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Periodicity for a semi–ratio–dependent
predator–prey system with delays on time scales

Kejun Zhuang

Abstract—In this paper, the semi–ratio–dependent predator-prey
system with nonmonotonic functional response on time scales is
investigated. By using the coincidence degree theory, sufficient con-
ditions for existence of periodic solutions are obtained.
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I. INTRODUCTION

RECENTLY, many people have concentrated on the fol-
lowing semi–ratio–dependent predator–prey system with

functional responses [1–3],{
ẋ1(t) = x1(t) [r1(t) − a11(t)x1(t− τ(t))] − f(x1(t))x2(t),

ẋ2(t) = x2(t)
[
r2(t) − a21(t)x2(t)

x1(t)

]
,

(1)
where x1 and x2 denotes the density of the prey and preda-
tor, respectively. f(x1) is the so–called predator functional
response to prey, and the density of predator is in proportion to
that of the prey. In [1], the simplified Monod–Haldane function
of the form f(x1) = a12(t)x1

m2+x2
1

was considered. Moreover,
time delay is usually important to the dynamics of differential
equations, so we consider the following system⎧⎨
⎩

ẋ1(t) = x1(t)
[
r1(t) − a11(t)x1(t− τ(t)) − a12(t)x2(t)

m2+x2
1(t)

]
,

ẋ2(t) = x2(t)
[
r2(t) − a21(t)x2(t)

x1(t−σ(t))

]
,

(2)
if σ(t) = 0, then (2) was studied in [1]. Motivated by [4],
we can obtain the following discrete analogy of (2), which is
governed by difference equations with periodic coefficients,⎧⎪⎨

⎪⎩
x1(n+ 1) = x1(n) exp{r1(n) − a11(n)x1(n− τ(n))

−a12(n)x2(n)
m2+x2

1(n)
},

x2(n+ 1) = x2(n) exp{r2(n) − a21(n)x2(n)
x1(n−σ(n))}.

(3)
As we know, it is similar to explore the existence of periodic
solutions for (2) and (3) in the approaches, the methods and
the main results. So it is unnecessary to study the periodic
solutions in separate ways. By using the theory of time scales,
which was first proposed by Stefan Hilger[5], we can unify
the existence of periodic solutions of population dynamics
modelled by differential equations and difference equations.
For this reason, we consider the following dynamics equations
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on time scales,⎧⎨
⎩ uΔ

1 (t) = r1(t) − a11(t)e
u1(t−τ(t)) − a12(t)e

u2(t)

m2+eu2
1(t)

,

uΔ
2 (t) = r2(t) − a21(t)e

u2(t)

eu1(t−σ(t)) ,
(4)

where r1(t), r2(t), a11(t), a12(t), and a21(t) are rd-continuous
positive ω-periodic functions on time scales T. Set yi(t) =
eui(t), i = 1, 2. If T = R and T = Z, then (4) can be derived
to (2) and (3) respectively.

The primary aim of this paper is to explore the existence
of periodic solutions for dynamic equations on time scales.
The approach is based on the coincidence degree theory,
such as [6–8]. Moreover, with the help of new inequality on
time scales, we can find the sharp priori bounds and improve
existence criteria for periodic solutions.

The remainder of this paper is organized as follows. In
the following section, some preliminary results about calculus
on time scales and Continuation Theorem are stated. The
existence of periodic solution for (4) is established in Section
3.

II. PRELIMINARIES

For convenience, we first present some basic definitions and
lemmas about time scales and the continuation theorem of the
coincidence degree theory; more details can be found in [9–
10]. A time scale T is an arbitrary nonempty closed subset of
real numbers R. Throughout this paper, we assume that the
time scale T is unbounded above and below, such as R, Z

and
⋃

k∈Z
[2k, 2k + 1]. The following definitions and lemmas

about time scales are from [9].
Definition 2.1. The forward jump operator σ : T → T, the
backward jump operator ρ : T → T, and the graininess μ :
T → R

+ = [0,+∞) are defined, respectively, by σ(t) :=
inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t}, μ(t) =
σ(t) − t. If σ(t) = t, then t is called right-dense (otherwise:
right-scattered), and if ρ(t) = t, then t is called left-dense
(otherwise: left-scattered).
Definition 2.2. Assume f : T → R is a function and let
t ∈ T. Then we define fΔ(t) to be the number (provided
it exists) with the property that given any ε > 0, there is a
neighborhood U of t such that

|f(σ(t))−f(s)−fΔ(t)(σ(t)−s)| ≤ ε|σ(t)−s| for all s ∈ U.

