 
the speech detection accuracy in very noisy environment 
(>100dB) where conventional speech detection algorithms do 
not perform well. 

Fig. 2 shows the GEMS, which can be attached to the neck 
or throat area. 

GEMS sensor 
(less than a quarter)  

Fig. 2 GEMS 
 

The data shown in Fig. 3 was collected by GEMS sensor 
when there was no background noise. The data shown in Fig. 
4 was collected from GEMS sensor when background noise 
level was about 110dB.  From Fig. 3 and 4, it can be seen that 
the GEMS sensor did not collect any noise even though the 
environment was very noisy.  

 

 
 

Fig. 3 Speech data collected from GEMS sensor without background 
noise based on the guidance of GEMS 
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Fig. 4 Speech data collected from GEMS sensor with 110dB 
background noise with the help of GEMS 

 
However, the GEMS is also sensitive to placement and 

attachment. If the location of the sensor is away from the 
throat area, the signal will be weak. If the attachment is not 
firm, then wrong indications of speech will occur. 

We performed some experiments to investigate the 
placement and attachment issues. The following bullets 
summarize the results: 

 
• When a GEMS sensor is placed in the right place, the 

outputs of the GEMS are strong and clean (Fig. 5)  
 

 
(a) Output of GEMS  

 

 
(b) Noisy speech Signal 

Fig. 5 Good GEMS outputs when the sensor is properly attached 
 

• When a GEMS sensor is placed in a wrong place of 
the neck, the output of the GEMS is relatively small 
and not clean (Fig. 6)  

 

 
(a) Output of GEMS 

 
(b) Noisy speech Signal 

Fig. 6 Poor GEMS outputs when the sensor was not properly 
attached to the neck 

 
• From the outputs (Fig. 7 (a)) of the GEMS and 

outputs of the speech (Fig. 7 (b)), we can see there 
are two big pulses in GEMS outputs which were 
caused by head movements and not caused by speech 
signals.   

 

 
(a) Output of GEMS  
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(b) Speech signal 

Fig. 7 Head movements may also introduce errors to the GEMS 
signals, if the GEMS is not properly attached 

 

B. GRATZ: New Mask Estimation with GEMS Data 
A new algorithm called GRATZ (GEMS based 

Multivariable Gaussian Cepstral Normalization) was 
implemented to use GEMS data to help estimate 
spectrographic masks. Details of the algorithm will be 
described in a companion paper [13]. Here we briefly 
summarize the key idea. 

 
Fig. 8 summarizes the relations between mask estimation 

and other components of the overall speech recognition 
system. In the training part, a joint distribution of speech and 
GEMS features (log-spectral) will be obtained by using speech 
and GEMS signals collected in the clean environment. In the 
on-line mask estimation part, both the features from the speech 
and the GEMS will be used for mask estimation. Spectrogram 
reconstruction will be done in the log-spectral domain. 

Logspc feature Reconstruction Logspc2MFCC 

Mask Estimation 

Gaussian Mixture 
Estimation 

Logspc feature 

Clean GEMS data 
and clean speech 

Noisy speech 

GEMS data

Off-line Training 
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Fig. 8 Relations between mask estimation, feature reconstruction, and 
speech recognizer 

 

C. Cluster-based Spectrogram Reconstruction (Imputation) 
In cluster-based spectrogram reconstruction, the unreliable 

components of any log-spectral vector are reconstructed based 
on the reliable components of that vector and the known 
distribution of the log-spectral vectors of clean speech. This is 
accomplished by computing a mixture Gaussian distribution 
from the log-spectral vectors of the spectrograms of a training 
corpus of clean speech.  

The Gaussians of this distribution are all assumed to have 
diagonal covariances. Once the distribution has been 
computed, a secondary full covariance matrix is also computed 
that is common across all the Gaussians in the distribution. 
The distribution and the covariance matrix can both be 
computed using the EM algorithm. 

