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The particle swarm optimization against the
Runge’s phenomenon: Application to the
generalized integral quadrature method
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Abstract—In the present work, we introduce the particle swarm
optimization called (PSO in short) to avoid the Runge’s phenomenon
occurring in many numerical problems. This new approach is tested
with some numerical examples including the generalized integral
quadrature method in order to solve the Volterra’s integral equations.
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I. INTRODUCTION

N recent years, much attention has been devoted to the

investigation of new mathematical models and numerical
approaches to evaluate the solutions of the EDP and the
integral equations. Excellent surveys which contain both nu-
merical and theoretical researches are given in [1-20].

The primary argument for the interest of the type of this
problem comes naturally from its wide applications almost
in any branches of science and engineering described by
systems of ODEs and PDEs [21-31] which in some situations
the solutions present the Runge’s phenomenon in the edges
of the interval. This situation can be avoided by a specific
utilization of the algorithm PSO. The PSO algorithm is a paral-
lel evolutionary computation technique proposed by Kennedy
and Eberhart in 1995. The PSO has nowadays gained great
importance in computer optimization.

The latest numerical approach to date is the generalized
integral quadrature method introduced by Zerarka and Soukeur
[32]. It was first applied to one-dimensional Volterra integral
in the linear and nonlinear cases, where the solution is not
completely reproduced in the domain in which strong oscil-
lations can arise. This method studies the situation in which
the unknown function is identified as the Lagrange polynomial
[33] and the interpolating points of the Tchebychev type are
used.

New calculations are performed for the construction of the
solution by a suitable choice of the interpolating points using
the particle swarm optimization (PSO) in order to avoid the
Runge’s phenomenon [34]. Our main purpose is to show how
the Runge’s phenomenon can be completely removed from
the solution of interest. We examine two specific examples in
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which the Runge’s phenomenon emerges in the evaluation of
solutions.

The contents of this paper are organized as follows. In
Section 2, a formulation adapted to the strategy of particle
swarm optimization and the construction of an algorithm to
generate the different agents in a swarm. The Section 3 gives
the Runge’s phenomenon for polynomial interpolation. Section
4 exposes some essential examples to show how the PSO
algorithm can lead to a satisfactory result for the construction
of solutions.

Il. OVERALL DESCRIPTION AND STRATEGY OF PARTICLE
SWARM OPTIMIZATION

A new stochastic algorithm has recently appeared, called
“particle swarm optimization” PSO. The term “particle’ means
any natural agent that describes the swarms behavior. The PSO
model is a particle simulation concept, and was first proposed
by Eberhart and Kennedy [34, 35]. Based upon a mathematical
description of the social behaviors of swarms, it has been
shown that this algorithm can be efficiently generated to find
good solutions to a certain number of complicated situations
such that for instance, the static optimization problems, the
topological optimization, and others [36-40] and references
contained therein. Since then, several variants of the PSO have
been developed [41-48]. It has been shown that, the question
of convergence of the PSO algorithm is implicitly guaranteed
if the parameters are adequately selected [49, 50].

The strategy of the PSO algorithm is summarized as follows:
We assume that each agent ( particle ) ¢ can be represented in
a N-dimension space by its current position X; = (z;1, z;2,
..., ;) and its corresponding velocity V; = (v;1, via, .-y
vy ). Also a memory of its personal (previous) best position
is represented by P; = (p:1, pi2, ..., pin ), Called (pbest), the
subscript ¢ range from 1 to s, where s indicates the size of
the swarm. Commonly, each particle localizes its best value
so far (pbest) and its position, and consequently identifies its
best value in the group (swarm), called also (sbest) among the
set of values (pbest).

The velocity and position are updated as

vffl = wjvfj + (:ﬂ'lf[(pbest)fj — 157] + cyé[(sbest)f — li“]]
(1)
i =t )
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where zF1 | ¥+ are the position and the velocity vector
of particle 7 respectively at iteration k£ + 1, ¢; and ¢, are
acceleration coefficients for each term exclusively situated in
the range of 2 to 4, w; is the inertia weight with its value
that ranges from 0.9 to 1.2, whereas r¥ , »§ are uniform
random numbers between zero and one. For more detail, the
double subscript in the relations (1) and (2) means that, the
first subscript for the particle < and the second one for the
dimension j. The role of a suitable choice of the inertia weight
w; is important in the PSO success. In the general case, it can
be initially set equal to its maximum value, and progressively
we decrease it if the better solution is not reached. Too often, in
the relation (1), vi;"" is replaced by v/;"" /o, where o denotes
the constriction factor that controls the velocity of the particles.
The following algorithm should give us the general idea how
to generate the particles in the swarm:

Step 1: Set the values of the dimension space NN, and the
size s of the swarm ( s can be taken randomly).

Step 2: Initialize the iteration number % ( in the general case
is set equal to zero).

Step 3: Evaluate for each agent, the velocity vector using
its memory and equation (1), where pbests and sbest can be
modified.

Step 4: Each agent must be updated by applying its velocity
vector and its previous position using equation (2).