In this case, fΔ(t) is called the delta (or Hilger) derivative of
f at t. Moreover, f is said to be delta or Hilger differentiable
on T if fΔ(t) exists for all t ∈ T. A function F : T → R is
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called an antiderivative of f : T → R provided FΔ(t) = f(t)
for all t ∈ T. Then we define∫ s

r

f(t)Δt = F (s) − F (r) for r, s ∈ T.

Definition 2.3. A function f : T → R is said to be rd-
continuous if it is continuous at right-dense points in T and
its left-sided limits exist(finite) at left-dense points in T. The
set of rd-continuous functions f : T → R will be denoted by
Crd(T).
Lemma 2.4. Every rd-continuous function has an antideriva-
tive.
Lemma 2.5. If a, b ∈ T, α, β ∈ R and f, g ∈ Crd(T),then
(a)

∫ b

a
[αf(t) + βg(t)]Δt = α

∫ b

a
f(t)Δt+ β

∫ b

a
g(t)Δt;

(b) if f(t) ≥ 0 for all a ≤ t < b, then
∫ b

a
f(t)Δt ≥ 0;

(c) if |f(t)| ≤ g(t) on [a, b) := {t ∈ T : a ≤ t < b}, then
| ∫ b

a
f(t)Δt| ≤ ∫ b

a
g(t)Δt.

Lemma 2.6.([11]) Let t1, t2 ∈ Iω and t ∈ T. If g : T →
R ∈ Crd(T) is ω−periodic, then

g(t) ≤ g(t1) +
1

2

∫ k+ω

k

|gΔ(s)|Δs

and

g(t) ≥ g(t2) − 1

2

∫ k+ω

k

|gΔ(s)|Δs,

the constant factor 1
2 is the best possible.

For simplicity, we use the following notations throughout
this paper. Let T be ω-periodic, that is t ∈ T implies t+ω ∈ T,

k = min{R
+ ∩ T}, Iω = [k, k + ω] ∩ T, gL = inf

t∈T

g(t),

gM = sup
t∈T

g(t), ḡ =
1

ω

∫
Iω

g(s)Δs =
1

ω

∫ k+ω

k

g(s)Δs,

where g ∈ Crd(T) is an ω-periodic real function, i.e., g(t +
ω) = g(t) for all t ∈ T.

Now, we introduce some concepts and a useful result from
[10].

Let X,Z be normed vector spaces, L : DomL ⊂ X → Z
be a linear mapping, N : X → Z be a continuous mapping.
The mapping L will be called a Fredholm mapping of index
zero if dimkerL = codim ImL < +∞ and ImL is closed in
Z. If L is a Fredholm mapping of index zero and there exist
continuous projections P : X → X and Q : Z → Z such that
ImP = kerL, ImL = kerQ = Im(I − Q), then it follows
that L|DomL ∩ kerP : (I − P )X → ImL is invertible.
We denote the inverse of that map by KP . If Ω is an open
bounded subset of X , the mapping N will be called L-compact
on Ω̄ if QN(Ω̄) is bounded and KP (I − Q)N : Ω̄ → X is
compact. Since ImQ is isomorphic to kerL, there exists an
isomorphism J : ImQ→ kerL.

Next, we state the Mawhin’s continuation theorem, which
is a main tool in the proof of our theorem.
Lemma 2.7. (Continuation Theorem) Let L be a Fredholm
mapping of index zero and N be L-compact on Ω̄. Suppose
(a) for each λ ∈ (0, 1), every solution u of Lu = λNu is

such that u /∈ ∂Ω;
(b) QNu 	= 0 for each u ∈ ∂Ω ∩ kerL and the Brouwer

degree deg{JQN,Ω ∩ kerL, 0} 	= 0.

Then the operator equation Lu = Nu has at least one solution
lying in DomL ∩ Ω̄.

III. EXISTENCE OF PERIODIC SOLUTIONS

Theorem 3.1. If the following assumption holds,

r̄1m
2 − ā12e

M2 > 0,

where M2 = ln r̄2r̄1
ā21ā11

+ω(r̄1 + r̄2) , then (4) has at least one
ω−periodic solution.

