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Abstract—As computer network technology becomes 

increasingly complex, it becomes necessary to place greater 

requirements on the validity of developing standards and the 

resulting technology. Communication networks are based on large 

amounts of protocols. The validity of these protocols have to be 

proved either individually or in an integral fashion. One strategy for 

achieving this is to apply the growing field of formal methods. 

Formal methods research defines systems in high order logic so that 

automated reasoning can be applied for verification. In this research 

we represent and implement a formerly announced multicast protocol 

in Prolog language so that certain properties of the protocol can be 

verified. It is shown that by using this approach some minor faults in 

the protocol were found and repaired. Describing the protocol as 

facts and rules also have other benefits i.e. leads to a process-able 

knowledge. This knowledge can be transferred as ontology between 

systems in KQML format. Since the Prolog language can increase its 

knowledge base every time, this method can also be used to learn an 

intelligent network. 

Keywords— Formal methods, MobiCast, Mobile Network, 

Multicast. 

I. INTRODUCTION

OWADAYS as the computer systems become 

increasingly complex, the difficulty of developing highly 

reliable  technology increases as well. Numerous design flaws 

have been chronicled such as the Intel Pentium processor 

floating-point bug and the Denver Airport baggage handling 

system problem. System developers have to test and verify the 

products before releasing them to the market to avoid later 

problems. One of the most complex system categories that 

may have flaws is the computer network. Two major types of 

methods are used to validate network protocols, manual 

methods and formal methods. M. Goda [6,7] categorized these 

methods in 94, 95 and divided the manual methods to static 

and well-formed formulas. J. Holzman [1] categorized the 

automatic methods into four groups: full search, controlled 

partial search, random simulation, and formal verification. 

There are other similar works in formal verification of IPv6 

[2] and also the session layer [5].  The potentials of formal 

methods to provide solutions in these areas are also found in 

Manuscript received January 9, 2004. 

M. Matash Borujerdi, is with the Department of IT and Computer 

Engineering, Amirkabir University of Technology, Tehran, Iran, (e-mail: 

borujerm@aut.ac.ir).  

S.M. Mirzababaei, also is with the Department of IT and Computer 

Engineering, Amirkabir University of Technology, Tehran, Iran, (e-mail: 

mirzababaei@morva.net). 

[8, 9, and 10].  

This paper demonstrates how a formerly announced network 

protocol such as MobiCast can be specified for theorem 

proving in Prolog language. Then semi-automated reasoning 

can be applied to the specification to verify certain properties.  

In the following sections we will first discuss the MobiCast 

protocol. Then we will show the relationships between 

definitions of graphs and communications and the 

implementation of the MobiCast. After that we will discuss 

our verification method before our final conclusions.   

II. MOBICAST

MobiCast [11] introduced by Lin Tan is an appropriate 

protocol for a network with micro-cells whose base-stations 

stand on a high speed wired network capable of transmission 

of multicasting [3] packets to several recipients [12, 13]. This 

method isolates the movement of mobile hosts from multicast 

tree to minimize disconnections during sessions. This 

mechanism uses the hierarchical mobility management to 

isolate the movement of MHs(Mobile Host) from the main 

multicast transfer tree. Every external domain must use an 

agent. 

To send a multicast packet the MH has to encapsulate it in a 

regular packet and send it to domain agent. The agent opens 

the packet and sends it to receivers, like a multicast packet. 

Whenever a station wants to subscribe in a multicast group it 

must send its subscription request to DA (Domain Agent) via 

its BS (Base Station). The DA subscribes to that multicast 

group instead of the MH and receives the requested packets 

and then sends them to the MH. There is another multicast 

address that denoted as translated multicast address. This 

translated multicast address has to be unique in the domain 

and must be related to main multicast group. The BS 

subscribes for reception of these packets in the translated 

multicast group (whose address is the translated one), and 

sends the received packets to the MH. The roaming of the 

mobile hosts is transparent from other group members while it 

exists in the domain of the mentioned DFA (Domain Foreign 

Agent) and there is no need for new calculation of the 

multicast main tree resulting in minimizing the breaks in 

multicast sessions. 

