
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:6, 2010

686

Numerical study of some coupled PDEs by using
differential transformation method

Reza Abazari, Rasool Abazari

Abstract—In this paper, the two-dimension differential transforma-
tion method (DTM) is employed to obtain the closed form solutions
of the three famous coupled partial differential equation with physical
interest namely, the coupled Korteweg-de Vries(KdV) equations, the
coupled Burgers equations and coupled nonlinear Schrödinger equa-
tion. We begin by showing that how the differential transformation
method applies to a linear and non-linear part of any PDEs and apply
on these coupled PDEs to illustrate the sufficiency of the method for
this kind of nonlinear differential equations. The results obtained are
in good agreement with the exact solution. These results show that
the technique introduced here is accurate and easy to apply.

Keywords—Coupled Korteweg-de Vries(KdV) equation; Coupled
Burgers equation; Coupled Schrödinger equation; Differential trans-
formation method.

I. INTRODUCTION

NONLINEAR coupled partial differential equations
(cPDEs) such as the nonlinear coupled Korteweg-de

Vries (KdV) equation, coupled Burger’s equation and cou-
pled nonlinear Schrödinger equation arise in a large number
of mathematical and engineering problems. These include
solid state physics, fluid mechanics, chemical physics, plasma
physics, optic, etc.(see [1], [2], [3] and the references therein).
The coupled KdV equations, introduced by HirotaSatsuma [4]
is an important class of nonlinear equations with many appli-
cations in physical sciences. Coupled KdV equations describe
an interaction of the two long waves with different dispersion
relation, while the Burger’s equations describe phenomena
such as a mathematical model of turbulence [5]. The coupled
nonlinear Schrödinger equation [3] represents propagation of
pulses with equal mean frequencies in birefringent nonlinear
fiber.

Recently many authors have studied the numerical and
approximate solution of the nonlinear coupled PDEs by us-
ing various techniques. Some of them are: the MQ quasi-
interpolation method [6], the local discontinuous Galerkin
method [7], the adomian decomposition method [8], the Hes
variational iteration method [9], the homogeneous balance
method [10], the trigonometric function transform method
[11], the F-expansion transform method [12], the Chebyshev
spectral collocation(ChSc) method [13] and the homotophy
perturbation method [14].

On the other hand, in recent years, the differential trans-
form method(DTM) is a semi–numerical-analytic-technique
that formalizes the Taylor series in a totally different manner.
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The DTM was first introduced by J.K. Zhou in a study about
electrical circuits [15]. The differential transform method
obtains an analytical solution in the form of a polynomial.
It is different from the traditional high order Taylors series
method, which requires symbolic competition of the necessary
derivatives of the data functions. The Taylor series method is
computationally taken long time for large orders. With this
method, it is possible to obtain highly accurate results or exact
solutions for differential equations. With this technique, the
given partial differential equation and related initial condi-
tions are transformed into a recurrence equation that finally
leads to the solution of a system of algebraic equations as
coefficients of a power series solution. This method is useful
for obtaining exact and approximate solutions of linear and
nonlinear ordinary and partial differential equations. There is
no need for linearization or perturbations, large computational
work and round-off errors are avoided. It has been used to
solve effectively, easily and accurately a large class of linear
and nonlinear problems with approximations. It is possible
to solve system of differential equations [16], differentialal-
gebraic equations [17], difference equations [18], differential
difference equations [19], partial differential equations [2],
[3], [5], [20], fractional differential equations [21], pantograph
equations [22], onedimensional Volterra integral and integro-
differential equations [23] and matrix differential equations
[24] by using this method.

