
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:1, 2007

16

Abstract—Problem solving has traditionally been one of the

principal research areas for artificial intelligence. Yet, although
artificial intelligence reasoning techniques have been employed in
several product support systems, the benefit of integrating product
support, knowledge engineering, and problem solving, is still
unclear. This paper studies the synergy of these areas and proposes a
knowledge engineering framework that integrates product support
systems and artificial intelligence techniques. The framework
includes four spaces; the data, problem, hypothesis, and solution
ones. The data space incorporates the knowledge needed for
structured reasoning to take place, the problem space contains
representations of problems, and the hypothesis space utilizes a
multimodal reasoning approach to produce appropriate solutions in
the form of virtual documents. The solution space is used as the
gateway between the system and the user. The proposed framework
enables the development of product support systems in terms of
smaller, more manageable steps while the combination of different
reasoning techniques provides a way to overcome the lack of
documentation resources.

Keywords—Knowledge engineering framework, product support,
case-based reasoning, model-based reasoning, multimodal reasoning.

I. INTRODUCTION
RODUCT support is often described through the various
forms of assistance that the companies offer to their

customers. Traditionally, it is associated with the provision of
supplies, tools, equipment and facilities, as well as
information. It may include installation, user training,
technical documentation, product manuals, help lines,
servicing, spare parts, maintenance management, and product
upgrades [1], [2].

Nowadays, efficient support involves answering to users’
queries by providing accurate and user-tailored information.
Each user query can be represented as a problem, using
approaches from problem solving research. The diversity of
the problems posed to the system should be an essential
consideration throughout its design.

The aim of this paper is to demonstrate that product support
problems can be automatically solved by deploying artificial
intelligence representation and reasoning techniques in a

Manuscript received October 31, 2006. This work was supported in part by
the ISAR and TRENDS European projects.

R. M. Setchi is with Cardiff School of Engineering, Cardiff University,
Cardiff CF24 3AA (phone: +44-(0)-292087-5720; fax: +44-(0)-292087-4716;
e-mail: setchi@cf.ac.uk).

Nikolaos Lagos is with Cardiff School of Engineering, Cardiff University,
Cardiff CF24 3AA (e-mail: LagosN@cf.ac.uk).

knowledge engineering framework. The rest of the paper is
organised as follows. Section 2 briefly reviews product
support and its relation to knowledge engineering. The
knowledge engineering framework, which comprises of four
different spaces, is introduced in section 3. Section 4 includes
a case study while the final section contains conclusions and
directions for further work.

II. BACKGROUND
Pham et al. [1] define product support as everything

necessary to allow the continued use of a product. It takes
various forms, ranging from conventional paper-based
technical manuals to more advanced interactive electronic
technical manuals (IETMs) [3], intelligent product manuals
(IPMs) [1] and electronic performance support systems
(EPSSs) [4].

Studies show that the most common AI technique used in
product support systems is rule-based reasoning, which is
primarily employed in troubleshooting. An example is the
work of Paul et al. [5], in which a diagnostic system supports
the operation of a radar warning receiver.

In addition, a number of researchers have used case-based
reasoning (CBR) for diagnosis and help-desk applications.
Foo et al. [6] utilise CBR in combination with neural networks
for producing a help-desk-support environment, while Auriol
et al. [7] use a CBR system in the troubleshooting of a
welding robot.

Model-based reasoning has received less attention than
these two techniques. An example is the research of
Brusilovsky and Cooper [8], who employ models for adapting
the interface of a performance support system and creating an
‘expert-like’ problem solving engine.

Latest attempts focus on the integration of different
reasoning techniques. For instance, Pham and Setchi [9]
develop adaptive product manuals by combining CBR for
interpreting user’s requests and rules for adapting the
generated documents.

Although these studies address the use of reasoning
techniques in product support they are based on ad-hoc
designs. As a result, a major limitation of the previous work is
the lack of design and knowledge reusability. This could
become an obstacle in the nearest future when a new
generation of much more complex and highly customized
products emerges. The authors of this research share the
vision that this challenge could be successfully addressed if

Multimodal Reasoning in a Knowledge
Engineering Framework for Product Support

Rossitza M. Setchi, and Nikolaos Lagos

P

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:1, 2007

17

the synergy between problem solving, knowledge engineering,
and product support is further studied. The research reported
in this paper extends earlier approaches by proposing a
framework that delineates the inference components of a
product support system and deploys a multimodal reasoning
approach to enable the segmentation of the development
process into smaller more manageable steps.