The Lin Tan's protocol organizes and builds bigger cells 

with composition of micro-cells and names it DVM (Synamic 

Macro-Cell). When an MH subscribes to a multicast group via 

DFA the current base station will inform the other base 
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stations that are in its DVM to subscribe in that translated 

multicast group. While only the serving base station actively 

forwards multicast data packets to the mobile host, the other 

base stations in the same DVM buffer recent packets and 

quickly forwards those to the mobile host whenever a handoff 

occurs. This provides short handoff latency, and the use of 

buffers at the base stations reduces packet loss due to handoff. 

It also eliminates multicast group join and graft latencies since 

the new base station has already subscribed to the multicast 

group prior to the handoff. Hence, the disruptions to the 

multicast session due to handoffs of mobile host group 

members are minimized.  

Each multicast group is associated with a translated 

multicast group address, and serving BSs of interested MHs 

only need to subscribe to this translated multicast group to 

receive the desired multicast data. Besides delivering multicast 

data in an efficient manner (as compared to multiple unicasts 

to interested MHs within its domain), the use of multicast as 

the forwarding mechanism from the DFA to interested MHs in 

its domain also alleviates the DFA from the task of keeping 

track of the exact location of the MH to ensure correct 

multicast data delivery. Since physically adjacent cells are 

most likely to reside on the same network segment, the extra 

network load generated due to the other member BSs in the 

same DVM subscribing to the same multicast group is 

negligible. This is especially so for the case of shared medium 

networks such as Ethernet. 

  MobiCast is developed to work with IP and is compatible 

with existing multicast routing algorithms such as DVMRP, 

CBT, MOSPF, PIM-DM and PIM-SM. The base stations are 

network-layer routers with buffers, and are capable of 

subscribing to multicast groups. Compared to a link-layer 

solution adopted by most wireless LAN, a network-layer base 

station is capable of forwarding only those multicast packets 

with interested mobile receivers in its cell, thus achieving 

efficient utilization of wireless bandwidth. Furthermore, a 

network-layer base station is able to differentiate packets with 

different service types for IPv6 so as to support QoS (Quality 

of Service) for mobile hosts in its cell. This scheme aims to 

support best effort IP multicast efficiently for mobile hosts in 

an environment with Micro-cells, while maintaining the 

quality of the multicast session during handoffs. 

As appears in figure 1 when each MH moves, it leaves the 

wireless coverage of one cell and enters into another, resulting 

in a handoff between the base stations. In small wireless cells 

at the fringes of the Internet, such handoffs during a multicast 

session will be frequent as wireless cells may be of the size of 

a few meters. When an MH arrives at a foreign network and 

obtains an in-care-of address, the MH sends a location update 

message to inform it’s HA (Home Agent) of its care-of 

address. The care-of address identifies an FA (Foreign Agent) 

in the foreign subnet where the MH is. The FA can be a 

separate node or reside in the MH. The MH has to subscribe 

to the desired multicast group via FA1 when it is at subnet A 

and via FA2 when it moves to subnet B.  

MobiCast has the following advantages. First, the use of 

hierarchical mobility management architecture separates the 

mobility of the MH from the main multicast delivery tree. As 

long as the MH remains within the domain of the DFA, the 

mobility of the MH is shielded from the rest of the multicast 

group. No re-computation of the main multicast delivery tree 

is needed. Second, this scheme requires MHs, which are 

interested in receiving multicast data to re-subscribe again via 

the DFA when they are in a foreign domain. This approach is 

somewhat similar to the remote subscription method proposed 

by Mobile IP, and network routes taken by the multicast 

packets to the MHs are efficient and the inefficiencies and 

scalability problems associated with the Mobile IP are totally 

avoided. Third, this scheme uses multicast to forward the 

multicast packets from the DFA to the interested MHs within 

its domain. 

Figure 1 : Before the handoff of MH from BS 2 to 3 

III. COMMUNICATION DEFINITIONS

Graph structures are for representation in many 

applications, such as representing relations, situations or 

problems. A set of nodes and a set of edges define a graph, 

where each edge is a pair of nodes. When the edges are 

directed they are called arcs. Ordered pairs represent arcs. 