Proof: Let X = Z =
{
(u1, u2)

T ∈ C(T,R2) :
ui(t + ω) = ui(t), i = 1, 2, ∀t ∈ T

}
, ‖(u1, u2)

T ‖ =∑2
i=1 maxt∈Iω |ui(t)|, (u1, u2)

T ∈ X (or in Z).
Then X and Z are both Banach spaces when they are

endowed with the above norm ‖ · ‖.
Let

N

[
u1

u2

]
=

[
N1

N2

]
=

⎡
⎣r1(t) − a11(t)e

u1(t−τ(t)) − a12(t)e
u2(t)

m2+eu2
1(t)

r2(t) − a21(t)e
u2(t)

eu1(t−σ(t))

⎤
⎦ ,

L

[
u1

u2

]
=

[
uΔ

1

uΔ
2

]
,

P

[
u1

u2

]
= Q

[
u1

u2

]
=

[
1
ω

∫ k+ω

k
u1(t)Δt

1
ω

∫ k+ω

k
u2(t)Δt

]
.

Obviously, kerL =
{
(u1, u2)

T ∈ X : (u1(t), u2(t))
T =

(h1, h2)
T ∈ R

2, t ∈ T
}

, ImL =
{
(u1, u2)

T ∈ Z : ū1 =
ū2 = 0, t ∈ T

}
, dimkerL = 2 = codim ImL. Since ImL is

closed in Z, then L is a Fredholm mapping of index zero. It is
easy to show that P and Q are continuous projections such that
ImP = kerL and ImL = kerQ = Im(I −Q). Furthermore,
the generalized inverse (of L) KP : ImL → kerP ∩ DomL
exists and is given by

KP

[
u1

u2

]
=

[∫ t

k
u1(s)Δs− 1

ω

∫ k+ω

k

∫ t

k
u1(s)ΔsΔt∫ t

k
u2(s)Δs− 1

ω

∫ k+ω

k

∫ t

k
u2(s)ΔsΔt

]
.

Thus

QN

[
u1

u2

]
=

⎡
⎣ 1

ω

∫ k+ω

k

(
r1(t) − a11(t)e

u1(t−τ(t)) − a12(t)e
u2(t)

m2+eu2
1(t)

)
Δt

1
ω

∫ k+ω

k

(
r2(t) − a21(t)e

u2(t)

eu1(t−σ(t))

)
Δt

⎤
⎦ ,

and

KP (I −Q)N

[
u1

u2

]

=

⎡
⎢⎢⎢⎢⎣

∫ t

k
u1(s)Δs− 1

ω

∫ k+ω

k

∫ t

k
u1(s)ΔsΔt

−
(
t− k − 1

ω

∫ k+ω

k
(t− k)Δt

)
ū1∫ t

k
u2(s)Δs− 1

ω

∫ k+ω

k

∫ t

k
u2(s)ΔsΔt

−
(
t− k − 1

ω

∫ k+ω

k
(t− k)Δt

)
ū2

⎤
⎥⎥⎥⎥⎦ .

Clearly, QN and KP (I−Q)N are continuous. According to
Arzela-Ascoli theorem, it is not difficulty to show that KP (I−
Q)N(Ω̄) is compact for any open bounded set Ω ⊂ X and
QN(Ω̄) is bounded. Thus, N is L-compact on Ω̄.

Now, we shall search an appropriate open bounded subset
Ω for the application of the continuation theorem, Lemma 2.7.
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For the operator equation Lu = λNu, where λ ∈ (0, 1), we
have⎧⎨

⎩
uΔ

1 (t) = λ
(
r1(t) − a11(t)e

u1(t−τ(t)) − a12(t)e
u2(t)

m2+eu2
1(t)

)
,

uΔ
2 (t) = λ

(
r2(t) − a21(t)e

u2(t)

eu1(t−σ(t))

)
.