The purpose of this paper is to employ the differential
transformation method(DTM)to solve the following classes of
PDEs:

Class A: Coupled KdV equations:

∂u

∂t
+ α

∂3u

∂x3
+ 6αu

∂u

∂x
− 2γ v

∂v

∂x
= 0,

∂v

∂t
+ β

∂3v

∂x3
+ 3β u

∂v

∂x
= 0,

(1)

where α, β, and γ are real parameters.
Class B: Coupled Burgers equations:

∂u

∂t
− ∂2u

∂x2
− 2u

∂u

∂x
+ α

∂(uv)
∂x

= 0,

∂v

∂t
− ∂2v

∂x2
− 2v

∂v

∂x
+ β

∂(uv)
∂x

= 0,

(2)

where α, β, are real parameters.
Class C: Coupled Schrödinger equation:

i

(
∂Φ

∂t
+ η

∂Φ

∂x

)
+

1

2

∂2Φ

∂x2
+

(
|Φ|2 + e|Ψ|2

)
Φ = 0,

i

(
∂Ψ

∂t
− η

∂Ψ

∂x

)
+

1

2

∂2Ψ

∂x2
+

(
|Ψ|2 + e|Φ|2

)
Ψ = 0.

(3)
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where α is a real parameters.
Rest of the paper is organized as follows: In Section II,

the differential transform method is produced. Section III is
devoted to the numerical tests of the method on the problems
related to the coupled KdV, coupled Burgers equations and
Coupled Schrödinger equation. In Section IV, the results are
concluded.

II. BASIC DEFINITIONS

With reference to the articles [15]–[24], the basic definitions
of differential transformation are introduced as follows:

A. One-dimensional differential transform

The transformation of the k-th derivative of a function in
one variable is as follows:

Definition 2.1: If u(t) ∈ R can be expressed as a Taylor
series about fixed point t0, then u(t) can be represented as

u(t) =
∞∑

k=0

u(k)(t0)
k!

(t − t0)k. (4)

If un(t) is the n-partial sums of a Taylor series Eq. (4), then

un(t) =
n∑

k=0

u(k)(t0)
k!

(t − t0)k + Rn(t). (5)

where un(t) is called the n-th Taylor polynomial for u(t)
about t0 and Rn(t) is remainder term.

If U(k) is defined as

U(k) =
1
k!

[
dku(t)

dtk

]
t=t0

, (6)

where k = 0, 1, ..,∞ then Eq. (4) reduce to

u(t) =
∞∑

k=0

U(k)(t − t0)k. (7)

and the n-partial sums of a Taylor series Eq. (5) reduce to

un(t) =
n∑

k=0

U(k)(t − t0)k + Rn(t). (8)

The U(k) defined in Eq. (8), is called the differential transform
of function u(t).

For simplicity assume that t0 = 0, then the Eq. (8) reduce
to

un(t) =
n∑

k=0

U(k)tk + Rn(t). (9)

From the above definitions, it can be found that the concept
of the one-dimensional differential transform is derived from
the Taylor series expansion.

Remark 2.1: In this paper, the symbol � is used to denote
the differential transform version of multiplication.

The relationships (6)–(9) give us the following theorems.

Theorem 2.1: Assume that W (k), U(k) and V (k), are the
differential transforms of the functions w(t), u(t) and v(t),
respectively, then
(i) If w(t) = u(t) ± v(t), then W (k) = U(k) ± V (k).

(ii) If w(t) = λu(t), then W (k) = λU(k).
(iii) If w(t) = dmu(t)

dtm , then W (k) = (k+m)!
k! U(k + m).

(iv) If w(t) = u(t)v(t), then

W (k) = U(k) � V (k) =
k∑

l=0

U(l)V (k − l).

(v) If w(x) = xm then

W (k) = δ(k − m) =

{
1 k = m,

0 otherwise

(vi) If w(t) = exp (λt), then W (k) = λk

k! .

(vii) If w(t) = sin(αt + β), then W (k) = αk

k! sin(kπ
2 + β).

(viii) If w(t) = cos(αt + β), then W (k) = αk

k! cos(kπ
2 + β).

Proof: See ([21], [22], [23], and their references).

B. Two-dimensional differential transform
Consider a function of two variables w(x, t), and suppose

that it can be represented as a product of two single-variable
function, i.e., w(x, t) = f(x)g(t). On the basis of the
properties of the one-dimensional differential transform, the
function w(x, t) can be represented as

w(x, t) =
∞∑

i=0

F (i)xi
∞∑

j=0

G(j)tj =
∞∑

i=0

∞∑
j=0

W (i, j)xitj (10)

where W (i, j) = F (i)G(j) is called the spectrum of w(x, t).
The basic definitions and operations for two-dimensional

differential transform are introduced as follows:

Definition 2.2: If w(x, t) is analytic and continuously dif-
ferentiable with respect to time t in the domain of interest,
then

W (k, h) =
1

k!h!

