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Analytical Solutions for Geodesic Acoustic
Eigenmodes in Tokamak Plasmas
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Abstract—The analytical solutions for geodesic acoustic
eigenmodes in tokamak plasmas with circular concentric magnetic
surfaces are found. In the frame of ideal magnetohydrodynamics the
dispersion relation taking into account the toroidal coupling between
electrostatic perturbations and electromagnetic perturbations with
poloidal mode number |m| = 2 is derived. In the absence of such
a coupling the dispersion relation gives the standard continuous
spectrum of geodesic acoustic modes. The analysis of the existence
of global eigenmodes for plasma equilibria with both off-axis
and on-axis maximum of the local geodesic acoustic frequency is
performed.

I. INTRODUCTION

are commonly identified as low-frequency toroidally- and
poloidally-symmetric (n = 0, m = 0) oscillations of
electrostatic potential attended with oscillations of plasma
density on the first poloidal harmonic (|m| = 1). Initially,

aspect ratio the frequency of their continuous spectrum was
determined as

ω = ωgeo(r) =
cs(r)

R

√
2 +

1
q2(r)

, (1)

where cs is the sound frequency, R is the major tokamak
radius, q is the safety factor. Nowadays GAM is the
most actively studied phenomenon in plasma physics. The
measurements of GAMs are performed almost on all leading

One of the most prominent problems in the theory of GAM
is the existence of the GAM eigenmode or global GAM
(GGAM). It is dictated by some experimental observations
of the independence of the frequency of the modes identified
as GAM on plasma radius in the whole plasma volume – see

[11] for the equilibria with an off-axis maximum of the local
GAM frequency (1) within plasma.

In this paper the results of GGAM analytical solutions
search [12], [13] are summarized and further expanded.
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II. THE EIGENVALUE PROBLEM

We use the standard one-fluid MHD model with the
adiabatic equation of state linearized near the static
equilibrium:

ρ0
∂v
∂t

= −∇p +
1
4π

rotB × B0 +
1
4π

rotB0 × B , (2)

∂p

∂t
+ v · ∇p0 + γp0divv = 0 , (3)

1
c
v × B0 = ∇φ +

1
c

∂A
∂t

. (4)

Equation (2) is the equation of the motion, (3) is the adiabatic
equation with the ratio of the specific heat, γ, (4) describes
the electric field. The usual notations are used; subscript “0”
denotes the equilibrium (stationary) quantities.

To exclude the magnetic-sound oscillations with
predominant perturbation of the longitudinal (along B0)
component of the magnetic field we introduce the perturbation
of the magnetic field in the form

B = rot

(
A||

B0

B0

)
, (5)

where A|| is the longitudinal component of the vector
potential. The perturbation of the velocity has the form:

v =
c

B2
0

B0 × ∇φ + v||
B0

B0
. (6)

In what follows we restrict ourselves with low pressure
plasma in the axisymmetric tokamak with large aspect ratio.
The absolute value of the equilibrium magnetic field is

B0 =
Ba

1 + (r/R) cos θ
. (7)

Here r ε [0, a] is the current radius value counted from the
magnetic axis, a is the minor tokamak radius, θ is the poloidal
angle, Ba is the magnetic field on the magnetic axis.

ω2∇2
⊥φ +

c2
A

qR2
∇2

⊥
1
q

∂2φ

∂θ2
+

+
2iωBa

cρ0R

(
sin θ

∂p

∂r
+

cos θ

r

∂p

∂θ

)
= 0 , (8)

(
ω2 +

ω2
s

q2

∂2

∂θ2

)[
iBa

ωcρ0R
p +

1
rRρ0ω2

dp0

dr

∂φ

∂θ

]
+

+2ω2
s

(
sin θ

∂φ

∂r
+

cos θ

r

∂φ

∂θ

)
= 0 , (9)
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GEODESIC acoustic modes (GAM) in tokamak plasmas

GAM were predicted in [1] where in the limit of large

tokamaks – see, e. g., [2], [3], [4], [5], [6], [7].

