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Abstract—The problem of bin-packing in two dimensions (2BP)
consists in placing a given set of rectangular items in a minimum
number of rectangular and identical containers, called bins. This
article treats the case of objects with a free orientation of 90◦.
We propose an approach of resolution combining optimization by
colony of ants (ACO) and the heuristic method IMA to resolve this
NP-Hard problem.
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I. INTRODUCTION

Two-dimensional (2D) packing problems occur in a wide

range of industries. The goal is simply the optimal

utilization of space or material available.In the garment and

paper industries the problem is often to cut smaller pieces

from a large roll of cloth or paper while reducing the scrap.

In the wood, glass, and metal industries the task is not to

cut from a roll, but to cut from a fixed size sheet or plate.

There are two major variants of the 2D packing problem:

bin packing and strip packing. In the 2D bin packing variant,

rectangles are to be packed in bins of given width and height,

the goal being to minimize the number of bins used. In the

2D strip packing variant, rectangles must be packed in a fixed

width, infinite height strip, the goal being to minimize the

height. The bin packing variant is most suitable for the wood,

glass, metal, and semiconductor industries, while the strip

packing variant will generally apply to the paper and garment

industries. An important consideration is whether or not the

rectangles can be rotated as they are placed. In the wood and

garment industries one may care about the grain of the material

and rotations may not be permitted. While in the paper,

glass, and semiconductor industries there may be no partic-

ular restrictions. Allowing rotations adds flexibility and can

result in a better packing, while at the same time apparently

complicating the task. Given the many permutations of 2D

packing problems, most research focuses on a particular type

of the packing problem: either bin packing or strip packing,

with or without rotations. A survey of 2D packing problems is

given by[11]. A typology of cutting and packing problems is

defined in[15]. Being NP-hard, the 2D packing problems are

an attractive challenge for evolutionary algorithms (EA)[10].

For application to strip packing problems, Jakobs developed

a genetic algorithm (GA) using the bottom-left (BL) packing

method with support for rotation of rectangles[6]. Hopper and

Turton provide a comprehensive comparison of GA, simulated

annealing (SA), naive evolution, and simple hill-climbing for
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the strip packing problem with rotations and for various BL

methods [5]. A method to find strip packing solutions using

an exact branch and bounds exhaustive search proposed in[9].

For application to bin- packing problems, El-Hayek developed

a tabu searche (TS) using the IMA packing method with

support for rotation of rectangles[8]. The problem of bin-

packing in two dimensions (2BPD) is defined as follows:

considering a set of n rectangular items A = [a1, . . . , an] and

an unrestricted number of identical rectangles called bins[4],

whose measurements are larger than those of objects, the

problem consists in determining the minimal number of used

bins to place the set of objects without overlap. Several real

problems can be modelled as a problem of bin-packing.

The unidimensional problem of bin-packing is NP-hard[2].

This is valid for the 2BP which is a generalization of the

unidimensional problem. In this article we treat the case in

which the objects to place, have a free orientation of 90◦. This

version of the problem is designated by 2BP |R|F according

to the classification of[11].

II. OPTIMIZATION BY COLONIES OF ANTS (ACO)

Optimization by colony of ants is a meta-heuristic method

inspired of the real ant capacity to find the shortest path

between their nest and the source of food. The first algorithm

of optimization by colony of ants (ACO) has been proposed

by Dorigo [3] to solve the Traveling Salesman Problem (TSP).

This technique has since been used to solve a multitude

of combinatorial optimization problems. The ants capacity

to determine the shortest path is due to chemical marks

(pheromones) they depose down on the ground. More a path is

used by ants, more there are pheromones dropped off and more

the path becomes attractive for the following ants. We define

therefore (i, j), the quantity of pheromones associated to the

connection between 2 cities i and j, as well as a probability

pk(i, j) that has a k ant to move from an i city to a j city.