In order to reconstruct the missing components of any log-
spectral vector Y(t), the unreliable and reliable components of 
the vector are separated out into two vectors U(t) and R(t). A 
separate estimate of U(t) is obtained for each of the Gaussians 
in the mixture based on R(t), the mean of that Gaussian and the 
global covariance matrix. The estimate is obtained using a 
bounded MAP procedure. Let us represent the estimate of U(t) 
obtained for the kth Gaussian as ˆ ( )kU t . We now define the 

term ( ( ))kP Y t  as: 
2 2( , )

, ,

2 22 2
, ,, ,

( ( , ) ) ( )1 1
( ( )) exp exp

2 22 2

Y t u
k r k u

k
r uk r k uk r k u

Y t r X
P Y t dX

μ μ

σ σπσ πσ−∞

− − − −
=

⎧ ⎫⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪⎪ ⎪
⎨ ⎬⎨ ⎬⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭
∏ ∏∫ (1) 

where ,k rμ  and 2

,k rσ  represent the mean and variance of the 
jth dimension in the kth Gaussian. The index r goes over all 
reliable components of Y(t) and u goes over all unreliable 
components. We define P(k|Y(t)) as 

( ( ))
( | ( ))

( ( ))
k

k
k

P Y t
P k Y t

P Y t
=

∑
                                 (2) 

The estimate of the unreliable components of Y(t) is now 
obtained as 

ˆ ˆ( ) ( | ( )) ( )k
k

U t P k Y t U t= ∑                                 (3) 

The estimated values of the unreliable elements are now 
used to reconstruct a complete spectrogram. The reconstructed 
spectrogram can either be directly used for recognition, or can 
be used to derive other features such as cepstra that can be 
used for recognition. Based on our experience, the log-spectral 
features yield lower recognition rates as compared to cepstral 
features. 

 D. Cepstral Feature Generation Module 
As mentioned earlier, speech recognition performance is 

excellent if cepstral features are used. Here we briefly describe 
the cepstral features and present some recent results done by 
us on speaker verification. 

 
The preprocessing subsystem can be described by Fig. 9. In 

this project, the first 4 blocks in Fig. 9 are not needed because 
we directly use reconstructed lo spectral features to generate 
the cepstral coefficient. 

Pre-
emphasis

Frame
blocking

Windowing FFT Mel-scale
Filter bank

Cepstral
coefficient

Mean
normalization

Make
Feature
vector  

Fig. 9  Cepstral feature generation subsystem 
 

The purpose of feature extraction is to convert each frame of 
speech into a sequence of feature vectors. In our system, we 
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use cepstral coefficients derived from a Mel-frequency filter 
bank to represent a short-term speech spectra. The digital 
speech data is first preprocessed (pre-emphasized, set to 
overlapped frames and windowed) and then Mel Frequency 
Cepstral Coefficient Analysis is applied. Typically feature 
extraction process compresses around 256 samples of speech 
data down to between 13 to 40 features. 

Mel Frequency Cepstral Coefficients features, { }ic , are 
obtained by taking the Discrete Fourier Transform (DCT) of 
log MFCCs, { }jA , as shown below: 

1

cos( ( 0.5))
N

i j
j

ic A j
N
π

=

= −∑                        (4) 

E. Speech Recognition Module 
We have decided to use the CMU open-source SPHINX-3 

as the speech recognizer [14]. One advantage is that we can 
make modification to the recognizer. Another advantage is 
that, if this research goes to the product stage, the cost of the 
product will be small. 

III. MAIN RESULTS 

A. Data Collection Experiments 
We defined the task to be the Navy acronym recognition. 

The scenario is that a Navy pilot may want to know the 
meaning of some acronyms and by interacting with a speech 
recognition system, he can get this information. 

The transcripts of acronyms are taken from [19]. The subset 
we used composed of total 298 sentences with vocabulary size 
of 521. A few example sentences are listed below: 

AAM :    Air-to-Air Missile 
JPATS:  Joint Primary Aircraft Training System 
In Commission:  Vessel is in active service, operational, 
with crew assigned 

The noise data is available at [20].  Four types of noise were 
taken from Noisex-92 database:  

Cockpit noise (buccaneer jet traveling at 190 knots  
Destroyer operations room background noise 
Factory noise (plate-cutting and electrical welding 
equipment)  
Speech babble noise (100 people speaking in a 
canteen).  

We played each type of noise at different SNR levels (clean, 
25 dB, 15 dB and 5 dB) during recording. Stereo speech data, 
one channel for microphone and one channel for GEMS 
sensor, were quantized at 16 bits per sample and sampled at 32 
kHz. Two native male speakers’, total 7.5 hours, speech were 
recorded. 