III. A KNOWLEDGE ENGINEERING FRAMEWORK FOR PRODUCT
SUPPORT SYSTEMS

The framework (Fig. 1) comprises four different spaces: the
data, problem, hypothesis, and solution ones. The architecture
of the framework is sequential, meaning that each space is
involved in the process, when its preceding space has
completed its operations. The sequential structure of the
framework is enhanced with several feedback paths, which
enable other advanced operations to take place, such as
knowledge creation.

Solution space

Solution validation
operations

Problem

Problem

Problem

Solution

Solution

Solution

Knowledge pre-
processing operations

Data space

Knowledge models

Task
model

User
model

Product
model

Problem space

Problem mapping
operations

Problem

Problem

Problem

Solution

Solution

Solution

Hypothesis forming
operations

Hypothesis space

Identify
problems

Generate
hypotheses

Rank
hypotheses

Evaluate
solutions

Knowledge creation

Problem-solution pairs
Problem-solution pairs

Document
model

Knowledge bases

Task knowledge base

Product knowledge base

User knowledge base

Document knowledge base

Computational model

Fig. 1 Knowledge-engineering framework for product support

A. Data Space
The data space contains knowledge about the domain (task

and product models), the context (e.g. activity model, user
model) and the documentation elements. As a result, the
development of such a system is highly interdisciplinary. In
order to advance interoperability between these different areas
and product support, an ontology that formalizes the
aforementioned knowledge has been developed (Fig. 2).

:USER
SUBSTEREOTYPE

Legend

Concept Is-a Has IsRealised
With

IsRelatedTo IsMappedTo FillParameter

:PRODUCT
FAMILY

:PRODUCT

:PRODUCT
SPECIFIC

:ASSEMBLY

:SUBASSEMBLY

:PART

:KNOWLEDGE
SPECIFIER

:TYPE

:DOCUMENT

:IOC

:IO

:ACTION

:SUBTASK

:TASK

:ACTIVITY

:SUBACTIVITY :USER
STEREOTYPE

:USER

:CONTEXT

:THING

Fig. 2 Part of the ontology for product support systems

The ontology can be described according to the product,
task, context, and document models it includes.

1) Document model
The main structural component of the document model is

the Information Object (IO). IO is defined as “a data structure
that represents an identifiable and meaningful instance of
information in a specific presentation form” [10]. IO can
therefore be a picture that illustrates a part of a product or a
textual description.

The notion of Information Object Cluster (IOC) has been
utilized [11] as a means of organizing IOs. IOC is defined as a
2-tuple IOC:=({IO}, SIOC) where {IO} is a set of IOs sharing a
common property that are arranged in a structure SIOC. A
structure defines the way in which they are presented within
the same page, as well as the relevant links. SIOC conforms to
presentation rules (e.g. a textual description should always
appear before the corresponding image).

The Virtual Document (D) is generated by the aggregation
of IOCs and is defined as a 2-tuple D:=({IOC}, SD) where
{IOC} is a set of IOCs sharing a common property that
logically structured (SD) in order to compose a document (D).

2) Product model
The product model represents the structure of the product.

All its concepts are mapped to IOCs as explained in the rest of
the section. Concepts: “PRODUCT SPECIFIC” and
“:ASSEMBLY” are linked to the concept “:TYPE”. This is a
specialization of: “KNOWLEDGE SPECIFIER”, which
abstracts all concepts that represent domain significant
properties. For example, the type of an assembly, i.e. whether
it is considered as complex or not, affects the generation of the
document (this will not be further discussed here as it is not
within the focus of this paper).

3) Task model
The task model contains the tasks, subtasks, and actions that

are supported, where action is the most elementary step of a
task. All are mapped respectively to IOCs and are related to
“:TYPE”. Furthermore, the task model is configured according
to its relation to the activity model.

4) Context model
The context model includes the activity and user models (it

can include their parameters such as location). Both models
are related to the “:DOCUMENT” concept with the relation
“FillParameter”, which denotes that the characteristics of the
user and the activity are passed as adaptation parameters to the
document.

The ontology is not in the focus of this paper. Please refer
to [11] for more information.