(5)
Assume that (u1, u2)

T ∈ X is a solution of (5) for a certain
λ ∈ (0, 1). Integrating (5) on both sides from k to k + ω, we
obtain⎧⎨
⎩ r̄1ω =

∫ k+ω

k
a11(t)e

u1(t−τ(t))Δt+
∫ k+ω

k
a12(t)e

u2(t)

m2+eu2
1(t)

Δt,

r̄2ω =
∫ k+ω

k
a21(t)e

u2(t)

eu1(t−σ(t)) Δt.
(6)

Since (u1, u2)
T ∈ X , there exist ξi, ηi ∈ [k, k + ω], i = 1, 2,

such that

ui(ξi) = min
t∈[k,k+ω]

{ui(t)}, ui(ηi) = max
t∈[k,k+ω]

{ui(t)}. (7)

From (5) and (6), we have∫ k+ω

k

∣∣uΔ
1 (t)

∣∣ Δt < r̄1ω +

∫ k+ω

k

a11(t)e
u1(t−τ(t))Δt

+

∫ k+ω

k

a12(t)e
u2(t)

m2 + eu2
1(t)

Δt = 2r̄1ω,

∫ k+ω

k

∣∣uΔ
2 (t)

∣∣ Δt < r̄2ω +

∫ k+ω

k

a21(t)e
u2(t)

eu1(t−σ(t))
Δt = 2r̄2ω.

From the first equation of (6) and (7), we have

r̄1ω > ā11ωe
u1(ξ1),

and
u1(ξ1) < ln

r̄1
ā11

:= l1,

thus,

u1(t) ≤ u1(ξ1) +
1

2

∫ k+ω

k

|uΔ
1 (t)|Δt < ln

r̄1
ā11

+ r̄1ω := M1.

On the other hand, from the second equation of (6) and (7),
we have

r̄2ω ≥ ā21ω
eu2(ξ2)

eM1
,

and

u2(ξ2) ≤ ln
r̄2e

M1

ā21
:= l2,

so,

u2(t) ≤ u2(ξ2)+
1

2

∫ k+ω

k

|uΔ
2 (t)|Δt ≤ ln

r̄2e
M1

ā21
+r̄2ω := M2.

By the first equation of (6) and (7),

r̄1ω ≤ ā11ωe
u1(η1) + ā12ω

eM2

m2
,

and

u1(η1) ≥ ln
r̄1m

2 − ā12e
M2

ā11m2
:= L1,

so we have

u1(t) ≥ u1(η1) − 1

2

∫ k+ω

k

|uΔ
1 (t)|Δt

≥ ln
r̄1m

2 − ā12e
M2

ā11m2
− r̄1ω

:= M3.

From the second equation of (6) and (7), we have

r̄2ω ≤ ā21ωe
u2(η2)−M3 ,

and

u2(η2) ≥ ln
r̄2e

M3

ā21
:= L2,

thus,

u2(t) ≥ u2(η2)−1

2

∫ k+ω

k

|uΔ
2 (t)|Δt ≥ ln

r̄2e
M3

ā21
−r̄2ω := M4.

So, we have

max
t∈[k,k+ω]

|u1(t)| ≤ max{|M1|, |M3|} := R1,

max
t∈[k,k+ω]

|u2(t)| ≤ max{|M2|, |M4|} := R2.

Clearly, R1 and R2 are independent of λ. Let R = R1 +R2 +
R0, where R0 is taken sufficiently large such that R0 ≥ |l1|+
|l2| + |L1| + |L2|. Now, we consider the algebraic equations:{

r̄1 − ā11e
x − ā12ey

m2+ex2 = 0,

r̄2 − ā21e
y−x = 0,

(8)

every solution (x∗, y∗)T of (8) satisfies ‖(x∗, y∗)T ‖ < R.
Now, we define Ω = {(u1(t), u2(t))

T ∈
X, ‖(u1(t), u2(t))

T ‖ < R}. Then it is clear that
Ω verifies the requirement (a) of Lemma 2.7. If
(u1(t), u2(t))

T ∈ ∂Ω ∩ kerL = ∂Ω ∩ R
2, then

(u1(t), u2(t))
T is a constant vector in R

2 with
‖(u1(t), u2(t))

T ‖ = |u1| + |u2| = R, so we have

QN

[
u1

u2

]
	=

[
0
0

]
.

By direct computation, we can obtain deg(JQN,Ω ∩
kerL, 0) = 1 	= 0. By now, we have verified that Ω fulfills
all requirements of Lemma 2.7; therefore, (4) has at least one
ω-periodic solution in DomL ∩ Ω̄. The proof is complete.

Remark 3.2. If T = R, then (2) is the special case of (4). So
our result is more general than that of [1]. Further, If T = Z,
then the existence of periodic solution for system (3) can be
obtained.
Remark 3.3. By Theorem 3.1, we know that (4) has at least
one periodic solution with the same period as the parameters
under certain condition. Besides, time delays do not change
the periodicity of the dynamic equations.
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