Every ant is placed at random in a city of departure and builds

a solution by going from city to another. When all ants have

constructs a circuit, the pheromones are updated. This updating

includes two aspects. On the one hand pheromones evaporate

and decrease with a speed of fading. On the other hand, they

are proportional to the length of the path. So, it is necessary

to increase pheromones between certain cities. The technique

of this increase depends on the definition given to pheromones

according to the treated problem and takes into account the

order of cities visited in the best solutions obtained in the

population of ants. Let’s take for example the case of the one-

dimensional Bin packing treated by Levine and Ducatelle [7].

The trail of pheromone (i, j) represents the desire to have an
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i object and a j object in the same bin. The probability so that

a k ant chose a j object as next object for the considered bin

b, in a solution partial s is:

pk(s, b, j) =

{
[τb][η(j)]βP

g∈JK
[τb(g)][η(g)]β

if j ∈ Jk (s, b) ,

0 otherwise,
(1)

with

τb(j) =

{ P
i∈b [τ(i,j)]

b if b ∈ Jk (s, b) ,
0 otherwise

(2)

Where Jk(s, b) is the set of objects candidates (those whose

size allows to place them there) to go in the current bin, (j) is

the weight of the j object given by one heuristic that guides

ants, and b(j) is the value of the pheromone of an object j
for the bin b. β defines the importance relative size of the

heuristic. The updating of pheromones’ trails is assured as

follows: only the best ants are allowed to place pheromones

after each iterations.The Pheromones are increased every

time that i and j are combined in a bin. Considering the

hypothesis that several identical items are there, them define

t(i, j) the number of times i and j go belong to the same

best solution sbest.

τi,j = ρτ(i, j) + t(i, j)f(sbest) (3)

III. THE HEURISTIC IMA

The heuristic IMA has been proposed by J. El Hayek [8] for

the problem of 2BP |R|F . Being given a process I = (A,B)
to solve, we consider two different lists. The first list A
contains the non orderly items. A0 is Initially worth A, the

set of all objects composing the I process. The second Lma
list is the list of the maximal areas available. It is initially

constituted of only one area which is the first bin’s area. At

every step of an item seating, we choose the orientation of

this one as well as the pair (the item to arrange, the maximal

area used) from the lists A and Lma. This choice is based on

an heuristic criteria takes in consideration features of items

and those of the maximal areas. Let simultaneously ai ∈ A
an item non put away, which is considered in a defined

orientation. The area ma ∈ Lma is a maximal available area

that can contains ai, according to the considered orientation

and in a bl-steady position. Let wma and hma the ma edge

projections on successively the axles x and y. Let’s note q1,

q2, q3, and q4 four real numbers as: 0 ≤ qk ≤ 1; k = 1, ..., 4
q1 + q2 + q3 + q4 = 1
The pair (item to place, maximal area used) is then the pair

of (A, Lma) that maximizes the criteria mentioned below:

O(ai, ma) = q1(wihi)
(wmahma) + q2(dxi)

(wma) + q3(dyi)
(hma) + q4(w

2
i +h2

i )
(w2

ma+h2
ma)

The values given to parameters influence strongly the solution

badly stored. For example, if the value given to q1 is big

enough (close to 1), the pair (ai, mai) indicated would be the

one that present closest areas. Terms weighted by q1 and q4

are independent of the items orientation, while this orientation

modifies terms weighted by q2 and q3.

IV. ACO-IMA FOR THE 2BP |R|F
We propose a hybrid algorithm of optimization by colony

of ants using the mode of heuristic IMA placing. We use here

a colony of ants in order to make vary the sequence of pieces

placed in bins.

A. Pheromones

The pheromones τ(i, j) put down by the ant represent the

desire to place the j piece after having placed the i one. In

order to update them at the end of each iteration, we suggest

considering the α better solutions of the current iteration. The

updating is assured according to the following formula:

τi,j = ρτ(i, j) +
α∑

k=1

u(i, j)(k)f(sk) (4)

u(i, j)(k) =
{

1 if j chosen after i in k
0 otherwise

(5)

f(sk) =
∑N

i=1 (Ni/Nmax)γ

N
(6)

where:

N is the number of bin;

Ni is the number of items in the bin i;
Nmax is the maximum number of objects per bin through-

out the solutions iteration;

γ is a parameter that defines the importance of the

nominator.