[ ∂k+h

∂xk∂th
w(x, t)

]
x=x0
t=t0

, (11)

where the spectrum function W (k, h) is the transformed
function, which is also called T-function in brief.
In this paper, (lower case) w(x, t) represents the original func-
tion while (upper case) W (k, h) stands for the transformed
function (T-function).

The differential inverse transform of W (k, h) is defined as:

w(x, t) =
∞∑

k=0

∞∑
h=0

W (k, h)(x − x0)k(t − t0)h. (12)

Combining Eq. (11) and Eq. (12), it can be obtained that

w(x, t)=
∞∑

k=0

∞∑
h=0

1
k!h!

[ ∂k+h

∂xk∂th
w(x, t)

]
x=x0
t=t0

(x−x0)k(t−t0)h.

When (x0, t0) are taken as (0, 0), then Eq. (12) can be
expressed as

w(x, t) =
∞∑

k=0

∞∑
h=0

W (k, h)xkth. (13)
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In real applications, the function w(x, t) is represented by a
finite series of Eq. (13) can be written as

w(x, t) =
n∑

k=0

m∑
h=0

W (k, h)xkth + Rnm(x, t), (14)

and Eq. (13) implies that

Rnm(x, t) =
∞∑

k=n+1

∞∑
h=m+1

W (k, h)xkth,

is negligibly small. Usually, the values of n and m are decided
by convergency of the series coefficients.

From the above definitions, it can be found that the concept
of the two-dimensional differential transform is derived from
the two-dimensional Taylor series expansion. With Eq. (11)
and Eq. (12), the fundamental mathematical operations
performed using the two-dimensional differential transform
be readily obtained and these are listed in Theorem 2.2. (See
[2], [3], [5], [20]).

Theorem 2.2: Assume that W (k, h), U(k, h) and V (k, h),
are the differential transforms of the functions w(x, t), u(x, t)
and v(x, t), respectively, then
(i) If w(x, t) = u(x, t) ± v(x, t), then

W (k, h) = U(k, h) ± V (k, h).

(ii) If w(x, t) = λu(x, t), then W (k, h) = λU(k, h).
(iii) If w(x, t) = ∂r+s

∂xr∂ts u(x, t), then

W (k, h) =
(k + r)!(h + s)!

k!h!
U(k + r, h + s).

(iv) If w(x, t) = u(x, t)v(x, t), then

W (k, h) =
k∑

r=0

h∑
s=0

U(r, h − s)V (k − r, s).

(v) If w(x, t) = xmtn then

W (k, h) = δ(k − m,h − n) =

{
1 k = m,h = n

0 otherwise

(vi) If w(x, t) = ∂
∂xu(x, t) ∂

∂tv(x, t), then

W (k, h)=
∂

∂x
u(x, t) �

∂

∂t
v(x, t)

=

k∑
r=0

h∑
s=0

(k−r+1)(h−s+1)U(k−r+1, s)V (r, h−s+1).

Proof: See ([2], [3], [5], [20], and their references).

III. APPLICATIONS

This section is devoted to computational results. We
applied the method presented in this paper and solved the
three famous coupled partial differential differential equation
with physical interest namely, the coupled Korteweg-de
Vries(KdV) equations, the coupled Burgers equations and
coupled nonlinear Schrödinger equation. In these examples,
we first obtain a recurrence systems for the differential
transform of nonlinear equation and solve it by programming
in MATLAB environment. These examples are chosen such
that there exist exact solutions for them.