[8], [9], [10]. Numerically, GGAM were firstly found in
The substitution of (5) – (7) into (2) – (4) leads to the 

following set of equation:
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where the perturbations are taken to be proportional to
exp (−iωt), ωs = cs/R, cs =

√
γp0/ρ0, cA = Ba/

√
4πρ0,

and ρ0 is supposed to be a constant.

as a sum of the poloidal Fourier-harmonics. Taking φ = φ0(r)
(pure electrostatic oscillations), we arrive to

d

dr

{
rω2(ω2 − ω2

geo(r))
(ω2 − ω2

s(r)/q2(r))
dφ0

dr

}
= 0 (10)

that describes continuous GAM spectrum (1).
Taking into account the second poloidal harmonics of the

potential, φ = φ0(r) + φ2(r) exp (2iθ) + φ−2(r) exp (−2iθ)
(small magnetic perturbations), which couples with the first
harmonics of plasma pressure m = ±1: p = p1(r) exp (iθ) +
p−1(r) exp (−iθ), the full system (8) – (9) reduces to

d

dr

[
r

(
dφ0

dr
− P

)]
= 0, (11)

(
ω2 − ω2

s/q2

)
P + ω2

s

(
a2

r2

dΦ2

dr
− 2

dφ0

dr

)
= 0 , (12)

ω2 d

dr

[
1
r

(
1
r2

dΦ2

dr
+

1
a2

P

)]
−

− 4c2
A

qR2

d

dr

[
1
r3

d

dr

(
Φ2

q

)]
= 0 , (13)

where variables Φ2 = (r/a)2(φ2 + φ−2) and P = Ba(p1 −
p−1)/Rcρ0ω are introduced.

System (11) – (13) can be reduced to the one differential
equation on Φ2:

1
q(r̂)

d

dr̂

[
1
r̂3

d

dr̂

(
Φ2

q(r̂)

)]
+ (14)

+ω̂2 d

dr̂

{
ε(r̂)

r̂3q2(r̂)

(
1

ω̂2 − ω̂2
geo(r̂)

− 1
T (r̂)

)
dΦ2

dr̂

}
= 0 .

Here the normalized radius r̂ = r/a, frequencies ω̂2 =
ω2/ω2

s |r̂=0, ω̂2
geo = ω2

geo/ω2
s |r̂=0 = T (2 + 1/q2) and

temperature T (r̂) equals to the unity by r̂ = 0 are introduced;
β = c2

s|r̂=0/c2
A, and ε(r̂) = βT (r̂)q2(r̂)/4 is the small

parameter related to β.
The eigenmode of geodesic acoustic oscillations should

satisfy to (14) with two boundary conditions. We suppose zero
boundary conditions for Φ2:

Φ2|r̂=0 = 0, Φ2|r̂=1 = 0. (15)

The first one provides the regularity of the solution on the
magnetic axis, (|φ±2|r̂=0| < ∞), the second one – zero radial
velocity on the plasma boundary (vr|r̂=1 = 0).

In what follows, we will omit hats on r̂, ω̂ ω̂geo, working
only with normalized values.

III. ASYMPTOTICAL SOLUTION FOR EQUILIBRIA WITH AN

OFF-AXIS MAXIMUM OF ωgeo

Let us look for the low-frequency asymptotical solution of
the (14) with ω ∼ 1. We assume that the GAM frequency

ωgeo has its maximum at the point r = rM ∈ (0, 1). We look
for the eigenfrequency of the problem in the form

ω2 = ω2
geo(rM ) [1 + O(εM )] , (16)

where εM = ε(rM ). Since ε(r) � 1, the second term in (14) is
important only near the point where (ω2−ω2

geo(r)) → 0. Thus,
we can solve the equation in three regions – in the vicinity
of the point r = rM , on the left edge of the calculating area
0 ≤ r < rM and on the right edge of the calculating area
rM < r ≤ 1.

Near the point r = rM we use the expansion

ω2
geo(r) ≈ ω2

geo(rM )−α2(r−rM )2, α2 ≡
∣∣∣∣∣d

2ω2
geo(rM )
dr2

∣∣∣∣∣ /2 .