Such a graph is a directed graph. The edges can be attached 

with costs, names, or any kind of labels, depending on the 

application. Graphs can be represented in prolog in several 

ways. One method is to represent each edge or arc separately 

as one clause. The graph can be thus represented by sets of 

clauses, for examples:  

connected (a, b). 

connected (b, c). 

arc (s,t,3). 

arc (t,v,1). 

arc (u,t,,2). 
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      . . . 

Another method is to represent the whole graph as one data 

object. A graph can be thus represented as a pair of two sets: 

nodes and edges. Each set can be represented as a list; each 

edge is a pair of nodes. Let us choose the functor graph to 

combine both sets into a pair, and the functor e for edges. 

Then one way to represent the (undirected) graph in the 

following code: 

 G1=graph([a,b,c,d],[e(a,b),e(b,d),e(b,c),e(c,d)]). 

To represent a directed graph we can choose the functor 

digraph and a (for arcs). The directed graph of the following 

code is then: 

G2=digraph([s,t,u,v],[a(s,t,3),a(t,v,1),a(t,u,5) 

,a(u,t,2),a(v,u,2)]). 

If each node is connected to at least one other node then we 

can omit the list of nodes from the representation as the set of 

nodes is then implicitly specified by the list of edges. Yet 

another method is to associate with each node a list of nodes 

that are adjacent to that node. Then a graph is a list of pairs 

consisting of a node plus its adjacency list. Our example 

graphs can then, for example, be represented by: 

G3=[p(a,[arcto(b,3),arcto(c,1)]),p(b,[arcto(e,2),arcto(f,1)])]. 

What will be the most suitable representation will depend 

on the task to be performed on graphs. Two typical operations 

are finding a path between two given nodes and finding a sub-

graph with some specified properties. Finding a spanning tree 

of a graph is an example of the latter operation. In the 

following we will look at some simple definitions, which will 

be used in finding paths and spanning trees. For path finding 

we can define a path in the following manner where G is a 

graph, A and Z are two nodes in G, and P is an acyclic path 

between A and Z in G. P is represented as a list of nodes on 

the path.  

path(A,Z,G,P,C):-path1(A,[Z],0,G,P,C). 

path1(A,[A|P1],C1,G,[A|P1],C1). 

path1(A,[Y|P1],C1,G,P,C):adjacent(X,Y,CXY,G),not(member(

X,P1)),C2=C1+CXY,path1(A,[X,Y|P1],C2,G,P,C). 

adjacent(X,Y,graph(N,E)):-

member(e(X,Y),E);member(e(Y,X),E). 

And accordingly to define a Hamiltonian path: 

hamiltonian(G,P):-path(_,_,G,P),covers(P,G). 

covers(P,G):-not(node(N,G),not(member(N,P)). 

Similarly to define the minimum cost path 

path(n1,n2,G,MinPath,MinCost),not(path(n1,n2,G,_,C) 

,C<MinCost) 

And to define the maximum cost path in the graph 

path(_,_,G,MaxPath,MaxCost),not(path(_,_,G,_,C) 

,C>MaxCost) 

It should be noted that this is a very inefficient way for 

finding minimal or maximal paths. This method unselectively 

investigates possible paths and is completely unsuitable for 

large graphs because of its high running time complexity.  

The most important part in building a multicast network in 

the Internet is the building of a Steiner tree. The Steiner tree is 

a sub-tree of the minimum spanning tree. The Steiner tree 

does not contain all the nodes in the graph but includes all the 

specified nodes and some other nodes to connect the specified 

nodes in a minimum pathway. To find a Steiner tree we must 

define these rules: The spanning tree is a connected sub-graph 

of the main graph that has no cycles. To find the minimum 

spanning tree we start from an empty set of edges, and add 

more edges in a way that no cycles be generated and continue 

to add edges until no more edges can be added. This set will 

be the spanning tree. And the following is also a useful rule in 

accomplishing the task: We can add those edges that have 

only one terminal in the set. Following prolog rules is the 

implementation of the above rules: 

stree(G,T):-member(E,G),spread([E],T,G). 

spread(T1,T,G):-addedge(T1,T2,G),spread(T2,T,G). 

spread(T,T,G):-not(addedge(T,_,G)). 

addedge(T,[e(A,B)|T],G):-

adjacent(A,B,G),node(A,T),not(node(B,T)). 

adjacent(N1,N2,G):-

member(e(N1,N2),G);member(e(N2,N1),G). 

node(N,G):-adjacent(N,_,G). 

