
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1339


Abstract—Software testability is proposed to address the problem

of increasing cost of test and the quality of software. Testability
measure provides a quantified way to denote the testability of
software. Since 1990s, many testability measure models are proposed
to address the problem. By discussing the contradiction between
domain testability and domain range ratio (DRR), a new testability
measure, semantic fault distance, is proposed. Its validity is discussed.

Keywords—Software testability, DRR, Domain testability.

I. INTRODUCTION

ITH the invasive application of information system in
society, software begins to take an important role in

everyday life. Software quality becomes more and more
important. Software testing is a main method for software
quality assurance. With the increment of software scale and
complexity, its testing becomes more difficult. This suggests
that software should be designed to be tested easily and
testability should be adopted as a design parameter.

Software testability evolves from hardware. For very large
circuits the problem of test generation is in general
NP-complete and thus very intractable [1], and so people
introduce testability analysis to indicate how easy or difficult to
generate tests for a circuit and identifying the areas of poor
testability. Software is complex temporal logic; its test problem
is more complex than hardware. So the analysis of software
testability is more complex and difficult than hardware.

IEEE definition of software testability is “the degree to
which a system or component facilitates the establishment of
test criteria and the performance of tests to determine whether
those criteria have been met” [8]. It has been admitted as a
quality factor in ISO 9126[9].To accurately indict testability,
there has been a great deal of work that deal with testability
measure since 1990s.

In this paper, we focus on analyses of the contradiction
between two testability measure, which are DRR (Domain to
Range Ratio) and domain testability.

The paper is organized as follows: Section III introduces
related works on software testability measure. Section III
introduces domain testability, DRR and the contradiction of
between them. Section IV comprehensively discusses the
problem and proposes a new measure, semantic fault distance.
Section V gives our conclusion and future work on testability

Liang Zhao, Dr., is with the Beijing Institute of System Engineering, CO
100101China (phone: 8610-64836117; fax: 8610-64836117; e-mail:
liangzhao@tsinghua.org.cn).

F. Wang, Dr., B. Deng, and B. Yang are with the Beijing Institute of System
Engineering. (e-mail: wangfeng_bise@aliyun.com, bodeng@163.com,
sxq546@163.com).

measure.

II. RELATED WORK

Testability can be predicted as soon as the system is specified.
Freedman proposed domain testability to address the problem
of input inconsistency and output inconsistency, which
involved use of the concepts of observability and controllability
[2]. Voas defined that testability of a program is a prediction of
the tendency for failures to be observed during random
black-box testing when faults are present [3], [6]. They used
DRR to indicate the inexplicit information loss, the bigger the
DRR, the more information loss and so the testability is smaller.
In object-oriented software, Baudary took the number of class
interactions in a UML class diagram as testability measure to
indicate the potential conflict that may occur in test, the more
class interactions the lower the testability [10], [17].

Software structure has direct effect on test. Some complexity
measures are assumed to imply the number of the test cases in
term of structural coverage and so can indicate the effort to test
the program to a certain degree. Richard defined testability as
the number of test cases that needed to satisfy certain test
criteria, and computed it on the program control flow [11].
Yeah accurately count the number of the test cases that needed
to cover the program and introduced block normalization and
structural normalization before the counting that based on data
flow [12]. Nguyen used information transfer of between
component and its context to indicate the testability of certain
component [7].

Fault/failure model reflects the behavioral characteristics of
the software during testing. Reference [13] defined testability
as a prediction of the probability that existing faults will be
revealed during testing given an arbitrary input selection
criterion C. PIE is proposed to analysis the sensitivity of
statement location by statically analysis its execution rate (E),
infection rate (I) and propagation rate (P), which can indicate
the effort to execute the test to gain certain confidence. But the
computation of PIE is quite complex. Lin [14] reduced the
estimation of the probability estimate by analyzing the
semantic of the code and program structure. Bruce [15] used
one sample test suite to estimate the PIE rate. These method
decreases the computation complexity with the cost of
precision loss.

