
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:11, 2007

1641

Abstract—As computer network technology becomes

increasingly complex, it becomes necessary to place greater

requirements on the validity of developing standards and the

resulting technology. Communication networks are based on large

amounts of protocols. The validity of these protocols have to be

proved either individually or in an integral fashion. One strategy for

achieving this is to apply the growing field of formal methods.

Formal methods research defines systems in high order logic so that

automated reasoning can be applied for verification. In this research

we represent and implement a formerly announced multicast protocol

in Prolog language so that certain properties of the protocol can be

verified. It is shown that by using this approach some minor faults in

the protocol were found and repaired. Describing the protocol as

facts and rules also have other benefits i.e. leads to a process-able

knowledge. This knowledge can be transferred as ontology between

systems in KQML format. Since the Prolog language can increase its

knowledge base every time, this method can also be used to learn an

intelligent network.

Keywords— Formal methods, MobiCast, Mobile Network,

Multicast.

I. INTRODUCTION

OWADAYS as the computer systems become

increasingly complex, the difficulty of developing highly

reliable technology increases as well. Numerous design flaws

have been chronicled such as the Intel Pentium processor

floating-point bug and the Denver Airport baggage handling

system problem. System developers have to test and verify the

products before releasing them to the market to avoid later

problems. One of the most complex system categories that

may have flaws is the computer network. Two major types of

methods are used to validate network protocols, manual

methods and formal methods. M. Goda [6,7] categorized these

methods in 94, 95 and divided the manual methods to static

and well-formed formulas. J. Holzman [1] categorized the

automatic methods into four groups: full search, controlled

partial search, random simulation, and formal verification.

There are other similar works in formal verification of IPv6

[2] and also the session layer [5]. The potentials of formal

methods to provide solutions in these areas are also found in

Manuscript received January 9, 2004.

M. Matash Borujerdi, is with the Department of IT and Computer

Engineering, Amirkabir University of Technology, Tehran, Iran, (e-mail:

borujerm@aut.ac.ir).

S.M. Mirzababaei, also is with the Department of IT and Computer

Engineering, Amirkabir University of Technology, Tehran, Iran, (e-mail:

mirzababaei@morva.net).

[8, 9, and 10].

This paper demonstrates how a formerly announced network

protocol such as MobiCast can be specified for theorem

proving in Prolog language. Then semi-automated reasoning

can be applied to the specification to verify certain properties.

In the following sections we will first discuss the MobiCast

protocol. Then we will show the relationships between

definitions of graphs and communications and the

implementation of the MobiCast. After that we will discuss

our verification method before our final conclusions.

II. MOBICAST

MobiCast [11] introduced by Lin Tan is an appropriate

protocol for a network with micro-cells whose base-stations

stand on a high speed wired network capable of transmission

of multicasting [3] packets to several recipients [12, 13]. This

method isolates the movement of mobile hosts from multicast

tree to minimize disconnections during sessions. This

mechanism uses the hierarchical mobility management to

isolate the movement of MHs(Mobile Host) from the main

multicast transfer tree. Every external domain must use an

agent.

To send a multicast packet the MH has to encapsulate it in a

regular packet and send it to domain agent. The agent opens

the packet and sends it to receivers, like a multicast packet.

Whenever a station wants to subscribe in a multicast group it

must send its subscription request to DA (Domain Agent) via

its BS (Base Station). The DA subscribes to that multicast

group instead of the MH and receives the requested packets

and then sends them to the MH. There is another multicast

address that denoted as translated multicast address. This

translated multicast address has to be unique in the domain

and must be related to main multicast group. The BS

subscribes for reception of these packets in the translated

multicast group (whose address is the translated one), and

sends the received packets to the MH. The roaming of the

mobile hosts is transparent from other group members while it

exists in the domain of the mentioned DFA (Domain Foreign

Agent) and there is no need for new calculation of the

multicast main tree resulting in minimizing the breaks in

multicast sessions.