All three arguments of the spread (T1,T,G) are sets of the 

edges. G is fully connected and T1 and T are sub-sets from G 

that represents the tree. T is a spanning tree that built form 

adding zero or one edge from G to T1 in every step. We 

define the above rules in declarative manner as follows. 

stree(G,T):-subset(G,T),tree(T),covers(T,G). 

tree(T):-connected(T),not(hasacycle(T)). 

connected(G):not(node(A,G),node(B,G),not(path(A,B,G,_))). 

hasacycle(G):adjacent(N1,N2,G),path(N1,N2,G,[N1,X,Y|_]). 

covers(T,G):-not(node(N,G),not(node(N,T))). 

subset([],[]). 

subset([X|S],Ss):-subset(S,Ss). 

subset([X|S],[X|Ss]):-subset(S,Ss). 

Now we must choose some special nodes and use them to 

find a Steiner tree, so the covers rule has to use from G1 

instead of G. To define the MobiCast protocol we must also 

define some high level definitions and represent them in 

prolog.  
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1- Building a DVM: we must build a DVM with the cell 

and its adjacent cells, when a mobile host enters a cell then 

destroy the DVM when the mobile host leaves the cell. This 

work will be done via subscribing to a new multicasting 

group. 

2- Subscribing to the multicasting group: the mobile host 

instructs the nearest DFA to subscribe to the interested 

multicast group. 

3- Unsubscribing from the multicasting group: the mobile 

host instructs the nearest DFA that this node is not interested 

to be subscribed to the multicasting group any more and the 

DFA can leave the multicasting group according to its 

policies.  

4- Subscription of the DFA in the multicast group: DFA 

subscribes to the multicast group, so the tree has to be 

calculated again. 

5- DFA Unsubscribing from multicast group: DFA leaves 

the multicast group; this event can lead to a new tree 

calculation. 

6- Sending a packet to the multicast group: The mobile host 

sends a packet to the DFA so it can send the packet to the 

multicast group instead of the sender. 

7- Receiving a packet by DFA: When the DFA receives a 

packet from a translated multicast address; it converts the 

translated multicast address to the main multicast address and 

resends it. Otherwise if the received packet has the main 

multicast address, the translated address has to be found to 

forward the packet to the DVM. These steps have been show 

in the figure 2. 

As we only need to prove the correctness of the protocol 

and do not need to give good performance, we can simplify 

the search for the multicast addresses or translated multicast 

addresses by defining the multicast addresses as those above 

1024 and the translated multicast addresses as those that are 

below 1024. This way the MobiCast is represented and 

implemented in Prolog as illustrated below. 

database 

single receivedpacket(node,integer) 

groupNo(graph,integer) 

groupNo(tree,integer) 

mhDFA(mhid,node) 

mhGroup(mhid,integer) 

cell(mhid,node) 

Figure 2: The protocol stages dependencies 

clauses 

carryInTree(CurNode,[],X):-!. 

carryInTree(CurNode,T,X):-

not(receivedpacket(CurNode,X)),assert(receivedpacket(CurNo

de,X)),nextNode(CurNode,T,N),carryInTree(N,T,X),fail. 

carryInTree(CurNode,T,X). 

nextNode(CurNode,[e(CurNode,Node)|_],Node). 

nextNode(CurNode,[e(Node,CurNode)|_],Node). 

nextNode(CurNode,[_|T],Node):-nextNode(CurNode,T,Node). 

carryInDFA(CurNode,X,I):-I>1024,II=I-1024, 

groupNo(T,II),carryInTree(CurNode,T,X). 