B. Problem Space
The problem space incorporates knowledge about the

product support problems (PSPs) that have occurred in
previous problem solving iterations. In order to automatically
solve such problems, PSPs have first to be formally defined
and appropriately represented in a machine-processable
format.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:1, 2007

18

1) Definition of PSPs
The knowledge that a product support system should

deliver to the user is tightly linked to the problem that has to
be solved. There are two basic qualities that characterise a
PSP, namely its content and context. The content has to be
relevant to the product that is supported and/or the task that
the user wants to perform, while the context is determined
according to the user characteristics and the system’s usage.
The PSP therefore should contain what is needed (elements of
knowledge that are missing), why it is needed and under what
circumstances (context). The given definition of a PSP
contains all the identified elements and is represented as
follows.

Definition 1. Product Support Problem (PSP) is a 4-tuple
PSP := (MOD, HYP, CON, OBS) where:
• MOD is a finite set that represents the product and task

models in relation to the IOCs and IOs that form the
documents.

• HYP is a finite set of combinations of elements of MOD
representing possible documentation hypotheses.

• CON is the context that characterises the problem and
contains the user model (UM) in combination with the
usage purpose.

• OBS represents the observations acquired by the current
query and are mapped to elements of MOD and CON.
Definition 1 identifies PSPs as a specialisation of diagnostic

problems, since a product support system recognises and
solves PSPs in terms of the IOs and IOCs involved. The
problem solving process therefore includes identifying that
there is a fault (e.g. product support virtual document asked
does not exist) recognising the type of fault (e.g. difference in
configuration or missing IO, IOC), and choosing a strategy to
be followed (e.g. provide the missing documentation element).
In order to achieve that PSPs have to be appropriately
represented.

2) Case-based representation of PSPs
PSPs are literally considered as problem-solution pairs, as

they are directly linked to solutions that exist in the solution
space. A natural way to represent problem-solution pairs is
that of cases.

Cases are structured in the form of attribute-value pairs.
This form of representation has the advantage of simplicity,
preciseness, and controllability (important characteristics for a
system used by different groups of users e.g. novice in
information or web technologies). For example, the attribute
“No_Disks”, which is used to describe automotive clutches,
can be paired with the value “2”. The assignment indicates
that the problem refers to double-disk clutches.

The content of a case-based problem contains the goals to
be achieved, the situation description, and the constraints to be
satisfied. The goals are separated in three groups. According
to the definition of a product support problem the most
abstract goal is to execute diagnosis (explicitly related with
the use of a product support system), which does not have to
be included in the problem description. For example,
identifying that specific parts of required product support

virtual documentation are missing and utilising the means to
fix this problem belongs in this category.

At the next group the purpose of the user is delineated, into
three classes, which are information retrieval, diagnosis, and
explanation (or expert advice). These can be implicitly
identified, according to the usage of the system. They indicate
the type of information the user requires for the supported
products and tasks. For example, the query “Loud bang or
chattering is heard as vehicle vibrates” belongs to the
diagnosis class since the goal is to diagnose the behaviour of
the supported product, while “give more information on
clutches” relates to information retrieval.

The last group differentiates between educational (i.e.
knowledge enrichment) and performance (i.e. increased
efficiency) objectives. This group of goals influences the way
the documentation content is delivered to the user.

The situation components give descriptive information
about the targeted characteristics that the solution should
reflect. For example the dimension1 “Moment_of_Inertia”
with value “55.814”, depicts information about the
performance of a clutch. However, although desirable,
respecting the restrictions set by such descriptors is not
deemed necessary for delivering a solution. Such features are
therefore set to contain either highly dynamic values (e.g. the
value of the moment of inertia theoretically can range from 0,
in case the product does not have any mass or radius, to
several hundreds depending on the supported clutches) or
static values that have not been included in the query (e.g. if
the query is “more information on clutches” then whether the
clutch contains a synchroniser or not should not disallow the
presentation of a product support document for clutches).

The constraints are conditions set on goals that have to be
met in any acceptable solution. For example one of the goals
is to diagnose the documentation constituents needed and
deliver them (through a product support virtual document) to
the user. If the query asks for more information on transaxles,
then the presented product support virtual document should
include such information, otherwise the system fails. Class-
level and contextual features that are engaged in the query
form constraints. Contextual features describe the user’s
category and goal.

3) Integrating case-based PSPs and ontologies
One of the major limitations of traditional attribute-value

pair representations of cases is the fact that there is no relation
between the different pairs.

In this study the aforementioned drawback is leveraged by
means of modifying the weight of each feature. However,
since the CBR knowledge is most of the time stored in text
format having no identified links between a large number of
attribute-value pairs can influence the performance of a
system in case retrieval and adaptation.