B.  Speech Recognition Performance of Different Methods 
1) Acoustic Model (AM) Training 
The CMU Sphinx-3 continuous density Hidden Markov 

Model (HMM) system was used as the speech recognizer. 
HMMs with 5000 tied states, each modeled by a mixture of 8 
Gaussians, were trained by using Resource Management data, 
which contains more than 25,000 utterances, spoken by more 
than 160 speakers.  

2) Language Model Training 
Language model (LM) is used for speech recognition 

decoding. It is well known that a good language model is a 
crucial part of modern speech recognizers. Effective LMs can 
result in improvements in recognition accuracy of different 
algorithms.  

The task of language model is to estimate the probability of 
a work sequence 

1 2
{ , , ..., }

n
W w w w= . The uni-gram model 

accorded equal probability to all the words in the recognition 
vocabulary. Tri-gram assumes the probability of current word 
depends only on previous two words. 

1 2 1 3 1 2 1 2( ) ( ) ( | ) ( | ) ( | )n n nP W P w P w w P w w w P w w w− −= L  
In order to train the LM, probability masses of N-grams 

were redistributed by the Turing discounting strategy [15].  
3) Recognition Performance of Different Methods by Using 

a Trigram Language Model 
We first used unigram LM in the speech recognizer. The 

acoustic model was obtained by using the Resource 
Management corpus, which is general for all speakers. The 
improvement in recognition rate was not significant. 
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Fig. 10 Speech recognition performance without customized 

training for the 5 dB case. 
 

Here we will investigate the performance of using a better 
LM known as trigram, which models the relationship between 
three consecutive words. Fig. 10 summarizes the results. Three 
methods were compared. One is uncompensated case. The 
second one is the conventional approach without GEMS. The 
third one is the GEMS based spectrogram reconstruction. 
Some initial results have been report in [16], [17]. It can be 
seen that, for the 5 dB case, an average of 9% improvement in 
recognition rate between the case of with GEMS and the 
uncompensated case has been observed. In the Buccaneer 
case, we have even observed 17% improvement. 

C. GEMS based Speech Recognition Performance with 
Customized Training 

In Section III B (3), we presented some speech recognition 
results based on GEMS. There, no customized training was 
used. A general acoustic model based on the Resource 
Management corpus was used. Here we present some results 
by allowing some customized training, which was done by 
using clean speech signals of the speaker. 

1)  Results of Using 100 Sentences to Train 
Here we used 100 sentences of clean speech in our Navy 

acronym database to train the acoustic model in the speech 
recognizer.  
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Fig. 11 summarizes the recognition results by using 
customized training. Trigram LM was used. It can be seen the 
average recognition rate has been increased to about 70% by 
using the GEMS based approach under 5 dB condition. 
Without compensation, the recognition was quite low (less 
than 50% in most cases). 
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Fig. 11 Speech recognition performance with customized training for 

the 5 dB case. 100 sentences for training 
 

2) Results of Using All 298 Sentences to Train 
Here we investigate the performance of different 

recognizers when we used all 298 sentences of clean speech to 
train the acoustic model. 

Fig. 12 summarizes the recognition rates of using 298 
sentences of clean speech for getting the customized acoustic 
model. The average recognition rate is over 80% for the 
GEMS method under 5 dB noise condition.   
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Fig. 12 Speech recognition performance with customized training for 

the 5 dB case. 298 training sentences 
 

3) Performance Trend of Customized Training 
The results shown earlier were obtained using the Sphinx-3 

recognizer that was trained by the Resource Management 
(RM) database. The error rate is quiet high. For example, for 
SNR=5 dB, and the noise is Destroyer operating room noise, 
the error rate was 67.42%. This may be due to the fact that the 
speech characteristics in RM data are very different from 
those in our database (Navy acronym). 

For commercial speech recognition software such as IBM 
Via Voice and Microsoft Speech Recognizer, training is 
required to achieve high recognition rate even in quiet office 

environment. For the challenging noisy environment, we think 
training is very important as well. 

In Section III.C, we have seen two cases that demonstrated 
good recognition performance by using 100 sentences and 298 
sentences for customized training. Here we will produce more 
results to generate performance trend information by using 
customized training. 