carryInDFA(CurNode,X,I):-

I<=1024,II=I+1024,groupNo(T,II), 

carryInTree(CurNode,T,X). 

sendPacket(MHId,X):-

mhDFA(MHId,DFA),mhGroup(MHId,I), 

carryInDFA(DFA,X,I). 

enMemberVAddr(MHId,I):-

mhDFA(MHId,DFA),cell(MH,BTS), 

constractDVM(BTS,I),enMemberAddr(DFA,I),  

II=I-1024, assert (mhGroup(MHId,II)). 

enMemberAddr(DFA,I):-groupNo(T,I),gourpNo(G,I), 

addToSubGraph(DFA,G,G1),stree(G1,T1), 

retract(groupNo(T,I)),retract(groupNo(G,I)), 

assert(groupNo(T1,I)),assert(groupNo(G1,I)). 

deMemberVAddr(MHId,I):-mhDFA(MHId,DFA), 

II=I-1024, 

deMemberAddr(DFA,I),cell(MHId,BTS), 

destructDVM(BTS,I),retract(mhGroup(MHId,II)). 

deMemberAddr(DFA,I):-mhDFA(MHId,DFA),II=I+1024, 

mhGroup(MHId,II),!. 

deMemberAddr(DFA,I):-groupNo(T,I),groupNo(G,I), 

OmitFromGraph(DFA,G,G1),stree(G1,T1), 

retract(groupNo(T,I)),retract(groupNo(G,I)), 

assert(groupNo(T1,I)),assert(groupNo(G1,I)). 

makeDVM(NBts,OBts,I):-

destructDVM(OBts,I),constructDVM(NBts,I). 

IGMP: Join request from MH to DFA 

DFA Subscribes to the group 

Packet Transmission Graph Building 

DVM Building Tree Building 

Packet Reception 

DFA Unsubscribes from the group 

 IGMP: Leave request from MH to DFA 
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destructDVM(Bts,I):-neighborBts(Bts,NBts,graph), 

deMemberAddr(NBts,I),destructDVM(Bts,I),fail. 

destructDVM(_,_). 

neighborBts(Bts,NBts,[e(Bts,NBts)|_]). 

neighborBts(Bts,NBts,[e(NBts,Bts)|_]). 

neighborBts(Bts,NBts,[_|G]):-neighborBts(Bts,NBts,G).

IV. VERIFICATION METHOD

The program analysis studies the relation between the input 

and the output of a program. Formally, a program consists of 

an input (variable) vector 
Lxxx ,,1

, a program (variable) 

vector 
Myyy ,,1

, an output (variable) vector 

Lzzz ,,1
, and a finite direct graph (V,A ) such that the 

following conditions are satisfied.  

1- In the graph (V,A ), there is exactly one vertex, called the 

start vertex  VS , That is not a terminal vertex of any arc; 

there is exactly one vertex called the halt vertex VH  , that 

is not an initial vertex of any arc; and every vertex v is on 

some path from S to H. 

2- In (V,A ), each arc a  not entering H is associated with a 

qualifier-free formula ),( yxPa
 and an assignment 

),( yxfy a
; each arc entering the halt vertex H is associated 

with a quantifier-free formula ),( yxPa
 and an assignment 

),( yxfz a
. (The 

aP  is called the testing predicate associated 

with arc a  and ),( yxPa
 is called the testing formula associated 

with arc a .)

3- For each vertex )( Hv , let 
raaa ,,, 21
 be all the arcs 

leaving v  and let 
raaa PPP ,,,

21

 be the testing predicates 

associated with arcs 
raaa ,,, 21
, respectively. Then for all 

yx, , one and only one of ),(
1

yxPa
, ),(

2
yxPa

, … , ),( yxP
ra

 is 

True. 

The formal representation is used to provide answers to 

following problems: 

1- Termination problem: Given a certain input, will this 

program terminate? 

2- Response problem: Given a certain input, if the program 

terminates, what is the output of the program? 

3- Correctness problem: Given a certain input, will the 

output of this program satisfy the specification (input-output 

relationship) of the program? 