The proposed solution is semantic-based disambiguation of
the features by assigning them to components of product

1 The terms descriptor and feature apply to the attribute-value pair, while

dimension is the attribute part of the pair only.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:1, 2007

19

support knowledge bases and ontologies. The mapping is
achieved in two levels, the concept and instance ones.

At the concept level the dimension of a feature is mapped
to either a concept or a slot. For example, the attribute
“Assembly” is assigned to the assembly concept in the product
knowledge base, while the dimension “Moment_of_Inertia”
represents the same information as the corresponding slot. The
aforementioned allocation has the following repercussions.
• The descriptors of the cases are associated with each other

according to the relations of the corresponding knowledge
models elements. For example, the dimension
“No_of_Disks” is related to the concept “Clutch” with the
relation “is_slot”, which means that the value of the
“Assembly” feature has to be “Clutch”, when the descriptor
“No_of_Disks” belongs to the case, setting restrictions on
the validity of cases. In natural language this can be
expressed as “The clutch assembly has number of disks
(value)”.

• The features can be classified according to the range of
values they can have or the frequency with which their
values are expected to change. Dimensions that denote slots
are expected to demonstrate dynamism (e.g.
“No_of_Disks” can change frequently within the range
specified by the knowledge base), while concept-based
descriptors tend to be more static and predictable (e.g.
“Assembly” can have only pre-specified values that
correspond to concepts in the knowledge base). The former
group of features is called variable-level while the latter is
named class-level. The values of class-level features are
always concepts. The difference in the possible values that
the sets of descriptors can take indicate that separate
strategies that need to be used for accommodating
modifications in variable-level and class-level features.

• The sets of attribute-value pairs can be linked to different
documentation components. As already explained, concepts
are described by Information Object Clusters (IOCs), while
Information Objects (IOs) are mapped to slots of the
knowledge base. Naturally, since variable level features are
related to slots of the knowledge base they are also
described by IOs and class-level descriptors by IOCs.

• Class-level features represent a more complex
documentation module than variable-level ones. This
means that the modification of class-level descriptors
requires a lot of computational resources and knowledge-
intensive techniques, in order to produce a support
document. On the other hand changing variable-level
descriptors is less important since they are mapped to the
smallest documentation constituent (i.e. IO). This
distinction is signified by the weights assigned to each
group. Consequently, class-level features should have a
bigger weight factor than variable-level ones, unless
otherwise explicitly defined by the user.
At the instance level the cases contained in the case base

represent combination of instances included in the knowledge
base. For example, if two features of a case are “Assembly”
and “No_of_Disks” with respective values “Clutch” and “2”,

then instances of the concept clutch with 2 disks should exist
in the knowledge base. Variable-level descriptors are directly
related with the validity of cases, since they are the ones used
to instantiate concepts.

C. Hypothesis Space
The formal definition and semantic representation of PSPs

in terms of cases, enables the automatic creation of solutions
as described in the rest of this section. The process followed
includes retrieving relevant cases, adapting them and/or
generating new ones.

1) Case retrieval
The functional roles of the case components are well

defined and simple comparison of values that correspond to
the same dimension is feasible. A weighted ranking method
therefore can be used to input the degree of importance for
dimensions. The weighted Euclidean method has proved to
perform better than other techniques for certain applications
[12]. In this technique all features of the cases are represented
as vectors. The following formula describes the weighted
Euclidean distance.

∑
=

−=
ni

iii cqwD
,...,1

2)((1)

In (1) D stands for distance, iw depicts the weight of the

descriptor i , iq the target query, and ic the compared case.
2) Case-based adaptation
Variable-level descriptors can have different values. For

example, “radius” is a dynamic characteristic, which requires
a solution modification when changed from 2.2 cm to 3.4 cm
that reflects the current situation. Most of the times such a
variation does not affect the structure of the presented PSVD.
Parameter adjustment is utilised for enabling adaptation
based on modified variable-level descriptors.

Class-level descriptors may be also altered. Case-based
adaptation is employed in such a case if the Information
Object Cluster that substitutes an existing solution’s IOC, has
the same functional role and is pre-composed or can be
composed at run-time (IOs are available and structure can be
determined). For example an IOC that describes the flywheel
of a clutch has the same role as an IOC depicting a
countershaft (both are clutch subassemblies). In the case that
both of them are available and the countershaft IOC is
required to be included in the solution instead of the flywheel
IOC, then case-based adaptation can be applied. In the
majority of such cases not only the content of the PSVD needs
to change but also its structure. Reinstantiation is used in
such cases by selecting an old solution and employing role
bindings for creating an adapted solution. For example the two
cases illustrated in Fig. 3 involve requesting information about
a flywheel and a countershaft (according to the bindings
between the ontology and the case base “flywheel” and
“countershaft” are both specialisations of the subassembly
concept and therefore semantically equivalent for the case
reasoner) and can be used to abstract the problem of asking
information about subassemblies, as shown in the right part of

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:1, 2007

20

the figure.
3) Model-based generation
Model-based reasoning is utilised in the case when a class-

level descriptor that is included in the PSP, does not
correspond to an existing IOC. The reasoning process has two
main stages in such situations, diagnosis and configuration.