III. TWO SPECIFICATION-BASED SOFTWARE TESTABILITY

MEASURES

Specification defines the problem difficulty while a program
implementation is one way to solve it. Addressing the
testability problem from scratch may help to find a good

Liang Zhao, Feng Wang, Bo Deng, Bo Yang

Further the Effectiveness of Software Testability
Measure

W

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1340

answer. Specification specifies in a complete, precise,
verifiable manner, the requirement, design behavior, or other
characteristics of a system or component [8]. Every item of
Software can be viewed as a function or mapping F according
to some specification S, from a set of inputs values (its domain
D) to a set of output values (its range R).Both D and R are of
certain data types or data structures. Programmer has to map the
types of the problems to the data types or structures available in
certain computer program language. Function F is defined in S
and implemented in P which also maps from D to R:

:ܨ ܦ ՜ ܴ

A. Domain Testability

A software component is observable “if distinct outputs are
generated from distinct inputs”, a software component is
controllable “if, given any desired output value, an extra input
exits which forces the component output to that value”. Most
function and procedure are not a priori observable and
controllable. The modifications required to achieve domain
testability are called extension. Domain testability refers to the
ease of modifying a program so that it is observable and
controllable.

Observable extensions are achieved by introducing new
input variables so that the component becomes observable.
Observability is the ease of determining if specified inputs
affect the output and Ob, a measure of observability can be
obtained by taking log2 of the product of the cardinalities of the
types of the additional input variables. Controllable extensions
are achieved by modifying outputs for the given component so
that it becomes controllable, i.e. all claimed outputs are
attainable with some input, thus controllability is the ease of
producing a specified output from a specified input, Ct, can be
measured by taking log2 of the product of the cardinalities of
the types of the modified output variables.

For component P implemented function F according
Specification S mapping from domain D to range R,
observability and controllability can be characterized as:

Observable:ݔ׊, ݕ א ሻݔሺܨ ܦ ് ሻݕሺܨ ֜ ݔ ് ݕ
Controllable: ݎ׊ א ݖ׌ ܴ א ሻݖሺܨ ܦ ൌ ݎ
ܱ௕ ൌ |ଶሺ݃݋݈ ଵܶ| ൈ | ଶܶ| ൈ … ൈ | ௡ܶ|ሻ (T1, T2, … ,Tn are

observable added parameter types)
௧ܥ ൌ |ଶሺ݃݋݈ ଵܶ| ൈ | ଶܶ| ൈ … ൈ | ௠ܶ|ሻ (T1, T2, … , Tm are

controllable extended types)
After the modification, the observable and controllable

version is achieved. The domain testability of the original
version is (Ob,Ct), while the new version is (0, 0), which indicts
no extension is needed.

B. Domain to Range Ratio

Voas contended that testability of a program is a prediction
of the tendency for failures to be observed during random
black-box testing when faults are present [3],[5]. They propose
“Internal data state collapse occurs when two different data
states are input to some sub-component in a program and yet
that sub-component produces the same output state” and
“When internal state collapse occurs, the lost information may

have included evidence that internal states were incorrect.
Since such evidence is not visible in the output, the probability
of observing a failure during testing is reduced.” Further he
contended that “the testability of a program is correlated with
the domain-to-range ratio……as the DRR of the intended
function increase, the testability of an implementation of that
function decrease”. In other words, high DRR is thought to lead
to low testability and vice versa. According the characteristic of
DRR, they classified software into fixed domain/fixed range
(FDFR), variable domain/variable range (VDVR), and variable
domain/fixed range (VDFR).

ܴܴܦ ൌ
|ܦ|
|ܴ|

C. The Contradiction between Domain Testability and DRR

According to the definition of DRR and domain testability,
Woodward [6] calculated the DRR metric of the domain
extended program.

ᇱܦ ൌ ڂܦ ᇞ and ܴᇱ ܦ ൌ ܴ െᇞ ܴ

ܦ| ᇞ׫ |ܦ ൌ |ܦ| ൅ |ܦ∆|
|ܴ െᇞ ܴ| ൌ |ܴ| െ |∆ܴ|

ᇱܴܴܦ ൌ
|ᇱܦ|
|ܴᇱ|

ൌ
|ܦ| ൅ |ܦ∆|
|ܴ| െ |∆ܴ|

ൌ ܴܴܦ ൈ
ቀ1 ൅

|∆஽|

|஽|
ቁ

ሺ1 െ |∆ோ|

|ோ|
ሻ

So can get:ܴܴܦᇱ ൐ ܴܴܦ

Above result means that according to Voas’s testability

definition, testability decreases while domain testability
increases. This is the contradiction between DRR and domain
testability. What makes this contradiction? Which one is more
reasonable?