The Lin Tan's protocol organizes and builds bigger cells

with composition of micro-cells and names it DVM (Synamic

Macro-Cell). When an MH subscribes to a multicast group via

DFA the current base station will inform the other base

Formal Verification of a Multicast Protocol in

Mobile Networks

M. Matash Borujerdi, S.M. Mirzababaei

N

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:11, 2007

1642

stations that are in its DVM to subscribe in that translated

multicast group. While only the serving base station actively

forwards multicast data packets to the mobile host, the other

base stations in the same DVM buffer recent packets and

quickly forwards those to the mobile host whenever a handoff

occurs. This provides short handoff latency, and the use of

buffers at the base stations reduces packet loss due to handoff.

It also eliminates multicast group join and graft latencies since

the new base station has already subscribed to the multicast

group prior to the handoff. Hence, the disruptions to the

multicast session due to handoffs of mobile host group

members are minimized.

Each multicast group is associated with a translated

multicast group address, and serving BSs of interested MHs

only need to subscribe to this translated multicast group to

receive the desired multicast data. Besides delivering multicast

data in an efficient manner (as compared to multiple unicasts

to interested MHs within its domain), the use of multicast as

the forwarding mechanism from the DFA to interested MHs in

its domain also alleviates the DFA from the task of keeping

track of the exact location of the MH to ensure correct

multicast data delivery. Since physically adjacent cells are

most likely to reside on the same network segment, the extra

network load generated due to the other member BSs in the

same DVM subscribing to the same multicast group is

negligible. This is especially so for the case of shared medium

networks such as Ethernet.

 MobiCast is developed to work with IP and is compatible

with existing multicast routing algorithms such as DVMRP,

CBT, MOSPF, PIM-DM and PIM-SM. The base stations are

network-layer routers with buffers, and are capable of

subscribing to multicast groups. Compared to a link-layer

solution adopted by most wireless LAN, a network-layer base

station is capable of forwarding only those multicast packets

with interested mobile receivers in its cell, thus achieving

efficient utilization of wireless bandwidth. Furthermore, a

network-layer base station is able to differentiate packets with

different service types for IPv6 so as to support QoS (Quality

of Service) for mobile hosts in its cell. This scheme aims to

support best effort IP multicast efficiently for mobile hosts in

an environment with Micro-cells, while maintaining the

quality of the multicast session during handoffs.

As appears in figure 1 when each MH moves, it leaves the

wireless coverage of one cell and enters into another, resulting

in a handoff between the base stations. In small wireless cells

at the fringes of the Internet, such handoffs during a multicast

session will be frequent as wireless cells may be of the size of

a few meters. When an MH arrives at a foreign network and

obtains an in-care-of address, the MH sends a location update

message to inform it’s HA (Home Agent) of its care-of

address. The care-of address identifies an FA (Foreign Agent)

in the foreign subnet where the MH is. The FA can be a

separate node or reside in the MH. The MH has to subscribe

to the desired multicast group via FA1 when it is at subnet A

and via FA2 when it moves to subnet B.

MobiCast has the following advantages. First, the use of

hierarchical mobility management architecture separates the

mobility of the MH from the main multicast delivery tree. As

long as the MH remains within the domain of the DFA, the

mobility of the MH is shielded from the rest of the multicast

group. No re-computation of the main multicast delivery tree

is needed. Second, this scheme requires MHs, which are

interested in receiving multicast data to re-subscribe again via

the DFA when they are in a foreign domain. This approach is

somewhat similar to the remote subscription method proposed

by Mobile IP, and network routes taken by the multicast

packets to the MHs are efficient and the inefficiencies and

scalability problems associated with the Mobile IP are totally

avoided. Third, this scheme uses multicast to forward the

multicast packets from the DFA to the interested MHs within

its domain.

Figure 1 : Before the handoff of MH from BS 2 to 3

III. COMMUNICATION DEFINITIONS

Graph structures are for representation in many

applications, such as representing relations, situations or

problems. A set of nodes and a set of edges define a graph,

where each edge is a pair of nodes. When the edges are

directed they are called arcs. Ordered pairs represent arcs.

Such a graph is a directed graph. The edges can be attached

with costs, names, or any kind of labels, depending on the

application. Graphs can be represented in prolog in several

ways. One method is to represent each edge or arc separately

as one clause. The graph can be thus represented by sets of

clauses, for examples:

connected (a, b).

connected (b, c).

arc (s,t,3).

arc (t,v,1).

arc (u,t,,2).

Internet
Home

Agent

Multicast

Source

Router
Campus Net

Router Router DFA

Subnet A Subnet B

BS2BS1 BS3 BS4

MH MH

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:11, 2007

1643

 . . .