4- Equivalence problem: Given two programs, will the 

programs yield the same results if the inputs are the same? 

5- Specialization problem: Given a program P that is written 

to accept a set S of inputs, if we are only interested in a 

nonempty subset S* of S, how can we simplify P to another 

P* such that P* runs faster on S* than P does? 

Evidently, we need some information to answer any of the 

above questions. In general, we need the following 

information: 

1- Axioms describing the execution of the program. We 

describe this by 
pA .

2- Axioms concerning testing predicates and assignment 

functions. For example, we might need the axioms concerning 

equality or some appropriate induction schema. We describe 

this by 
sA .

3- Axioms concerning the input. For instance, we might 

require the input to be positive integers. We describe this by 

tA .

We assume that 
ts AA  is consistent. But, we have to prove 

that 
tsp AAA  is consistent with the description of the 

output of the program. There is a theorem that says: Given a 

program P, let S denote the set of clauses representing 

tsp AAA , Then S is satisfiable[14].  

So the declarative information of the MobiCast protocol 

prepared using Prolog language. Of course the non-declarative 

features in the Prolog language such as the depth-first search 

rule, a non-logical negation (by failure), and a number of non-

logical operations such as the test predicate (e.g., var) and the 

cut are nevertheless necessary to make Prolog reasonably 

efficient. Prolog language has some first order logic predicates 

that formed in clause forms (in CNF composition and without 

quantifiers in form of prenex like). We used the SLD 

resolution for automatic theorem proving that showed below. 

domains 

expr=s(symbol);if_(expr,expr); 

and_(expr,expr);or_(expr,expr);not_(expr); true 

database 

nondeterm clause (expr) 

done (expr,expr,expr) 

modified 

predicates 

nondeterm contradiction 

nondeterm remove_true_clause 

nondeterm simplify_clause 

nondeterm resolution_step 

nondeterm delete_(expr,expr,expr) 

nondeterm in(expr,expr) 

translate(expr) 

translatenot(expr) 

nondeterm transform(expr,expr) 

nondeterm run 

clauses 

clause(true). 

contradiction:-clause(X),clause(not_(X)), write("contradiction 

found(Formula is true)."). 

remove_true_clause:-clause(C),in(P,C),in(not_(P),C), 

retract(clause(C)). 

simplify_clause:-clause(C),delete_(P,C,C1),in(P,C1), 

retract(clause(C)),assert(clause(C1)). 

resolution_step:-

clause(P),clause(C),delete_(not_(P),C,C1),not(done(P,C,P)), 

assert(clause(C1)),assert(done(P,C,P)). 

resolution_step:-
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clause(not_(P)),clause(C),delete_(P,C,C1),not(done(not_(P),

C,P)), assert(clause(C1)),assert(done(not_(P),C,P)). 

resolution_step:-

clause(C1),delete_(P,C1,CA),clause(C2),delete_(not_(P),C2,

CB),not(done(C1,C2,P)), 

assert(clause(or_(CA,CB))),assert(done(C1,C2,P)). 

% delete(P,E,E1) if deleting a disjunctive subexpression P 

from E gives E1 

delete_(X,or_(X,Y),Y). 

delete_(X,or_(Y,X),Y). 

delete_(X,or_(Y,Z),or_(Y,Z1)):-delete_(X,Z,Z1). 

delete_(X,or_(Y,Z),or_(Y1,Z)):-delete_(X,Y,Y1). 

% in(P,E) if P is a disjunctive subexpression in  

in(X,X). 

in(X,Y):-delete_(X,Y,_). 

% translate(Formula) : translate propositional Formula into 

clauses and assert each resulting clause C as clause(C) 

translate(and_(F,G)):-!,translate(F),translate(G). 

translate(F):-transform(F,NewF),!,translate(NewF). 

translate(F):-assert(clause(F)). 

% transform(F1,F2) F2 is equal to F1 but closer to clause 

form 

transform(not_(not_(X)),X). % double negation 

transform(if_(X,Y),or_(not_(X),Y)).  

% the Implication 

transform(not_(and_(X,Y)),or_(not_(X),not_(Y))).  