We have hoped to take in account the α’s better solutions in

order to be able to make vary this parameter and then the

algorithm more aggressive in its research.

B. General principle of a solution construction.

We consider a population of K ants. At each iteration of

the algorithm, every k ant (k ∈ K) is going to begin with

a set of n items to place and an empty bin. Each one is

going to build a solution s by choosing pieces to place one by

one at random. The choice of items takes in consideration the

probability pk(i, j) that an ant k chooses the piece j, knowing

that it has chosen the piece i before.

pk(i, j) =

⎧⎨
⎩

τ(i, j)[η(j)]β∑
g∈Jk

τ(i, g)[η(g)]β
if j ∈ Jk(i)

0 otherwise

(7)

where:

τ(i, j) are the pheromones put down by ants between i and

j;

η(j) a parameter that guides the heuristic;

Jk(i) the set of the even taken pieces.

In this section we present the numerical results. We tested

our algorithms on benchmarks proposed in literature. These

benchmarks are factorized in ten classes of processes, gener-

ated at random. The first six classes have been proposed in

[1] while the last four ones have been proposed in[14]. Each

class is composed of five groups which differ by the number
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of items (n = 20, 40, 60, 80, 100). Each group contains ten

different processes. The benchmark contains in total 500

different processes. Features of processes, which compose the

six classes of [1][12], are as follow:

Class 1: wi and hi generated at random following a

uniform law in [1, 10],
W = H = 10,

Class 2: wi and hi generated at random following a

uniform law in [1, 10],
W = H = 30,

Class 3: wi and hi generated at random following a

uniform law in [1, 35],
W = H = 40,

Class 4: wi and hi generated at random following a

uniform law in [1, 35],
W = H = 100,

Class 5: wi and hi generated at random following a

uniform law in [1, 100],
W = H = 10,

Class 6: wi and hi generated at random following a

uniform law in [1, 100],
W = H = 300.

In each of the above classes, all the item sizes are generated

in the same interval. Martello and Vigo have proposed the fol-

lowing classes, where a more realistic situation is considered.

The items are classified into four types:

Type 1: wi uniformly random in [ 23W,W ], hi uni-

formly random in [1, 1
2H],

Type 2: wi uniformly random in [1, 1
2W ], hi uni-

formly random in [ 23H,H],
Type31: wi uniformly random in [ 12W,W ], hi uni-

formly random in [ 12H,H],
Type 4: wi uniformly random in [1, 1

2W ], hi uni-

formly random in [1, 1
2H],

The bin sizes are W = H = 100 for all classes while the

items are as follows:

Class 7: type 1 with probability 70%, type 2, 3, 4

with probability 10% each;

Class 8: type 2 with probability 70%, type 1, 3, 4

with probability 10% each;

Class 9: type 3 with probability 70%, type 1, 2, 4

with probability 10% each;

Class 10: type 4 with probability 70%, type 1, 2, 3

with probability 10% each.

V. PARAMETER SETTINGS

The different parameters of the algorithm are the size of

the population K, the number of α better solutions we have to

take in account in the pheromones updating, the ρ parameter of

pheromones fading. The parameters γ and β, which intervene

respectively in the calculation of the mark given to each

solution and the one of probabilities, are others algorithm’s

parameters. We tested, for each parameter, different values. We

chose to generate populations of K = 20 solutions for numbers

of pieces of 20 and 40, the increase of the population’s size

don’t improve the solution obtained.Concerning problems with

60 and 100 pieces, the population is to K = 40 solutions.

TABLE I
COMPARISON OF THE NUMBER OF BINS TO PACK THE ITEM.