A. Coupled KdV equations

Consider the coupled KdV equations,

∂u

∂t
+ α

∂3u

∂x3
+ 6αu

∂u

∂x
− 2γ v

∂v

∂x
= 0,

∂v

∂t
+ β

∂3v

∂x3
+ 3β u

∂v

∂x
= 0,

(15)

with the initial conditions

u(x, 0) = f(x), v(x, 0) = g(x),

using the operations of Theorem 2.2, we get the differential
transform of Eq. (15) as follow

(h + 1)U(k, h + 1) + α
(k + 3)!

k!
U(k + 3, h)

+ 6α u � ux|x=k
t=h

− 2γ v � vx|x=k
t=h

= 0,

(h + 1)V (k, h + 1) + β
(k + 3)!

k!
V (k + 3, h)

+ 3βu � vx|x=k
t=h

= 0,

(16)

where U(k, h), and V (k, h) are the differential transforma-
tions of u(x, t), and v(x, t) respectively. suppose that x0 =
t0 = 0, in Definition 2.2, then from initial conditions, we have

∞∑
k=0

U(k, 0)xk =
∞∑

k=0

f (k)(0)
k!

xk,

∞∑
k=0

V (k, 0)xk =
∞∑

k=0

g(k)(0)
k!

xk.

(17)

By recurrence Eq.(16), we obtain

U(k, h + 1) =
1

(h + 1)

{
− α

(k + 3)!

k!
U(k + 3, h)

− 6α

k∑
r=0

h∑
s=0

(k − r + 1)U(r, h − s)U(k − r + 1, s)

+ 2γ

k∑
r=0

h∑
s=0

(k − r + 1)V (r, h − s)V (k − r + 1, s)

}
,

V (k, h + 1) =
1

(h + 1)

{
− β

(k + 3)!

k!
V (k + 3, h)

− 3β

k∑
r=0

h∑
s=0

(k − r + 1)U(r, h − s)V (k − r + 1, s)

}
.

(18)

Example 3.1: Consider the nonlinear coupled KdV equa-
tions (15), with γ = 3, and α = β [4], [10], [11], [14]

∂u

∂t
+ α

∂3u

∂x3
+ 6αu

∂u

∂x
− 6 v

∂v

∂x
= 0,

∂v

∂t
+ α

∂3v

∂x3
+ 3α u

∂v

∂x
= 0,

(19)

and the initial conditions⎧⎪⎪⎨
⎪⎪⎩

u(x, 0) = λ
α sech2

[
1
2

√
λ
α x

]
,

v(x, 0) =
√

2
2

√
1
α λsech2

[
1
2

√
λ
α x

]
,

(20)

where α and λ, being arbitrary constants.
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According to relationship (17) and subject to initial condi-
tion (20), we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k∑
�=0

(( 1

�!
+

(−1)�

�!

)(λ

α

) �
2 + 2δ(�)

)
U(k − �, 0)

− 4λ

α
δ(k) = 0,

k∑
�=0

(( 1

�!
+

(−1)�

�!

)(λ

α

) �
2 + 2δ(�)

)
V (k − �, 0)

− 2λ

√
2

α
δ(k) = 0,

(21)

using the differential transformation operations (18), we get
U(0, 1) = −6αU(3, 0) − 6αU(0, 0)U(1, 0) + 6V (0, 0)V (1, 0) = 0,

V (0, 1) = −6αV (3, 0) − 3αU(0, 0)V (1, 0) = 0,

U(1, 1) = −24αU(4, 0) − 12αU(0, 0)U(2, 0) − 6αU(1, 0)
2

+ 12V (0, 0)V (2, 0) + 6V (1, 0)
2

=
λ3

2α2
,

V (1, 1) = −24αV (4, 0) − 6αU(0, 0)V (2, 0) − 3αU(1, 0)V (1, 0)

=

√
2
√

1
α λ3

4α
,

U(2, 1) = −60αU(5, 0) − 18αU(0, 0)U(3, 0) − 18αU(1, 0)U(2, 0)

+ 18V (0, 0)V (3, 0) + 18V (1, 0)V (2, 0) = 0,

V (2, 1) = −60αV (5, 0) − 9αU(0, 0)V (3, 0) − 6αU(1, 0)V (2, 0)

− 3αU(2, 0)V (1, 0) = 0,

U(3, 1) = −120αU(6, 0) − 24αU(0, 0)U(4, 0) − 24αU(1, 0)U(3, 0)

− 12αU(2, 0)
2

+ 24V (0, 0)V (4, 0) + 24V (1, 0)V (3, 0)

+ 12V (2, 0)
2

= − λ4

6α3
,

V (3, 1) = −120αV (6, 0) − 12αU(0, 0)V (4, 0) − 9αU(1, 0)V (3, 0)

− 6αU(2, 0)V (2, 0) − 3αU(3, 0)V (1, 0) = −
√

2
√

1
α λ4

12α2
,

In the same manner, the rest of components were obtained
using the MAPLE Package.