Equation (14) is simplified and takes the form

d

dx

[(
1 +

1
μ2(1 + x2) − 1

)
dΦ2

dx

]
= 0 , (17)

where x = (r − rM )/ν and

ν2 =
1
α2

(
εMω2

Λ
+ ω2 − ω2

geo(rM )
)

,

μ2 = 1 +
Λ(ω2 − ω2

geo(rM ))
εMω2

, Λ = 1 − εMω2

T (rM )
.(18)

Solution to (17) is described by the expression

Φ(1)
2 = C + D

(
x − 1

μ2
arctg (x)

)
(19)

with arbitrary constants of integration C and D.
In the regions far from rM the perturbation is described by

the equation
d

dr

[
1
r3

d

dr

(
Φ2

q

)]
= 0. (20)

Its solutions in these regions satisfying boundary conditions
(15) are

Φ(2)
2 = Eqr4, 0 ≤ r < rM ,

Φ(3)
2 = Fq(1 − r4), rM < r ≤ 1, (21)

where E and F are constants.
Let us concretize the values of C, D, E, F from the

condition of asymptotic matching of Φ(1)
2 with Φ(2)

2 and Φ(3)
2 .

Namely, on the left edge of the calculating area Φ(1)
2 |x�−1=

Φ(2)
2 |x→−0, so

C + D(x + π/2μ2) = Eq(rM )r3
M [rM + νx(4 + s)] ; (22)

on the right edge of the calculating area Φ(1)
2 |x�+1=

Φ(3)
2 |x→+0, so

C + D(x − π/2μ2) =
= Fq(rM )

{
1 − r4

M − 4r3
Mνx(4 + s − s/r4

M )
}

.(23)

Here the local shear of the magnetic field s =
rMdq/dr(rM )/q(rM ) is introduced at the point r = rM . The

The solution to (8) – (9) is convenient to be searched
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matching of (22), (23) gives the dispersion relation for GGAM
eigenfrequency:

ω2 = ω2
GAM (rM ) +

+2ε2Mω2
geo(rM )

(
πΔ
rM

)2 ω2
geo(rM )

|d2ω2
geo(rM )/dr2| . (24)

Here

ω2
GAM (rM ) = ω2

geo(rM )
[
1 − εM − ε2M

(
1 +

1
q2(rM )

)]

Δ = 4
(
1 +

s

4

) [
r4
M +

s

4
(
r4
M − 1

)]
.

The first term in the expression of the right-hand side of
(24) is nothing else but the frequency of continuous GAM
spectrum at the point r = rM taking into account the effects
of toroidal coupling with m = 2 poloidal harmonics of
perturbed electromagnetic field. It is evident from (24) that
the eigenfrequency is slightly higher than the maximum of
continuous GAM spectrum ωGAM (rM ) but lower than the
maximum of continuous GAM spectrum ωgeo(rM ).

IV. EXACT SOLUTIONS FOR THE EQUILIBRIA WITH

POSITIVE MAGNETIC SHEAR

To find the exact solution for GGAM let us come back to
the (14) and rewrite it in the form

d

dr

(
1

r3q2(r)
dΦ2

dr

[
1 +

ω2ε(r)
ω2 − ω2

geo(r)
− ω2ε(r)

T (r)

])
+

+
Φ2

r3q3(r)

{
3
r

dq

dr
− d2q

dr2
+

2
q(r)

(
dq

dr

)2
}

= 0 . (25)

It is easy to see that under condition 3qdq/dr− rqd2q/dr2 +
2r(dq/dr)2

This condition uniquely determines the profile of the safety
factor

q(r) =
q0q1

q1 − (q1 − q0)r4
. (26)

Here q0 = q|r=0, q1 = q|r=1. By q1 > q0 profile (26)
describes the monotonic growth of q with small gradient near
the magnetic axis.

After the integration of (25) we have

dΦ2

dr
=

Kr3q2(r)(ω2 − ω2
geo(r))

ω2(1 + ε(r)) − ω2
geo(r)

, (27)

where K is the integration constant. The zero of the
denominator in (27) determines the frequency of the
continuous spectrum:

ω2
GAM (r) =

ω2
geo(r)

1 + ε(r)
. (28)

Let us rewrite the boundary conditions (15) in the form of
one integral requirement

1∫
0

dΦ2

dr
dr = 0 . (29)

Changing in (29) the integrational variable from r to q and
using (27), we have

q1∫
q0

(ω2 − ω2
geo)dq

ω2(1 + ε) − ω2
geo

= 0 . (30)

Equation (30) determines the eigenfrequency of GGAM in
tokamak plasmas with safety factor q(r) described by (26).