Another method is to represent the whole graph as one data

object. A graph can be thus represented as a pair of two sets:

nodes and edges. Each set can be represented as a list; each

edge is a pair of nodes. Let us choose the functor graph to

combine both sets into a pair, and the functor e for edges.

Then one way to represent the (undirected) graph in the

following code:

 G1=graph([a,b,c,d],[e(a,b),e(b,d),e(b,c),e(c,d)]).

To represent a directed graph we can choose the functor

digraph and a (for arcs). The directed graph of the following

code is then:

G2=digraph([s,t,u,v],[a(s,t,3),a(t,v,1),a(t,u,5)

,a(u,t,2),a(v,u,2)]).

If each node is connected to at least one other node then we

can omit the list of nodes from the representation as the set of

nodes is then implicitly specified by the list of edges. Yet

another method is to associate with each node a list of nodes

that are adjacent to that node. Then a graph is a list of pairs

consisting of a node plus its adjacency list. Our example

graphs can then, for example, be represented by:

G3=[p(a,[arcto(b,3),arcto(c,1)]),p(b,[arcto(e,2),arcto(f,1)])].

What will be the most suitable representation will depend

on the task to be performed on graphs. Two typical operations

are finding a path between two given nodes and finding a sub-

graph with some specified properties. Finding a spanning tree

of a graph is an example of the latter operation. In the

following we will look at some simple definitions, which will

be used in finding paths and spanning trees. For path finding

we can define a path in the following manner where G is a

graph, A and Z are two nodes in G, and P is an acyclic path

between A and Z in G. P is represented as a list of nodes on

the path.

path(A,Z,G,P,C):-path1(A,[Z],0,G,P,C).

path1(A,[A|P1],C1,G,[A|P1],C1).

path1(A,[Y|P1],C1,G,P,C):adjacent(X,Y,CXY,G),not(member(

X,P1)),C2=C1+CXY,path1(A,[X,Y|P1],C2,G,P,C).

adjacent(X,Y,graph(N,E)):-

member(e(X,Y),E);member(e(Y,X),E).

And accordingly to define a Hamiltonian path:

hamiltonian(G,P):-path(_,_,G,P),covers(P,G).

covers(P,G):-not(node(N,G),not(member(N,P)).

Similarly to define the minimum cost path

path(n1,n2,G,MinPath,MinCost),not(path(n1,n2,G,_,C)

,C<MinCost)

And to define the maximum cost path in the graph

path(_,_,G,MaxPath,MaxCost),not(path(_,_,G,_,C)

,C>MaxCost)

It should be noted that this is a very inefficient way for

finding minimal or maximal paths. This method unselectively

investigates possible paths and is completely unsuitable for

large graphs because of its high running time complexity.

The most important part in building a multicast network in

the Internet is the building of a Steiner tree. The Steiner tree is

a sub-tree of the minimum spanning tree. The Steiner tree

does not contain all the nodes in the graph but includes all the

specified nodes and some other nodes to connect the specified

nodes in a minimum pathway. To find a Steiner tree we must

define these rules: The spanning tree is a connected sub-graph

of the main graph that has no cycles. To find the minimum

spanning tree we start from an empty set of edges, and add

more edges in a way that no cycles be generated and continue

to add edges until no more edges can be added. This set will

be the spanning tree. And the following is also a useful rule in

accomplishing the task: We can add those edges that have

only one terminal in the set. Following prolog rules is the

implementation of the above rules:

stree(G,T):-member(E,G),spread([E],T,G).

spread(T1,T,G):-addedge(T1,T2,G),spread(T2,T,G).

spread(T,T,G):-not(addedge(T,_,G)).

addedge(T,[e(A,B)|T],G):-

adjacent(A,B,G),node(A,T),not(node(B,T)).

adjacent(N1,N2,G):-

member(e(N1,N2),G);member(e(N2,N1),G).

node(N,G):-adjacent(N,_,G).