According to the inverse differential transform method (12),
we can conclude that

u(x, t) =

∞∑
k=0

∞∑
h=0

U(k, h)xk th ≈ λ

α
− λ2

4α2
x2 +

λ3

2α2
x t − λ4

4α2
t2

+
λ3

24α3
x4 − λ4

6α3
x3 t +

λ5

4α3
x2 t2 − λ6

6α3
x t3 +

λ7

24α3
t4 + ...,

v(x, t) =

∞∑
k=0

∞∑
h=0

V (k, h)xk th ≈
√

2

2

√
1

α
λ −

√
2
√

1
α

λ2

8α
x2

+

√
2
√

1
α

λ3

4α
x t −

√
2
√

1
α

λ4

8α
t2 +

√
2
√

1
α

λ3

48α2
x4 + ...,

which is the same as the Taylors expansion of the exact
solutions

u(x, t) =
λ

α
sech2

[
1
2

√
λ

α
(x − λ t)

]
,

v(x, t) =
√

2
2

√
1
α

λsech2

[
1
2

√
λ

α
(x − λ t)

]
.

B. Coupled Burgers equations
Consider the (1+1)–coupled Burgers equations,

∂u

∂t
− ∂2u

∂x2
− 2u

∂u

∂x
+ α

∂(uv)
∂x

= 0,

∂v

∂t
− ∂2v

∂x2
− 2v

∂v

∂x
+ β

∂(uv)
∂x

= 0,

(22)

Fig. 1. The exact solutions of the amplitude u(x, t) and v(x, t), versus the
coordinate x, t of example. 3.1 with λ = 1, and α = 1.

with the initial conditions

u(x, 0) = f(x), v(x, 0) = g(x),

using the operations of Theorem 2.2, we get the differential
transform of Eq. (22) as follow

(h+1)U(k, h+1)− (k + 2)!

k!
U(k + 2, h)−2u �

∂u

∂x
|x=k
t=h

+ α v �
∂u

∂x
|x=k
t=h

+ α u �
∂v

∂x
|x=k
t=h

= 0,

(h+1)V (k, h+1)− (k + 2)!

k!
V (k + 2, h)−2v �

∂v

∂x
|x=k
t=h

+ β v �
∂u

∂x
|x=k
t=h

+ β u �
∂v

∂x
|x=k
t=h

= 0,

(23)

where U(k, h), and V (k, h) are the differential transforma-
tions of u(x, t), and v(x, t) respectively. suppose that x0 =
t0 = 0, in Definition 2.2, then from initial conditions, we have

∞∑
k=0

U(k, 0)xk =
∞∑

k=0

f (k)(0)
k!

xk,

∞∑
k=0

V (k, 0)xk =
∞∑

k=0

g(k)(0)
k!

xk.

(24)
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By recurrence Eq.(33), we get

U(k, h + 1) =
1

(h + 1)

{
(k + 2)!

k!
U(k + 2, h)

+ 2

k∑
r=0

h∑
s=0

(k−r+1)U(r, h−s)U(k−r+1, s)

− α

k∑
r=0

h∑
s=0

(k−r+1)V (r, h−s)U(k−r+1, s)

−α

k∑
r=0

h∑
s=0

(k−r+1)U(r, h−s)V (k−r+1, s)
}

,

V (k, h + 1) =
1

(h + 1)

{
(k + 2)!

k!
V (k + 2, h)

+ 2

k∑
r=0

h∑
s=0

(k−r+1)V (r, h−s)V (k−r+1, s)

− β

k∑
r=0

h∑
s=0

(k−r+1)V (r, h−s)U(k−r+1, s)

− β

k∑
r=0

h∑
s=0

(k−r+1)U(r, h−s)V (k−r+1, s)
}

.

