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Abstract—A new analytical model is developed which provides 

close-formed solutions for both transient indoor and envelope 
temperature changes in buildings. Time-dependent boundary 
temperature is presented as Fourier series which can approximate real 
weather conditions. The final close-formed solutions are simple, 
concise, and comprehensive. The model was compared with 
numerical results and good accuracy was obtained.  The model can 
be used as design and control guidelines in engineering applications 
for analysing mechanical heat transfer properties for buildings. 
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I. INTRODUCTION 
ODELLING whole building's heat transfer is important for 
understanding and predicting building thermal behaviours 

in order to provide techniques for designing and analysing 
problems such as energy demands, passive design, 
environmental comfort and the response of control in a 
building. Over the decades, there have been numerous 
building heat transfer models for such purposes [1]. Most 
whole building heat transfer programs are numerical models. 
This is due to the fact that even for building's multiple layered 
envelope alone, the heat transfer problem already remains too 
big and complex to analytically solve. However, analytical 
models are very useful in design, analysis and optimisation of 
complex interactions of the physical processes in buildings. 
Furthermore, an important final step to promote the practical 
use of any model, including numerical models, is to condense 
it for engineering applications. And this can only be 
accomplished by identifying the fundamental physical 
processes by means of analytical methods. 

One of the difficulties, as described previously, with the 
analytical models for whole building's heat transfer is relating 
heat conduction through building envelope which is often 
constructed with multiple layers. In general, heat conduction 
in a multiple layered composite slab does not accept simple 
and closed-formed solutions. Mathematically, four classes of 
analytical techniques are often used to solve for a heat 
conduction problem: finite integral transform which is often 
adopted for single layer material, Green's functions, 
orthogonal expansions and Laplace's transform [2,3]. 
Concerning the techniques of Green's function and orthogonal 
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expansions, an eigenvalue problem often accompanied. The 
associated eigenvalue problem may become much more 
complicated especially for a slab with many layers. The 
application of Laplace transform often yields residue 
computation. The calculation procedure is tedious if the slab 
has more than two layers [4]. 

Therefore, the eigenvalue or residue computation has 
always posed a challenge to analytical methods on solving 
heat conduction in composite slab. Above all, the heat transfer 
equation on building space adds complexity and 
computational expense to the system of simultaneous heat 
transfer equations for the whole building system. Therefore, 
most of the existing methods do not directly tackle the 
governing heat equations. Rather, response factor methods 
and conduction transfer function methods are most widely 
utilised for solving building heat transfer problems [5,6]. 
Numerical iteration is often needed to apply such methods. It 
is well known that a risk of numerical instability exists in 
using iterative programs.  

More common models simplify the calculations by 
assuming steady-state heat transfer and zero thermal capacity 
of the building envelope [7]. These models lose the ability to 
simulate transient behaviours of the building system which are 
most important to characterise building physical processes of 
heat transfer. This paper presents an analytical model for 
predicting whole building heat transfer process. The model is 
simple, flexible, and driven by real weather conditions. The 
building setting dealt with by the developed model is similar 
as the one described in Boland's paper [8]. Comparison 
between the analytical and the numerical results shows a good 
accuracy of the developed analytical model. 

.  

II. ASSUMPTIONS 
In practice, heat transfer process for building has a strong 

three-dimensional character. However, the entire three-
dimensional heat transfer for buildings is too complex to be 
performed by any analytical method and the physical process 
might be too complex for analysis and interpretation. 
Therefore, most analytical heat transfer models have 
simplified the building system. Even with the simplification, 
analytical methods are still troubled by the multiple layered 
envelope which does not permit analytical solutions to the 
heat conduction problem. In this paper, the following 
assumptions are made to the modelled building system: 
 