Step 5: Repeat the above steps (3, 4 and 5) until a conver-
gence criterion is reached.

I11. ILLUSTRATION OF THE RUNGE PHENOMENON FOR
POLYNOMIAL INTERPOLATION

Wild oscillations can occur near the ends of the interval
for large degree polynomials and can lead to the Runge’s
phenomenon (RP). So far the only remedy against the RP is
the Chebyshev type distribution towards the end of the interval.
The oscillations can be minimized by using Chebyshev nodes
instead of equidistant nodes [32]. In this case the maximum
error is guaranteed to diminish with increasing polynomial
order. For the high degree polynomials it is suitable to use the
B-spline functions which are defined in the subintervals. The
PSO algorithm is more flexible and gives results with a very
high accuracy, and resolves in a systematic way the oscillations
phenomenon when the interpolant polynomial becomes a bad
approximant as the degree increases and restores accuracy to
the solutions of the problem under consideration. Thus, the
suppression of Runge’s phenomenon is now possible with the
help of the PSO algorithm.

It is important to underline that, the main quantity to
estimate the error in interpolating polynomial is expressed

N

in terms of the 6(z) = [](z — z;). Thus, the points of

i=1
interpolation are chosen such that 6(z) differ the least possible
from zero in the interval of interest.

IV. EXAMPLES

These examples can be viewed as typical cases which
provides a good illustration of Runge’s phenomenon. We note
that, the accuracy of results depends manifestly to success of

particles in the swarm to locate the best points to avoid the
Runge’s phenomenon. For easy interpretation, the numerical
results evaluated by PSO algorithm, and those obtained by the
exact formula are plotted in same graph. The new candidates
for the interpolating points are displayed in Tables | and Il in
the cases N = 11 and N = 21 respectively. For convenience,
we have presented the parameters settings to generate the PSO
algorithm for both examples as Table Il shows.

TABLE |
THE NEW CANDIDATES FOR THE INTERPOLATING POINTS x;1 AND Z;2
GENERATED BY PSO ALGORITHM FOR THE EXAMPLES 1 AND 2
RESPECTIVELY. NUMBER OF POINTS NV = 11.

i Ti1 Zi2

1 —0.9909 10.0734
2 —0.1866 10.2218
3 —0.5079 10.2230
4 —0.7091 11.1317
5 —0.8578 11.2050
6 0.1704 11.4177
7 0.3139 11.4224
8 0.4184 11.8523
9 0.8566 11.8662
10 0.8661 11.9352
11 0.9100 11.9511

TABLE Il

THE NEW CANDIDATES FOR THE INTERPOLATING POINTS x;1 AND Z;2
GENERATED BY PSO ALGORITHM FOR THE EXAMPLES 1 AND 2
RESPECTIVELY. NUMBER OF POINTS N = 21

J Zi1 T2 J Ti1 T2
1 —0.0110 10.2281 13 0.0171 11.2639
2 —0.2000 10.2402 14 0.2172 11.6565
3 —0.3122 10.2877 15 0.2600 11.6864
4 —0.3423 10.3395 16  0.400 11.6939
5 —0.3832 10.3470 17 0.4916 11.7221
6 —0.4057 10.5138 18 0.5138 11.7522
7 —0.6617 10.5934 19 0.6836 11.8948
8 —0.6937 10.6100 20 0.8499 11.9345
9 —0.7023 10.7072 21 0.8819 11.9856
10 —0.9183 10.8737 22
11  —-0.9791 11.1006 23
12 —1.0000 11.1257 24

TABLE IlI

PARAMETERS SETTINGS TO GENERATE THE PSO ALGORITHM FOR BOTH
EXAMPLES. CASE N = 21.

Example 1  Example 2
Population Size 21 21
Number of Iterations 500 600
Acceleration Coefficients: ¢; and ¢co 0.5 0.5
Inertial Weight 12t004 12t004
Desired Accuracy 10-° 10—%
A. Example 1

We now present an explicit example of calculating a specific
function as
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Fig. 1. Function objective (3) for the example 1. Solid line: exact solution,
dots line: Lagrange interpolating polynomial of order N = 11.

S

Fig. 2. Function objective (3) for the example 1. Solid line: exact solution,
dots line: PSO algorithm with v = 11.

1
defined in the interval [—1,1]

The Figure 1, depicts the graph of the exact function and
the result obtained by Lagrange interpolating polynomial. We
clearly state that the Runge’s phenomenon is veritably present
near the ends of the interval and must be removed by handling
the PSO algorithm.

It is evident also that, the discrepancies resulting from La-
grange interpolating polynomial (Figure 1) are much apparent
than their counterparts obtained by the PSO algorithm (Figure
2) with only N = 11. At present, the Runge’s phenomenon
becomes treatable and can be completely removed as expected
in the Figure 3, where the number of points is taken to be
N = 21 is sufficient to give an excellent objective function.
As an important consequence of this feature is that the PSO
algorithm still works even in the case where the function
presents some singularities (see example 2).