(25)

Example 3.2: Consider the (1+1)–coupled Burgers equa-
tions [5], [9],

∂u

∂t
− ∂2u

∂x2
− 2u

∂u

∂x
+

5
2

∂(uv)
∂x

= 0,

∂v

∂t
− ∂2v

∂x2
− 2v

∂v

∂x
+

5
2

∂(uv)
∂x

= 0,
(26)

with the initial conditions

u(x, 0) = v(x, 0) = λ
(
1 − tanh(

3
2
λ x)

)
, (27)

where λ is an arbitrary constant.

By using relationship (24) and initial conditions (27), we
get

∞∑
k=0

U(k, 0)xk =

∞∑
k=0

V (k, 0)xk = λ − 3λ2

2
x +

9λ4

8
x3

− 81λ6

80
x5+

4131λ8

4480
x7− 7533λ10

8960
x9+ ... .

(28)

then from recurrence Eq. (25), we get

U(0, 1)=V (0, 1)=
{

2U(2, 0)+2U(0, 0)U(1, 0)− 5

2
V (0, 0)U(1, 0)

− 5

2
U(0, 0)V (1, 0)

}
=

9

2
λ

3
,

U(1, 1)=V (1, 1)=
{

6U(3, 0)+4U(0, 0)U(2, 0)+2U(1, 0)
2

− 5V (0, 0)U(2, 0)−5V (1, 0)U(1, 0)−5U(0, 0)V (2, 0)
}

=0,

U(2, 1)=V (2, 1)=
{

12U(4, 0)+6U(0, 0)U(3, 0)+6U(1, 0)U(2, 0)

− 15

2
V (0, 0)U(3, 0)− 15

2
V (1, 0)U(2, 0)− 15

2
V (2, 0)U(1, 0)

− 15

2
U(0, 0)V (3, 0)

}
=−81

8
λ

5
,

U(3, 1)=V (3, 1)=
{

20U(5, 0)+8U(0, 0)U(4, 0)+8U(1, 0)U(3, 0)

+4U(2, 0)
2−10V (0, 0)U(4, 0)−10V (1, 0)U(3, 0)

−10V (2, 0)U(2, 0)−10V (3, 0)U(1, 0)−10U(0, 0)V (4, 0)
}

=0,

U(4, 1)=V (4, 1)=
{

30U(6, 0)+10U(0, 0)U(5, 0)+10U(1, 0)U(4, 0)

+10U(2, 0)U(3, 0)− 25

2
V (0, 0)U(5, 0)− 25

2
V (1, 0)U(4, 0)

− 25

2
V (2, 0)U(3, 0)− 25

2
V (3, 0)U(2, 0)− 25

2
V (4, 0)U(1, 0)

− 25

2
U(0, 0)V (5, 0)

}
=

243

16
λ

7
,

In the same manner, the rest of components can be obtained
using the recurrence relation (25).

Substituted the obtained quantities in inverse differential
transform Eq. (12), the approximation solution in a series form
of Example 3.2 is:

u(x, t) = v(x, t) � λ − 3λ2

2
x +

9λ3

2
t +

9λ4

8
x3 − 81λ5

8
x2 t

+
243λ6

8
x t2 − 243λ7

8
t3 − 81λ6

80
x5 + . . . ,

which is the same as the Taylors expansion of the exact
solutions

u(x, t) = v(x, t) = λ

[
1 − tanh

(3
2
λ(x − 3λ t)

)]
.

and is exactly the same as the results obtained by VIM [9].

C. Coupled Schrödinger equation
Now, consider the Coupled Schrödinger equation (2),

i

(
∂Φ

∂t
+ η

∂Φ

∂x

)
+

1

2

∂2Φ

∂x2
+

(
|Φ|2 + e|Ψ|2

)
Φ = 0,

i

(
∂Ψ

∂t
− η

∂Ψ

∂x

)
+

1

2

∂2Ψ

∂x2
+

(
|Ψ|2 + e|Φ|2

)
Ψ = 0.