The goal of diagnosis is to isolate the fault to a single
component or to a least replaceable unit (LRU). Since the
repair action is to construct a new IOC, the LRU denotes an
IOC, although the IOC is in turn composed of smaller
constituents (i.e. IOs). Identifying the omitted IOC is a matter
of exploring the model of a case description and connecting it
to the ontology-based knowledge models.

Fig. 3 Abstracting groups of cases to represent information retrieval

problems based on ontology-related bindings

Once the required LRU is mapped to an ontology
component, the configuration process starts by automatically
creating an IOC based on the relations defined in the
knowledge base. More specifically, the generalisation relation
(“is-a”) is utilised in providing information that covers the
queried domains, while aggregation and reference relations
are employed to compose required IOCs.

For example, if an IOC that corresponds to a transaxle is
needed but no such description is available, then aggregation
relations are exploited to find the assemblies and parts with
which a transaxle is developed. Each assembly, part, and
relation is individually used to portray the description of a
transaxle. In the case that transaxle is not recognised as an
internal part of the model, the concept related to it via a
generalisation relation (e.g. assembly) is used to retrieve
information based on the general qualities that characterise the
domain (e.g. transaxle is-a assembly and therefore the
definition of assemblies is true for transaxles as well).

Candidate solutions are ranked according to a specialisation
of the parsimony rule (i.e. if a composite solution is a data
subset of another one, then the smallest set is selected). For
example, a transaxle has a number of subassemblies, which in
turn have a number of parts. At least two hypotheses are
formed in such a case. The first one has data about the
subassemblies only, while the second one about both
subassemblies and parts. If the IOCs that describe the

subassemblies have been manually pre-composed then the
former hypothesis is selected otherwise the latter one is
chosen.

D. Solution Space
The solution space contains information about the product

support virtual documents that have been derived throughout
previous problem solving iterations and includes unique
identifiers (UIs) and status identifiers (SIs).

Each UI comprises the concepts and slots that were
involved in the problem specification and solution generation
as shown below. All instantiations denote the existence of a

number of variable-level features (or ontology slots). The
parts of the UI that do not have any value are filled with
“null” or “0”.

Each SI can take the values “validated” or “not validated”,
which indicate whether each solution has been manually
validated or not. The ones that have not been validated should
be removed after a period of time.

IV. CASE STUDY
The selection of simple retrieval, case-based adaptation or

model-based generation depends on the cases retrieved as a
response to the queries of the users. Fig. 5(A) illustrates an
example of a pre-composed document that describes the
clutch assembly. The first picture included in Fig. 5(A)
corresponds to single-disk clutches while the second picture
portrays double-disk clutches. Fig. 5(B) shows a scenario
where the user asks for a description of a single-disk clutch.
That is expressed by the highlighted row in Fig. 5(B), which is
one of the retrieved cases that match the user’s query. The
resultant virtual document includes only the documentation
components related to single-disk clutches such as the related
pictures and facts (denoted by the arrows), produced with
parameter adjustment heuristics.

The next scenario involves a user who requests a
description for the body of a car. The query can be satisfied by
replacing the Clutch concept from the previous case with the
Body concept (represented by the values of the
“ASSEMBLY” dimension in the cases) since both of them are
considered specialisations of the Assembly concept in the
product ontology. Reinstantiation is therefore utilised and the
IOC related to the Clutch is replaced by the IOC describing
the Body of a car, in order to respond to the changes between
the previous and current selected cases. The resultant
document is shown in Fig. 5(C).