®)

B. Example 2

In the sequel, we proceed with a practical example more
complicated. We first briefly introduce, the generalized integral
quadrature method (G1Q), the details can be found in [32].

o /)

-1 -0.5 0.5 1
Fig. 3. Function objective (3) for the example 1. Solid line: exact solution,
dots line: PSO algorithm with N = 21.

A brief description of generalized integral quadratic method
is summarized as follows: the \olterra equation integral is
written as

£() = olx) + A /0 CK(es)f(s)ds,  0<a<T ()

where \ is a parameter, ¢(z) is a given function and K (z, s)
is the kernel of the integral equation. It is assumed that the
functions involved in (4) are sufficiently regular. In (4), the
upper limit of the integral term is a variable.

If we set

U(x) = /Ow K(x,s)f(s)ds (5)

then U(x) may be approximated by

N
U(xm,) = Z CmJK(xma lj)f(lj)’ m=0,.., N7 (6)

=0

Ui(m) =Y Con K (€, 25) Pa i (), @)

j=0
where Py ;(x) are Lagrange interpolated polynomials, and the
interpolating points are taken as the foints of Tchebychev of

the form z; = 1T [1 - cos(fjvgw) ,0<j<N,and

1 Em
Chj=——— K(xm,s)Pn. i(s)ds, 8
= o K P @)
In order to avoid unnecessary calculation, it is therefore more

convenient to get the desired coefficients C;; in the following
form

T _ N

Cy = K(l’i,s)dS* Z C’ijf((.ri,.rj), fori:O,...,N,

0 7=0,j#i

©)
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where K(xm, r) = M

K (xn
Now the expressions (8) and (9) provide the formulae for
the weighting coefficients, and the function f(z) is expressed
as.

N
r) = f(z;)Pn ;). (10) -
j=0

Even with the Chebyshev-type points, in some situations,
the improvements cease. To overcome this problem, it is
always possible to introduce special nodes selected by PSO
algorithm

The manifestation of the RP is evaluated by the Lebesgue
constant IIy in terms of N degree polynomials Py ;(x)

Iy = max Z |Pyj(z (11)

z€[a,b]

with uniform nodes Iy = O %) We see from this that
strong oscillations can emerge, whereas with the Chebyshev-
type points Iy = O (In N) this situation can lead to a good
improvement.

Now let us return to this model problem with a concrete
exposition. As a second illustrative example, the linear integral
equation taken from [51] is considered, i.e.,

fa) =1 [ o =9t ro)as (12

The above equation has the exact solution f(z) =
exp(mc)(l erf(/mx)), and contains a weakly singular kernel
(r —s)~=. This smgularlty can be avoided by the following
transformation: u = /x —s. As in [32], the standard nu-
merical result on [10, 12] seems to disagree with the analytic
solution because in this region the oscillations are very pro-
nounced, see Figure 4. The RP is appeared in this region
because high order polynomial interpolation on equispaced
grids is used. When the interpolating points using the PSO
algorithm are introduced in the problem, the solution becomes
more representative, and a minor difference is observed i.e., as
expected on the Figure 5 with v = 11, and the error tolerated
being 10~* . The good result is then achieved by using an
optimal set of interpolation points N = 21. The result is
displayed in Figure 6, on which the solution is now almost
identical with the exact one.

V. COMMENTS AND CONCLUSIONS

We presented a formulation that uses the PSO algorithm in
order to avoid the Runge’s phenomenon which emerges for
large degree polynomials. The preliminary results, obtained
through the use of the PSO method, show that the Runge’s
phenomenons can be always removed from the problem under
consideration and the comparison with the exact solutions is
spectacular.

In this work the particle swarm optimization is introduced
to improve the solutions of the Volterra integral equation. We

JS(x)

Fig. 4. Solutions of the equation (4) for the kernel: K (z,y) = (z — y)’%
and p(z) =1, 10 < z < 12. Solid line: exact solution, dots line: Lagrange
interpolating polynomial of order N = 11.
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1 Il L 1 L L L Il
10 102 104 106 108 11 1.2 114 116 118 12

Fig. 5. Solutions of the equation (4) for the kernel: K(z,y) = (z — y)’%
and ¢(z) = 1, 10 < = < 12. Solid line: exact solution, dots line: PSO
algorithm with N = 11.
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Fig. 6. Solutions of the equation (4) for the kernel: K(z,y) = (z — 7/)7%
and ¢(z) = 1, 10 < = < 12. Solid line: exact solution, dots line: PSO
algorithm with N = 21.

have shown that the PSO procedure provides substantially
better accuracy than the conventional Tchebychev’s interpo-
lating points which are always known to be the only best
points which permits a good approach of the interpolating
function. For instance, the Figures 3 and 6 show graphically
the best solutions for both examples. It is shown that, in some
problems, which contain more complexity, the PSO algorithm
can also lead to results with a high effectiveness [48-50]. As
seen from the numerical results, the best interpolating points
are attained in a surprisingly short time with error tolerances
of 1075 and 10~* for Examples 1 and 2 respectively.

The most important remark is that, the PSO algorithm is
readily applicable to both conventional and complex applica-
tions and can provide good results even for a great number of
the interpolating points.
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