(29)

subject to initial conditions

Φ(x, 0) = ϕ(x), Ψ(x, 0) = ψ(x), (30)

where φ(x), and ϕ(x), are complex functions.
For our numerical work, we decompose the complex func-

tions Φ and Ψ into their real and imaginary parts by writing
[2], [3]

Φ(x, t) = u1(x, t) + iv1(x, t),
Ψ(x, t) = u2(x, t) + iv2(x, t),

(31)

where uj , (j = 1, 2) are real functions. Therefore the coupled
equation given in Eq. (29), can be written in a matrix-vector
form as

∂θ

∂t
+ ηA

∂θ

∂x
+

1
2
B

∂2θ

∂x2
+ F (θ)θ = 0, (32)



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:4, No:6, 2010

691

where

θ=

⎛
⎜⎜⎝

u1

v1

u2

v2

⎞
⎟⎟⎠ , F (θ)=

⎛
⎜⎜⎝

0 Z1 0 0
−Z1 0 0 0

0 0 0 Z2

0 0 −Z2 0

⎞
⎟⎟⎠ ,

A=

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ , B=

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠ ,

and

Z1 = (u2
1 + v2

1) + e(u2
2 + v2

2),

Z2 = (u2
2 + v2

2) + e(u2
1 + v2

1),
(33)

Then the differential transform of system given in Eq. (32),
will be

(h + 1)Θ(k, h + 1) + η(k + 1)AΘ(k + 1, h)

+
1
2

(k + 2)!
k!

BΘ(k + 2, h)

+
k∑

r=0

h∑
s=0

F (Θ(r, h − s))Θ(k − r, s) = 0,

(34)

where Θ = [U1, V1, U2, V2]T , and F (Θ) are the differential
transform of θ = [u1, v1, u2, v2]T , and F (θ), respectively.

Eq. (34), can be rewritten as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(h + 1)U1(k, h + 1) + η(k + 1)U1(k + 1, h)

+
1

2

(k + 2)!

k!
V1(k + 2, h) + Z1 � v1|x=k

t=h
= 0,

(h + 1)V1(k, h + 1) + η(k + 1)V1(k + 1, h)

− 1

2

(k + 2)!

k!
U1(k + 2, h) −Z1 � u1|x=k

t=h
= 0,

(h + 1)U2(k, h + 1) − η(k + 1)U2(k + 1, h)

+
1

2

(k + 2)!

k!
V2(k + 2, h) + Z2 � v2|x=k

t=h
= 0,

(h + 1)V2(k, h + 1) − η(k + 1)V2(k + 1, h)

− 1

2

(k + 2)!

k!
U2(k + 2, h) −Z2 � u2|x=k

t=h
= 0.

(35)

where Uj(k, h) and Vj(k, h), are the differential transforma-
tion of uj(x, t) and vj(x, t), respectively for j = 1, 2.

In order to obtain the unknowns of Uj(k, h), Vj(k, h),
k, h = 0, 1, 2, ..., (j = 1, 2) we must construct and solve the
above equations, and substitute in Eq. (14) to obtain the
series form of exact solutions.

Example 3.3: Consider the coupled Schrödinger equations
(29), when e = 2

3 , α = 1, ν = 1, and η = 1
2 : [2], [3]

i

(
∂Φ

∂t
+

1

2

∂Φ

∂x

)
+

1

2

∂2Φ

∂x2
+

(
|Φ|2 +

2

3
|Ψ|2

)
Φ = 0,

i

(
∂Ψ

∂t
− 1

2

∂Ψ

∂x

)
+

1

2

∂2Ψ

∂x2
+

(
|Ψ|2 +

2

3
|Φ|2

)
Ψ = 0.

(36)

subject to the initial conditions

Φ(x, 0) =
1
5

√
30 sech

(√
2 x

)
exp

( i

2
x
)
,

Ψ(x, 0) =
1
5

√
30 sech

(√
2 x

)
exp

(3 i

2
x
)
.