All three arguments of the spread (T1,T,G) are sets of the

edges. G is fully connected and T1 and T are sub-sets from G

that represents the tree. T is a spanning tree that built form

adding zero or one edge from G to T1 in every step. We

define the above rules in declarative manner as follows.

stree(G,T):-subset(G,T),tree(T),covers(T,G).

tree(T):-connected(T),not(hasacycle(T)).

connected(G):not(node(A,G),node(B,G),not(path(A,B,G,_))).

hasacycle(G):adjacent(N1,N2,G),path(N1,N2,G,[N1,X,Y|_]).

covers(T,G):-not(node(N,G),not(node(N,T))).

subset([],[]).

subset([X|S],Ss):-subset(S,Ss).

subset([X|S],[X|Ss]):-subset(S,Ss).

Now we must choose some special nodes and use them to

find a Steiner tree, so the covers rule has to use from G1

instead of G. To define the MobiCast protocol we must also

define some high level definitions and represent them in

prolog.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:11, 2007

1644

1- Building a DVM: we must build a DVM with the cell

and its adjacent cells, when a mobile host enters a cell then

destroy the DVM when the mobile host leaves the cell. This

work will be done via subscribing to a new multicasting

group.

2- Subscribing to the multicasting group: the mobile host

instructs the nearest DFA to subscribe to the interested

multicast group.

3- Unsubscribing from the multicasting group: the mobile

host instructs the nearest DFA that this node is not interested

to be subscribed to the multicasting group any more and the

DFA can leave the multicasting group according to its

policies.

4- Subscription of the DFA in the multicast group: DFA

subscribes to the multicast group, so the tree has to be

calculated again.

5- DFA Unsubscribing from multicast group: DFA leaves

the multicast group; this event can lead to a new tree

calculation.

6- Sending a packet to the multicast group: The mobile host

sends a packet to the DFA so it can send the packet to the

multicast group instead of the sender.

7- Receiving a packet by DFA: When the DFA receives a

packet from a translated multicast address; it converts the

translated multicast address to the main multicast address and

resends it. Otherwise if the received packet has the main

multicast address, the translated address has to be found to

forward the packet to the DVM. These steps have been show

in the figure 2.

As we only need to prove the correctness of the protocol

and do not need to give good performance, we can simplify

the search for the multicast addresses or translated multicast

addresses by defining the multicast addresses as those above

1024 and the translated multicast addresses as those that are

below 1024. This way the MobiCast is represented and

implemented in Prolog as illustrated below.

database

single receivedpacket(node,integer)

groupNo(graph,integer)

groupNo(tree,integer)

mhDFA(mhid,node)

mhGroup(mhid,integer)

cell(mhid,node)

Figure 2: The protocol stages dependencies

clauses

carryInTree(CurNode,[],X):-!.

carryInTree(CurNode,T,X):-

not(receivedpacket(CurNode,X)),assert(receivedpacket(CurNo

de,X)),nextNode(CurNode,T,N),carryInTree(N,T,X),fail.

carryInTree(CurNode,T,X).

nextNode(CurNode,[e(CurNode,Node)|_],Node).

nextNode(CurNode,[e(Node,CurNode)|_],Node).

nextNode(CurNode,[_|T],Node):-nextNode(CurNode,T,Node).

carryInDFA(CurNode,X,I):-I>1024,II=I-1024,

groupNo(T,II),carryInTree(CurNode,T,X).

carryInDFA(CurNode,X,I):-

I<=1024,II=I+1024,groupNo(T,II),

carryInTree(CurNode,T,X).

sendPacket(MHId,X):-

mhDFA(MHId,DFA),mhGroup(MHId,I),

carryInDFA(DFA,X,I).

enMemberVAddr(MHId,I):-

mhDFA(MHId,DFA),cell(MH,BTS),

constractDVM(BTS,I),enMemberAddr(DFA,I),

II=I-1024, assert (mhGroup(MHId,II)).

enMemberAddr(DFA,I):-groupNo(T,I),gourpNo(G,I),

addToSubGraph(DFA,G,G1),stree(G1,T1),

retract(groupNo(T,I)),retract(groupNo(G,I)),

assert(groupNo(T1,I)),assert(groupNo(G1,I)).

deMemberVAddr(MHId,I):-mhDFA(MHId,DFA),

II=I-1024,

deMemberAddr(DFA,I),cell(MHId,BTS),

destructDVM(BTS,I),retract(mhGroup(MHId,II)).

deMemberAddr(DFA,I):-mhDFA(MHId,DFA),II=I+1024,

mhGroup(MHId,II),!.

deMemberAddr(DFA,I):-groupNo(T,I),groupNo(G,I),

OmitFromGraph(DFA,G,G1),stree(G1,T1),

retract(groupNo(T,I)),retract(groupNo(G,I)),

assert(groupNo(T1,I)),assert(groupNo(G1,I)).

makeDVM(NBts,OBts,I):-

destructDVM(OBts,I),constructDVM(NBts,I).