Class W × H n nBin time nBin time
(IMA) (IMA) (SACO) (SACO)

1 10 × 10 20 6.6 0.003 6.6 0.012
40 12.9 0.067 12.9 0.075
60 19.5 0.001 19.5 0.004
80 27.0 0.110 27.0 0.200

100 31.3 0.321 31.1 0.330
2 30 × 30 20 1.0 0.001 1.0 0.000

40 1.9 0.003 1.9 0.007
60 2.5 0.000 2.5 0.000
80 3.1 0.015 3.1 0.020

100 3.9 0.024 3.9 0.024
3 40 × 40 20 4.7 0.001 4.7 0.001

40 9.4 0.126 9.4 0.126
60 13.5 0.242 13.5 0.242
80 18.4 0.359 18.4 0.359

100 22.2 1.173 21.9 1.250
4 100 × 100 20 1.0 0.000 1.0 0.000

40 1.9 0.001 1.9 0.001
60 2.5 0.432 2.5 0.445
80 3.1 0.323 3.0 0.400

100 3.7 0.032 3.68 0.400
5 100 × 100 20 5.9 0.000 5.9 0.000

40 11.4 0.067 11.9 0.067
60 17.4 0.334 17.4 0.334
80 23.9 0.228 23.9 0.228

100 27.9 1.154 27.87 1.154
6 300 × 300 20 1.0 0.000 1.0 0.000

40 1.7 0.304 1.7 0.300
60 2.1 0.009 2.1 0.0100
80 3.0 0.012 3.0 0.020

100 3.2 0.300 3.1 0.400
7 100 × 100 20 5,2 0,072 5,2 0.1

40 10.4 0.309 10.4 0.351
60 14.7 0.615 14.7 0.623
80 21.2 1.317 21.2 1.413

100 25.3 1.928 25.3 2.013
8 100 × 100 20 5,3 0.063 5.3 0.102

40 10.4 0.354 10.4 0.391
60 15.0 0.704 15.0 0.805
80 20.8 1.168 20.7 1.280

100 25.7 1.904 25.6 2.01
9 100 × 100 20 14.3 0.001 14.3 0.004

40 27.5 0.003 27.5 0.007
60 43.5 0.004 43.5 0.334
80 57.3 0.012 57.3 0.029

100 69.3 0.014 69.2 0.104
10 100 × 100 20 4.1 0.040 4.1 0.06

40 7.3 0.146 7.3 0.200
60 10.1 0.533 10.00 0.670
80 12.8 0.876 12.70 0.920

100 15.8 1.089 15.7 1.23

The number of pieces being bigger, the one of combination

is big as well. Therefore, it is interesting to have a variety

sufficiently big at each iteration, before updating pheromones.

For the α parameter, we tested different values from 1 to

7 for a population of 20 solutions and from 1 to 10 when

we have a population of 40. It results from this study is that

the increase of this parameter doesn’t improve the quality of

results and we finally chose to take α = 3 for a population

of 20 solutions and α = 5 for a population of 40 solutions.

Concerning the γ parameter, we tested values 1, 2, 3 and 4
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and could notice that the best results have been obtained for γ
= 3. As for the ρ parameter, the best results have been gotten

when ρ = 0.7. Concerning the β parameter, we tested a range

of values between 2 and 10 and it appears that this parameter

influences the solution quality, but can’t determine for a set

of problem or for a whole class, an optimal value. For every

process, we tested values 2 and 5 and carried the best solution

at every time.

VI. CONCLUSION

In this paper, we have proposed new pretreatments for the

two-dimensional bin-packing problem, the non-oriented case.

We have proposed a new heuristic method (SACO) for the

resolution of the problem. We have tested the pretreatments

on benchmarks from the literature and shown their efficiency

to simplify the instances. We have also compared the results

obtained by our heuristic (SACO) with those of the recent

literature and shown that it gives better results in average, and

that it is competitive in terms of speed.
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