(37)

From the initial conditions (37), we get

u1(x, 0) =
1
5

√
30 sech

(√
2 x

)
cos

(1
2
x
)
,

v1(x, 0) =
1
5

√
30 sech

(√
2 x

)
sin

(1
2
x
)
,

u2(x, 0) =
1
5

√
30 sech

(√
2 x

)
cos

(3
2
x
)
,

v2(x, 0) =
1
5

√
30 sech

(√
2 x

)
sin

(3
2
x
)
.

(38)

The differentia transform version of initial conditions (38), can
be obtained from following recurrence equations

k∑
�=0

(
1

�!
+

(−1)�

�!
)2

�
2−1U1(k − �, 0) =

√
30

5

( 1
2
)k

k!
cos(

kπ

2
),

k∑
�=0

(
1

�!
+

(−1)�

�!
)2

�
2−1V1(k − �, 0) =

√
30

5

( 1
2
)k

k!
sin(

kπ

2
),

k∑
�=0

(
1

�!
+

(−1)�

�!
)2

�
2−1U2(k − �, 0) =

√
30

5

( 3
2
)k

k!
cos(

kπ

2
),

k∑
�=0

(
1

�!
+

(−1)�

�!
)2

�
2−1V2(k − �, 0) =

√
30

5

( 3
2
)k

k!
sin(

kπ

2
),

(39)

For n, m ≤ 4, using differential transform version of ini-
tial conditions recurrence equations (36) with the recurrence
equations (35), gives all values of U1(:, :), V1(:, :), U2(:, :), and
V2(:, :), which implies

Fig. 2. The modulus of the amplitude |Φ| and |Ψ|, versus the coordinate
x, t of example. 3.3 with ν = 1, α = 1, η = 1

2
, and e = 2

3
.
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4∑
k=0

4∑
h=0

U1(k, h)xk th =
√

30

(
1

5
− 9

40
x2+

27

80
tx− 153

640
t2

+
123

640
x4− 417

640
tx3+

4833

5120
t2x2− 1389

2048
t3x+

6783

32768
t4

− 32487

16384
t2x4+

214227

81920
t3x3− 2672979

1310720
t4x2

)
,

4∑
k=0

4∑
h=0

V1(k, h)xk th =
√

30

(
1

10
x+

1

8
t− 5

48
x3+

19

320
tx2

+
167

1280
t2x − 409

3072
t3 − 3403

15360
tx4 +

2353

30720
t2x3

+
6817

24576
t3x2 − 64771

196608
t4x

)
,

4∑
k=0

4∑
h=0

U2(k, h)xk th =
√

30

(
1

5
− 17

40
x2− 13

80
tx− 353

640
t2

+
833

1920
x4 − 659

1920
tx3+

4337

5120
t2x2− 2935

6144
t3x+

61069

98304
t4

− 81901

49152
t2x4 +

1435763

737280
t3x3− 8095697

3932160
t4x2

)
,

4∑
k=0

4∑
h=0

V2(k, h)xk th =
√

30

(
3

10
x+

3

8
t− 33

80
x3− 63

320
tx2

− 99

1280
t2x − 609

1024
t3− 2107

5120
tx4 +

2497

10240
t2x3

+
5809

8192
t3x2 − 49651

65536
t4x

)
,

(40)

The closed form of solutions (36) are

Φ(x, y) = u1(x, t) + i v1(x, t)

=
1

5

√
30 sech

(√
2 (x − t)

)
exp

( i

2
(x +

5

4
t)

)
,

Ψ(x, y) = u2(x, t) + i v2(x, t)

=
1

5

√
30 sech

(√
2 (x − t)

)
exp

(3i

2
(x +

5

4
t)

)
.

which is the same as the Taylors expansion of the exact
solutions.

IV. CONCLUSION

In this paper, we have shown that the differential transfor-
mation method can be used successfully for solving the three
famous coupled partial differential differential equation with
physical interest namely, the coupled Korteweg-de Vries(KdV)
equations, the coupled Burgers equations and coupled nonlin-
ear Schrödinger equation. This method is simple and easy to
use and solves the problem without any need for discretizing
the variables. Therefore, this method can be applied to many
complicated linear and non-linear PDEs and system of PDEs
and does not require linearization, discretization or perturba-
tion.
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