IGMP: Join request from MH to DFA

DFA Subscribes to the group

Packet Transmission Graph Building

DVM Building Tree Building

Packet Reception

DFA Unsubscribes from the group

 IGMP: Leave request from MH to DFA

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:11, 2007

1645

destructDVM(Bts,I):-neighborBts(Bts,NBts,graph),

deMemberAddr(NBts,I),destructDVM(Bts,I),fail.

destructDVM(_,_).

neighborBts(Bts,NBts,[e(Bts,NBts)|_]).

neighborBts(Bts,NBts,[e(NBts,Bts)|_]).

neighborBts(Bts,NBts,[_|G]):-neighborBts(Bts,NBts,G).

IV. VERIFICATION METHOD

The program analysis studies the relation between the input

and the output of a program. Formally, a program consists of

an input (variable) vector
Lxxx ,,1

, a program (variable)

vector
Myyy ,,1

, an output (variable) vector

Lzzz ,,1
, and a finite direct graph (V,A) such that the

following conditions are satisfied.

1- In the graph (V,A), there is exactly one vertex, called the

start vertex VS , That is not a terminal vertex of any arc;

there is exactly one vertex called the halt vertex VH , that

is not an initial vertex of any arc; and every vertex v is on

some path from S to H.

2- In (V,A), each arc a not entering H is associated with a

qualifier-free formula),(yxPa
 and an assignment

),(yxfy a
; each arc entering the halt vertex H is associated

with a quantifier-free formula),(yxPa
 and an assignment

),(yxfz a
. (The

aP is called the testing predicate associated

with arc a and),(yxPa
 is called the testing formula associated

with arc a .)

3- For each vertex)(Hv , let
raaa ,,, 21
 be all the arcs

leaving v and let
raaa PPP ,,,

21

 be the testing predicates

associated with arcs
raaa ,,, 21
, respectively. Then for all

yx, , one and only one of),(
1

yxPa
,),(

2
yxPa

, … ,),(yxP
ra

 is

True.

The formal representation is used to provide answers to

following problems:

1- Termination problem: Given a certain input, will this

program terminate?

2- Response problem: Given a certain input, if the program

terminates, what is the output of the program?

3- Correctness problem: Given a certain input, will the

output of this program satisfy the specification (input-output

relationship) of the program?

4- Equivalence problem: Given two programs, will the

programs yield the same results if the inputs are the same?

5- Specialization problem: Given a program P that is written

to accept a set S of inputs, if we are only interested in a

nonempty subset S* of S, how can we simplify P to another

P* such that P* runs faster on S* than P does?

Evidently, we need some information to answer any of the

above questions. In general, we need the following

information:

1- Axioms describing the execution of the program. We

describe this by
pA .

2- Axioms concerning testing predicates and assignment

functions. For example, we might need the axioms concerning

equality or some appropriate induction schema. We describe

this by
sA .

3- Axioms concerning the input. For instance, we might

require the input to be positive integers. We describe this by

tA .

We assume that
ts AA is consistent. But, we have to prove

that
tsp AAA is consistent with the description of the

output of the program. There is a theorem that says: Given a

program P, let S denote the set of clauses representing

tsp AAA , Then S is satisfiable[14].