• Building has only one zone. 
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• Envelope consists of the walls, the roof, the windows and 
the floor foundation. The door belongs to a part of wall 
component. 
• One-dimensional geometry is assumed for all the envelope 
components. 
• Indoor air is well mixed with time-dependent temperature 
T+(t). 
• Outdoor temperature is accounted by the combined effect of 
the outdoor dry bulb temperature and the solar radiation which 
is denoted as T−(t). 
• Each component is an n-layer composite slab having 
constant thermal conductivity, diffusivity and density for each 
layer. 
• Ventilation rate is constant throughout the calculation 
duration. 
• Only steady-state heat transfer is considered for windows 
throughout the calculation duration.  
• Boundaries for envelope components are the time-dependent 
indoor and outdoor temperatures. In particular, the boundaries 
for the floor and foundation are the indoor temperature and 
the time-dependent temperature which is placed under the 
foundation in the ground and denoted as Tground(t). 
 

A schematic picture of the modelled building configuration 
is displayed in Fig. 1.  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Schematic picture of the modelled building configuration 

III. MODEL SOLUTION 

A. General Model Equation for Building Envelope 
Using the proceeding assumptions, each building 

component is an n-layer composite slab having constant 
thermal conductivity, diffusivity and density for each layer 
(Fig. 1). The thermal conductivity, diffusivity and thickness 
are presented as λj, kj and lj, j = 1…n. Just for a 

demonstrational convenience, we provide the heat equation 
for a general n-layer slab first.  

For an n-layer slab, we set the following notations l0 = 0 
and Lj = l0+…+lj, j = 1…n. Then the layer boundaries are [L0 

= 0, L1], [L1, L2] and [Ln-1, Ln] (Fig. 1). The general heat 
conduction in an n-layer slab can be described by the 
following equations for the jth layer temperature Tj(t,x): 
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∂
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with boundary and initial conditions 
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Tj(0,x)=0,  x∈[Ln-1, Ln],  j = 1…n  (1f) 
 
 
For simplicity, zero initial temperature and perfect contact 
between layers are assumed. Surface convective and radiative 
heat transfer coefficients are α+  and α−. 
     Heat transfer equations for all the building envelope 
components can be obtained from equation (1). The subscripts 
and superscripts are used to present different envelope 
components, for example, Twall(t) for walls, Troof(t) for roof, 
and Tfloor(t) for floor and foundation in equation (1). For 
Tfloor(t), the equations exhibit somewhat differently in equation 
(1) where equation (1e) is changed as 
 

Tn
floor(t,Ln) =Tground(t)  (1g) 

 
where Tground(t) is the ground temperature beneath the building 
floor. 

 

B. Equation for Indoor Air 
For indoor temperature T+(t), the heat transfer equation is 

modelled as 
 

CairV
dt

dT+ = ∑
wall

Awallα+(T1
wall(t,L0)−T+)  

+ Aroofα+(T1
roof(t,L0)−T+) + Afloorα+(T1

floor(t,L0)−T+) 

+ ∑
window

AwindowUwindow(T−(t)−T+) + η(T−(t)−T+) (2a) 

 
T+(0) = 0 (2b) 

 
where V presents the volume of the room, A the inner area of 
the component, Cair the thermal mass of the indoor air 
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(product of density and specific heat), U the glazing thermal 
transmittance coefficient, and η the ventilation rate of the 
building.   

C. Weather Conditions 
It is known that any function can be approximated as 

Fourier series in an extended interval. Therefore, for any real 
weather condition of outdoor temperatures, we can 
approximate it using Fourier series. Just for the sake of 
calculation simplification, we assume that both the outdoor 
and the ground temperatures change periodically as  
 

T−(t) = cos(ωt+ϕ)  (3a) 
 

Tground(t) = cos(ϖt+φ) (3b) 

Note that for general boundary temperatures T−(t) and 
Tground(t), they can be presented as 
 

T−(t)=a0+ ∑
∞

=

+
1

)cos(
k

kkk ta ϕω  (4a) 

Tground(t)=b0+ ∑
∞

=

+
1

)cos(
k

kkk tb φϖ  (4b) 

Hence the corresponding solution can be expressed as the sum 
of solutions with boundary temperature of equation  (3). 
     Furthermore, assume the boundary temperatures are as the 
complex form  
 

T−(t) = eiωt + iϕ  (5a) 
Tground(t) = eiϖt + iφ (5b) 

Clearly, the solution is the real part of the sought-after 
solution.  
 