Fig. 13 and Fig. 14 show the word recognition rates for the 
cases when Sphinx-3 was used to recognize the 151-th to 298-
th sentences. Six cases were tested under which the recognizer 
was trained differently by: RM database, 25 sentences (the 
first to the 25-th sentences), 50 sentences, 100 sentences, 150 
sentences and 298 sentences. Except for the last case, the test 
sentences are different from the training sentences. It can be 
seen that with more sentences in the customized training, we 
can clearly see better recognition rates.  
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Fig. 13 Performance trend of customized training. More training 

sentences yielded better recognition rate 
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Fig. 14 Performance trend of customized training. More sentences 

yielded better recognition rate 

D.  Comparative Studies 
Here we present an alternative algorithm from the literature 

for enhancing speech recognition rate in noisy environment. 
The main advantage of this approach is that it can work in 
both stationary and non-stationary environments. 

1)  RASTA-PLP Algorithm for Robust Feature Extraction 
In speech recognition, many different feature representations 

of the speech signal have been explored. The most popular 
feature representation currently used is the Mel-frequency 
Cepstral Coefficients (MFCC). We briefly described MFCC in 
Section II. Another popular speech feature representation is 
known as Relative Spectral Transform-Perceptual Linear 
Prediction (RASTA-PLP). PLP [11] proposed by Hynek 
Hermansky is a way of warping spectra to minimize the 
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differences between speakers while preserving the important 
speech information. RASTA [18] is a separate technique that 
applies a band-pass filter to the energy in each frequency 
subband in order to smooth out the short-term noise variations 
and to remove any constant offset in the speech channel.  

2)  Experiments 
The Sphinx-3 recognizer was used for the recognition 

experiments. The recognizer was trained using clean 
utterances from the recorded Navy acronym database. Only 
microphone speech from one native speaker was used for both 
training and testing. Due to the limited amount of data, 
context independent phone model was trained using a mixture 
of 8 Gaussians. A trigram model was used in the experiments.  

The test set consisted of the data corrupted to SNR of 5 dB 
by four different kinds of noises: babble, destroyer operations 
room, Factory, and Buccaneer. As a comparison, a regular 
conventional MFCC features were used as a baseline. MFCC 
speech feature includes cepstral and energy term, while as 
only cepstral is used in RASTA-PLP feature. No features from 
GEMS sensor signal were used in this experiment. 

From Fig. 15, we can see that the recognition rates for all 
cases have been increased. For example, the recognition rate 
has been increased from 70% to 80 % in the Babble noise 
case. 
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Fig. 15 Word recognition accuracy on Navy acronym Data: MFCC  
vs. RASTA-PLP with Trigram. 5dB SNR, and 4 noisy conditions 
(Babble, Buccaneer, Destroyer, and Factory) 

IV. CONCLUSIONS 
In this research, we have clearly demonstrated the proposed 

approach of improving speech recognition rate under non-
stationary and chaotic noise environments. Extensive 
simulations and comparative studies were performed. Fig. 16 
and Fig. 17 summarize some key findings. Specifically, we 
have observed that: 

• The GEMS did improve the speech recognition 
performance. For example, 16% improvement was 
achieved for the Buccaneer jet noise case under 5 dB 
SNR level. The overall recognition rate is about 60% 
for uncustomized training and 80% for customized 
training. 

• Customized training using clean speech from a 
specific speaker can improve the recognition rate by 
about 20%. Now the recognition rate for 5 dB case is 
over 80%. From Fig. 16 and Fig. 17, we can clearly 
see the impact of customized training.  

• The language model (LM) plays an important role in 
improving the speech recognition rate. In general, 
trigram LM improved the recognition rate by about 
20% as compared to that of unigram LM. 

• RASTA-PLP approach achieved good recognition 
results. However, it was inferior to the GEMS based 
method. 

• The conventional method is good for stationary noise 
and is not suitable for non-stationary noise 
environments. 
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Fig. 16 Speech recognition performance of uncustomized training. 

Noise environment: Buccaneer. LM: Trigram 
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Fig. 17 Speech recognition performance of customized training. 

Noise environment: Buccaneer. LM: Trigram 
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