B. Eigenmodes

Let us rewrite (30) with substitution of ω2
geo and ε:

(q1 − q0)− β

4

q1∫
q0

ω2Tq2dq

ω2(1 + βTq2/4) − T (2 + 1/q2)
= 0. (31)

To integrate (31) let us consider the temperature profile in
the form:

T = q2/(D0 + D2q
2 + D4q

4) , (32)

where D0, D2 and D4 �= 0 are constants which determine the
temperature at three reference points.

For the chosen T (q), (31) reduces to the combination of
two integrals:

q1 − q0 +
β

4D4
(cI0 + bI2) = 0, (33)

where

I0 =

q1∫
q0

dq

q4 + bq2 + c
, I2 =

q1∫
q0

q2dq

q4 + bq2 + c
, (34)

b = (D2−2/ω2)/(D4 +β/4), c = (D0−1/ω2)/(D4 +β/4).
The values of integrals I0 and I2 are determined by the sign
of the parameter δ = b2 − 4c, which is negative for ωgeo(r)
with off-axis maximum and positive for ωgeo(r) with on-axis
maximum

1) GGAM for wgeo with off-axis maximum (δ < 0): In this
case (33) reduces to

q1 − q0 − β

8D4

√−δ

{
(b −√

c)c+

2
ln

∣∣∣∣∣q
2 + qc− +

√
c

q2 − qc− +
√

c

∣∣∣∣∣
∣∣∣∣∣
q1

q0

− c−

[
b

(
arctg

(
2q + c−

c+

)∣∣∣∣∣
q1

q0

+ arctg

(
2q − c−

c+

)∣∣∣∣∣
q1

q0

)

+
√

c arctg

(
q2 −√

c

qc+

)∣∣∣∣∣
q1

q0

]}
= 0 , (35)

where the following notations are used: c− =
√

2
√

c − b,
c+ =

√
2
√

c + b. The solution to (35) is found near δ = 0.
On Fig. 1 the example of the eigenfunctions of the GGAM

is shown.

A. Eigenmode Existence Condition

= 0 (25) can be integrated in elementary way.
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Fig. 1. Radial profiles of dφ0/dr, ω2
geo (a) and of Φ2 (b) for the equilibrium

with off-axis maximum of local GAM frequency. Here β = 0.04.

2) GGAM for wgeo with on-axis maximum (δ > 0): In this
case instead of (33) we have

q1 − q0 − β

8D4

√
δ

{
b2
−I(b−) − b2

+I(b+)
}

= 0 , (36)

where b− = (b−√
δ)/2, b+ = (b+

√
δ)/2, and function I(y)

is defined as

I(y) =

⎧⎪⎪⎨
⎪⎪⎩

2√
y arctg

(
q√
y

)∣∣∣q1

q0

, y > 0

1√−y
ln
∣∣∣√−y−q√−y+q

∣∣∣∣∣∣q1

q0

, y < 0 .

(37)

The solution to (36) is located near the point satisfying the
condition |√−b− − q0| � 1.

On Fig. 2 the example of the eigenfunctions of the GGAM
is shown.

V. CONCLUSION

The analytical solutions for global geodesic acoustic mode
in tokamak plasmas are found. The frequency of such
mode lies slightly higher than the upper boundary of the
continuous GAM spectrum calculated with taking into account
electromagnetic plasma perturbations. Two types of the
solution can be yielded. The first type exists if the local
GAM frequency has an off-axis maximum. Although this
mode is global by definition it is strongly peaked near the
point of ωgeo maximum. The second type exists when ωgeo

is monotonic and has respectively small gradient near the
axis. The eigenfunctions of such a solution are not localized
but have the significant amplitude in the whole plasma
volume where the gradient of ωgeo is small. The solution
demonstrates analytically the possibility of GGAM formation
in the discharges with monotonic profiles of the local GAM

Fig. 2. Radial profiles of dφ0/dr, ω2
geo (a) and of Φ2 (b) for the equilibrium

with on-axis maximum of local GAM frequency. Here β = 0.04.

frequency typical for the present-day tokamak experiments [8],
[9], [10].
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