D.  Model Solution 
    Applying Laplace transform on equation (1) we get 
 

s jT = 2
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where jT  presents the Laplace transform of the building 

envelope components jT wall and jT roof, for instance. 
     A bar over function f(t) designates its Laplace 
transformation on t as [2] 
 

)(sf = τττ∫
∞

−

0

)( dfe s   (7) 

 
The convolution property of Laplace transformation is given 
as [2] 
 

)(sf = )(1 sf )(2 sf   
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t
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0
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   Similarly, the Laplace transformation of equation (2) reads 
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     Such system of simultaneous equations has been studied in 
[9]. Without showing the details, we copy the results here: for 
any jth layer, denote  
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T+(t) = G (iω)T− + F (iω)Tground  (12) 
 
 
The final solution is the real part of T+(t), Re(T+(t)). 
   The above close-formed solution Re(T+(t)) presents the 
transient temperature variation indoors. It shows globally at 
the response of internal temperature in a building under free 
and real outdoor boundary condition. It is not difficult to see 
that the close-formed solutions for building envelope can be 
obtained in a similar way [9]. 

IV. VALIDATION 
To assess the accuracy of the developed analytical method, 

the results from the analytical model will be compared to the 
results obtained from numerical studies. Heat transfer in one-
room house is simulated. The house's dimension is 6×6×2 m3. 

Its envelope consists of three layers. Such envelope structure 
has been adopted in our test building. The main material of the 
wall is mineral wool (200 mm). Boundary layers consist of 
wall-paper (25 mm) and gypsum board (13 mm). Fig. 2 shows 
a schematic picture of the house and Table 1 the physical 
properties of its envelope.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2 Schematic diagram of the simulated house  
 

Boundary temperature was taken from the measurement and 
then fitted with periodic functions with periods 30, 5, 2 and 1 
days as 
 

T−(t) = a0+ ))(2cos(
4

1
i

ii
i ta ϕ

ω
π

−∑
=

 (13) 

where fitting parameters are listed in Table 2. The convective 
and radiative heat transfer coefficients are α− = 25W/m2/K and 
α+= 6W/m2/K. 

The calculated transient indoor temperatures by analytical 
and numerical models are displayed in Fig. 3. The maximal 
discrepancy is about 0.9°C (relative error about 6%). 
Agreement between numerical and analytical results is good. 
The validation of the numerical program can be found in [10].   
 

V. CONCLUSION 
An analytical model was developed in this paper which 

gives close-formed solutions for both transient indoor 
temperature and construction temperatures in a building 

T+(t) T−(t)

13mm/200mm/25m

sensor

TABLE 1 
MATERIAL PROPERTIES AND DIMENSIONS FOR THE ENVELOPE OF THE 

SIMULATED HOUSE 

 
Thermal 
conductivity 
 (W/m/K) 

Thermal 
diffusivity (m2/s) 

Thickness  
(mm) 

gypsum board 0.23 4.1×10-7 13 
mineral wool 0.147 1.5×10-6 200 
paper 0.12 1.5×10-7 25 
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system. No restriction on the layer number and the thermal 
physical properties of the construction was needed. The 
method is free of numerical program. In general literature 
works for such problem, however, there usually exists 
limitation on layer number of the construction, or associated 
numerical iteration is often necessitated. Additionally, 
mathematical expression for closed-formed solutions is simple 
and concise with good accuracy. The model can be used to 
analyse the thermal process in relation to physical parameters.  
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Fig. 3 Comparison of numerical and analytical results 

 

TABLE  II 
PARAMETERS IN EQUATION (13) 

 ω1  

30.0 
ω2 

5.0 
ω3 

2.0 
ω4 

1.0 
 ϕ1 5.607506 ϕ2 

13.59596 
ϕ3 

1.451539 
ϕ4 

5.418717 
a0  
5.0 

a1  
2.72217 

a2  
-5.019664 

a3  
1.084058 

a4  
0.4648 