So the declarative information of the MobiCast protocol

prepared using Prolog language. Of course the non-declarative

features in the Prolog language such as the depth-first search

rule, a non-logical negation (by failure), and a number of non-

logical operations such as the test predicate (e.g., var) and the

cut are nevertheless necessary to make Prolog reasonably

efficient. Prolog language has some first order logic predicates

that formed in clause forms (in CNF composition and without

quantifiers in form of prenex like). We used the SLD

resolution for automatic theorem proving that showed below.

domains

expr=s(symbol);if_(expr,expr);

and_(expr,expr);or_(expr,expr);not_(expr); true

database

nondeterm clause (expr)

done (expr,expr,expr)

modified

predicates

nondeterm contradiction

nondeterm remove_true_clause

nondeterm simplify_clause

nondeterm resolution_step

nondeterm delete_(expr,expr,expr)

nondeterm in(expr,expr)

translate(expr)

translatenot(expr)

nondeterm transform(expr,expr)

nondeterm run

clauses

clause(true).

contradiction:-clause(X),clause(not_(X)), write("contradiction

found(Formula is true).").

remove_true_clause:-clause(C),in(P,C),in(not_(P),C),

retract(clause(C)).

simplify_clause:-clause(C),delete_(P,C,C1),in(P,C1),

retract(clause(C)),assert(clause(C1)).

resolution_step:-

clause(P),clause(C),delete_(not_(P),C,C1),not(done(P,C,P)),

assert(clause(C1)),assert(done(P,C,P)).

resolution_step:-

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:11, 2007

1646

clause(not_(P)),clause(C),delete_(P,C,C1),not(done(not_(P),

C,P)), assert(clause(C1)),assert(done(not_(P),C,P)).

resolution_step:-

clause(C1),delete_(P,C1,CA),clause(C2),delete_(not_(P),C2,

CB),not(done(C1,C2,P)),

assert(clause(or_(CA,CB))),assert(done(C1,C2,P)).

% delete(P,E,E1) if deleting a disjunctive subexpression P

from E gives E1

delete_(X,or_(X,Y),Y).

delete_(X,or_(Y,X),Y).

delete_(X,or_(Y,Z),or_(Y,Z1)):-delete_(X,Z,Z1).

delete_(X,or_(Y,Z),or_(Y1,Z)):-delete_(X,Y,Y1).

% in(P,E) if P is a disjunctive subexpression in

in(X,X).

in(X,Y):-delete_(X,Y,_).

% translate(Formula) : translate propositional Formula into

clauses and assert each resulting clause C as clause(C)

translate(and_(F,G)):-!,translate(F),translate(G).

translate(F):-transform(F,NewF),!,translate(NewF).

translate(F):-assert(clause(F)).

% transform(F1,F2) F2 is equal to F1 but closer to clause

form

transform(not_(not_(X)),X). % double negation

transform(if_(X,Y),or_(not_(X),Y)).

% the Implication

transform(not_(and_(X,Y)),or_(not_(X),not_(Y))).

 % De Morgan's law

 transform(not_(or_(X,Y)),and_(not_(X),not_(Y))).

transform(or_(and_(X,Y),Z),and_(or_(X,Z),or_(Y,Z))).

% Distribution

transform(or_(X,and_(Y,Z)),and_(or_(X,Y)

,or_(X,Z))).

transform(or_(X,Y),or_(X1,Y)):-transform(X,X1).

% transform subexpression

transform(or_(X,Y),or_(X,Y1)):-transform(Y,Y1).

transform(not_(X),not_(X1)):-transform(X,X1).

 % Test Stub

run:-contradiction.

run:-remove_true_clause,assert(modified),fail.

run:-simplify_clause,assert(modified),fail.

run:-resolution_step,assert(modified),fail.

run:-modified,retract(modified),run.

translatenot(X):-translate(not_(X)).

For example, we now show the abstract level verification of

two parts of the program. First we verify the tree building in

the program and then we will verify packet delivery

mechanism. At the first step we must have a description of the

program execution, statements, inputs and outputs of tree

building. There is no need to isolate these parts from each

other so we extracted all of these descriptions manually form

the prolog code. We need an automatic converter if we want a

full automatic verifier

The database

SrcNodes(node)

DestNodes(node)

Arc(node,node)

TreeArcs(node,node)

The clauses

Tree SrcNodes(S) DestNodes(D) Arc(S,D)

TreeArcs(S,D) SrcNodes(D).

TreeArcsDesc(N1,N2) ~Path(N2,N1).

Path(N2,N1) TreeArcs(N2,N3) Path(N3,N1).

Now we feed the resolution program with these facts and

the negation of the result. These clauses will be found in

memory in case of program trace.