A rather similar query is examined in the following setting
where the user presumably asks for the description of a
transaxle. However, in this scenario there is no pre-composed
IOC corresponding to the Transaxle concept. This means that
the IOC and PSVD content has to be created according to the
ontology-related models. A simple solution is to utilise the

Goal-User-Product-ProductInstantiation-Assembly-
AssemblyInstantiation-Subassembly-SubassemblyInstantiation-
Part-PartInstantiation-Task-Subtask-Action

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:1, 2007

21

aggregation relations, as discussed earlier, between the
subassemblies and parts that compose a transaxle additionally
to other information found in the slots of each concept and the
information extracted from the generalisation relations. For

example, in Fig. 6 the text describing the Housing concept is a
combination of its relation to the Subassembly concept (i.e.
“Housing is a Cls(Subassembly, FrameID(1:10133))”), and
to the parts Screw, Pin, etc. (“Has Screw, Pin, … parts”).

Fig. 4 Case-based adaptation

Furthermore, the definition of Housing is included in the

Documentation slot and used in the generated document. As
illustrated, the generated document follows the basic structure
of a PSVD having title (“DESCRIPTION OF A
TRANSAXLE”) and introduction (“In four wheel vehicles
and specifically in cars”) related to the query. The body of the
document is a composition of subassembly and part related
IOCs. Frame IDs are included in the produced document in
order to indicate the IOCs that need to be manually edited by a
technical writer at a later stage (to aid in the authoring
process). The assumption is that model-based generated
solutions are going to become fewer as more documentation
components are developed by the technical writers while case-
based adaptation will become more important.

Fig. 5 Model-based generation

V. CONCLUSION AND FUTURE WORK
The framework presented in this paper structures the task of

creating a product support system in four different distinct
phases. First the knowledge required to enable reasoning is
represented in the data space and includes product, task,
documentation, and context related information. Then possible
scenarios in the form of cases in a case base stand for different
types of product support problems. Case-based adaptation and
model-based generation are both needed in order to respond to
different user queries and deliver solutions in the form of
automatically created virtual documents.

One crucial issue is the modeling of the different context
instantiations and the way these can influence the document
adaptation and creation. In the current work the context is
included in the definition of product support problems and in
the ontologies underlying the framework. The next step is to
identify the correlation between virtual documentation and
context in order to provide context-aware product support.

REFERENCES
[1] Pham DT, Dimov SS and Setchi RM. Intelligent product manuals. Proc.

IMechE. I-213 (1999) 65-76.
[2] Goffin K. Evaluating customer support during new product

development-an exploratory study. Journal of Production Innov.
Management. 1-15 (1998) 42-56.

[3] Jorgensen EL and Fuller JJ. A web-based architecture for interactive
electronic technical manuals (IETMs). ASNE Naval Logistics
Conference. (1998).

[4] Bezanson WR. Performance support: online, integrated documentation
and training. 13th ACM Annual Conference on Emerging from Chaos.
Savannah. USA. 1-10 (1995).

[5] Paul C, Zeiler G and Nolan M. Integrated Support System for the Self
Protection system. IEEE Systems Readiness Technology Conference
Proceedings, AUTOTESCON (2003) 155-160.

[6] Foo S, Hui SC and Leong PC. Web-based Intelligent Helpdesk-support
Environment. Int. J. Syst. Sc. 33-6 (2002) 389-402.

[7] Auriol E, Crowder RM, McKendrick R, Rowe R and Knudsen T.
Integrating Case-based Reasoning and Hypermedia Documentation: an
Application for the Diagnosis of a Welding Robot at Odense Steel
Shipyard. Eng. App. of AI. 12 (1999) 691-703.

[8] Brusilovsky P, Cooper DW. Domain, Task, and User Models for an
Adaptive Hypermedia Performance Support System. Proc. IUI ’02,
ACM, San Fransisco, California, USA (2002) 23-30.

(A) (B) (C)

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:1, No:1, 2007

22

[9] Pham DT, Setchi RM. Case-based Generation of Adaptive Product
Manuals. Proc. IMechE. B-217 (2003) 313-322.

[10] Pham DT, Dimov SS, Setchi RM, Peat B, Soroka A, Brousseau EB,
Huneiti AM, Lagos N, Noyvirt AE, Pasantonopoulos C, Tsaneva DK
and Tang Q. Product Lifecycle Management for Performance Support. J.
Comp. Inf. Sc. Eng. ASME. 4 (2004) 305-315.

[11] Lagos, N., Setchi, R., Dimov, S.S. Towards the Integration of
Performance Support and e-Learning: Context-Aware Product Support
Systems. LNCS. 3762 (2005) 1149-1158

[12] Mendes, E, Mosley, N., Watson, I. A comparison of case-based
reasoning approaches. Proc. 11th intern. conf. on World Wide Web.
Honolulu, Hawaii, USA, (2002) 272-280.