    % De Morgan's law 

 transform(not_(or_(X,Y)),and_(not_(X),not_(Y))).  

transform(or_(and_(X,Y),Z),and_(or_(X,Z),or_(Y,Z))).  

% Distribution 

transform(or_(X,and_(Y,Z)),and_(or_(X,Y) 

,or_(X,Z))).  

transform(or_(X,Y),or_(X1,Y)):-transform(X,X1).  

% transform subexpression 

transform(or_(X,Y),or_(X,Y1)):-transform(Y,Y1).  

transform(not_(X),not_(X1)):-transform(X,X1).  

 % Test Stub 

run:-contradiction. 

run:-remove_true_clause,assert(modified),fail. 

run:-simplify_clause,assert(modified),fail. 

run:-resolution_step,assert(modified),fail. 

run:-modified,retract(modified),run. 

translatenot(X):-translate(not_(X)). 

For example, we now show the abstract level verification of 

two parts of the program. First we verify the tree building in 

the program and then we will verify packet delivery 

mechanism. At the first step we must have a description of the 

program execution, statements, inputs and outputs of tree 

building. There is no need to isolate these parts from each 

other so we extracted all of these descriptions manually form 

the prolog code. We need an automatic converter if we want a 

full automatic verifier  

The database 

SrcNodes(node) 

DestNodes(node) 

Arc(node,node) 

TreeArcs(node,node) 

The clauses 

Tree SrcNodes(S) DestNodes(D) Arc(S,D) 

TreeArcs(S,D) SrcNodes(D). 

TreeArcsDesc(N1,N2)  ~Path(N2,N1). 

Path(N2,N1) TreeArcs(N2,N3) Path(N3,N1). 

Now we feed the resolution program with these facts and 

the negation of the result. These clauses will be found in 

memory in case of program trace. 

Path(b,a)   ~Path(b,a)  Arc(a,b) 

TreeArcs(a,b)  ~TreeArcs(N,b) 

And then the program concludes the contradiction that 

means the consistency of the program. Again when we want 

to verify the packet delivery mechanism, have to do as the 

above, so we prepare the description of the program 

execution, statements, inputs and outputs.  

The database 

MhDFA(mhid,node) 

MhGroup(mhid,grpid) 

GroupNo(tree,grpid) 

ReceivedPacket(node,mhid) 

NextNode(node,tree,node) 

TransG(grpid,grpid) 

The clauses 

SendPacket(S,M) MhDFA(S,D) MhGroup(S,I) 

CarryInDFA(D,M,I). 

CarryInDFA(D,M,I) TransG(I,II) GroupNo(T,II) 

CarryInTree(D,T,M). 

CarryInTree(D,T,M) ReceivedPacket(D,M) 

NextNode(D,T,Dx) CarryInTree(Dx,T,M). 

Then we present these sentences to the SLD resolution 

program, with the negation of the result 

"not(ReceivedPacket(N,M)". These clauses will be found in 

memory in case of program trace. 

SendPacket(a,b)  ~ReceivedPacket(c,b)  

MhDFA(a,c)        MhGroup(a,d) 

CarryInDFA(c,b,d)   TransG(d,e) 

CarryInTree(c,f,b)  ReceivedPacket(c,b) 

NextNode(c,f,b) 

So then the program concludes the contradiction between 

the second (negation of the result) and 8th fact that means the 

consistency of the program. 

V. CONCLUSIONS

The specification of the MobiCast protocol partially 

presented here demonstrates how the designers of a protocol 
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can work out inconsistencies prior to release. Several 

inconsistencies were found in the protocol and resolved with 

minor variation, though mostly with contradictions between 

different sections in the protocol. The major benefit of this 

work is that the result is a well-defined set of criteria that 

implementers must meet. As such, it is advocated that formal 

methods should become a critical component of the 

standardization process. In fact, if an implementation is first 

defined in formal languages and then in the final language, the 

implementation can be verified against the specification, 

increasing the probability that different implementations 

would have no inconsistencies. Future work will also include 

verifying that two different protocols can co-exist together 

such as TCP-IP [4]. 
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