Path(b,a) ~Path(b,a) Arc(a,b)

TreeArcs(a,b) ~TreeArcs(N,b)

And then the program concludes the contradiction that

means the consistency of the program. Again when we want

to verify the packet delivery mechanism, have to do as the

above, so we prepare the description of the program

execution, statements, inputs and outputs.

The database

MhDFA(mhid,node)

MhGroup(mhid,grpid)

GroupNo(tree,grpid)

ReceivedPacket(node,mhid)

NextNode(node,tree,node)

TransG(grpid,grpid)

The clauses

SendPacket(S,M) MhDFA(S,D) MhGroup(S,I)

CarryInDFA(D,M,I).

CarryInDFA(D,M,I) TransG(I,II) GroupNo(T,II)

CarryInTree(D,T,M).

CarryInTree(D,T,M) ReceivedPacket(D,M)

NextNode(D,T,Dx) CarryInTree(Dx,T,M).

Then we present these sentences to the SLD resolution

program, with the negation of the result

"not(ReceivedPacket(N,M)". These clauses will be found in

memory in case of program trace.

SendPacket(a,b) ~ReceivedPacket(c,b)

MhDFA(a,c) MhGroup(a,d)

CarryInDFA(c,b,d) TransG(d,e)

CarryInTree(c,f,b) ReceivedPacket(c,b)

NextNode(c,f,b)

So then the program concludes the contradiction between

the second (negation of the result) and 8th fact that means the

consistency of the program.

V. CONCLUSIONS

The specification of the MobiCast protocol partially

presented here demonstrates how the designers of a protocol

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:11, 2007

1647

can work out inconsistencies prior to release. Several

inconsistencies were found in the protocol and resolved with

minor variation, though mostly with contradictions between

different sections in the protocol. The major benefit of this

work is that the result is a well-defined set of criteria that

implementers must meet. As such, it is advocated that formal

methods should become a critical component of the

standardization process. In fact, if an implementation is first

defined in formal languages and then in the final language, the

implementation can be verified against the specification,

increasing the probability that different implementations

would have no inconsistencies. Future work will also include

verifying that two different protocols can co-exist together

such as TCP-IP [4].

REFERENCES

[1] G.J.Holzmann, "Design and Validation of Computer Protocols",

Prentice-Hall International Editions, AT&T Bell Laboratories 1991.

[2] J.F.Leathrum, J.Rasha, M.B.E.Morsi, T.E.Leathrum, "Formal

Verification of Communication Protocols", 1996.

[3] Host Extensions for IP multicasting, IETF RFC 1112 specification.

[4] IETF TCP/IP Specifications : The TCP protocol, IETF RFC 793, IETF

RFC 791, IETF RFC 1883.

[5] M.Barjaktarovic, "Formal specification and verification of the OSI

Session Layer using the calculus of Communicating Systems (CCS)",

Ph.D. thesis, Dept. of Electrical and Computer Engineering, Syracuse

University, USA , 1995.

[6] M.G.Gouda , J.Y.Han, "Protocol Validation by fair progress state

exploration", Computer Networks and ISDN Systems , Vol. 9, 1985.

[7] M.G.Gouda , Y.T.Yu, "Protocol Validation by maximal progress state

exploration", IEEE Trans. on Communications, Vol. COM-32, No. 1,

1984.

[8] M.Fahimi, "Artificial Intelligence", Jelveh Publications, 2000.

[9] W.F.Clocksin, C.S.Mellish, "Programming in Prolog", Springer-Verlag,

1987.

[10] I.Bratko, "Prolog Programming for Artificial Intelligence", Addison-

Wesley Publishing Company, 1994.

[11] C.L.Tan, S.Pink , “MobiCast : A Multicast scheme for wireless

networks” , Baltzer Science Publishers BV, Mobile Networks and

Applications 5, 2000.

[12] G.Xylomenos and G.C.Polyzos, “IP Multicasting for wireless mobile

hosts”, Proc. of the IEEE MILCOM Conf. on Military

Communications, Vol. 3, 1996.

[13] T.G.Harrison, C.L.Williamsom, W.L.Mackrell and R.B.Bunt, “Mobile

Multicast (MoM) protocol: Multicast support for mobile hosts”, Proc.

of ACM/IEEE MobiCom, 1997.

[14] C.Chang and R.C.Lee, "Symbolic Logic and Theorem Proving",

Academic Press, San Diego, CA, 1973.