IV. THE DISCUSSION

A. The Interpretation of DRR

To deduce the probability of random test to find the fault,
Reference [4] introduced semantic fault size. Semantic fault
size (SFSZ) is the “the relative size of the sub domain of D for
which an output mapping is incorrect”.

ܼܵܨܵ ൌ
|௙ܦ|
|ܦ|

SFSZ is defined as the ratio of the inputs that are mapped to

the wrong outputs. It can be used to indicate the probability of
random test to find the fault.

For Example: F(x) =x mod b
Above is a representative example to illustrate DRR

definition and is often used to show the testability variation
when b varies. Consider two concrete functions:

F1(x) =x mod 2 and F2(x) =x mod 5, both on the same domain
D.

So |D1|=|D2| and |R1|=2, |R2|=5
Then get DRR1>DRR2. According to [3] F2 is more testable

than F1.
Assume that these two functions are both miswrite as:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1341

h(x) =x mod 7then

ଵܼܵܨܵ ൌ ሻ൯ݔଵሺܨ ݋ݐሻݔሺܪଵ൫ܼܵܨܵ ൌ
5
7

൅
2
7

൬1 െ
1
2

൰ ൌ
6
7

ଶܼܵܨܵ ൌ ሻ൯ݔଶሺܨ ݋ݐሻݔሺܪଶ൫ܼܵܨܵ ൌ
2
7

൅
5
7

൬1 െ
1
5

൰ ൌ
6
7

So get: SFSZ1=SFSZ2

It means that both F1(x) andF2(x) have the same probability

to find the fault by random testing when r>b.
Next assume:

F3(x) =x mod 5, F4 (x) =x mod 7 and H(x) =x mod 2

Follow above procedure, we can get:

ଷܼܵܨܵ ൌ ሻ൯ݔଷሺܨ ݋ݐሻݔሺܪଷ൫ܼܵܨܵ ൌ
3
5

൅
2
5

൬1 െ
1
2

൰ ൌ
4
5

ସܼܵܨܵ ൌ ሻ൯ݔସሺܨ ݋ݐሻݔሺܪସ൫ܼܵܨܵ ൌ
5
7

൅
2
7

൬1 െ
1
2

൰ ൌ
6
7

So get: SFSZ3<SFSZ4

It means when the fault value is littler than the right one,
the bigger b the bigger probability to find it.

In general, assume F(x) =x mod b to H (x) =x mod r (r ≠b),
Proof:
Case 1: for r>b, and to make the situation simple, make

the assumption (r, b) =1
The semantic fault size is

஻்ܼܵܨܵ ൌ
ݎ െ ܾ

ݎ
൅

ܾ
ݎ

ൈ ൬1 െ
1
ܾ

൰ ൌ
ݎ െ 1

ݎ

So the semantic fault size is independent of the parameter b,

while depends on r (what kind of error has been made).
Case 2: for r<b and (r,b) =1

௅்ܼܵܨܵ ൌ
ܾ െ ݎ

ܾ
൅

ݎ
ܾ

ൈ ൬1 െ
1
ݎ

൰ ൌ
ܾ െ 1

ܾ

Assume |D|=n, then the detection probability of the fault by

random testing is:

ܲ ൌ
ܾ െ 1

݊
ൈ

ܾ െ 1
ܾ

൅
݊ െ ܾ

݊
ൈ

ݎ െ 1
ݎ

׶ ܾ ൏ ݎ ฺ
ܾ െ 1

ܾ
൏

ݎ െ 1
ݎ

׵
݊ െ 1

݊
ൈ

ܾ െ 1
ܾ

൏
ܾ െ 1

ܾ
൏ ܲ ൏

݊ െ 1
݊

ൈ
ݎ െ 1

ݎ
൏

ݎ െ 1
ݎ

This means the bigger b, the lower bound increase, and so the

greater probability the fault to be find by the random testing,
which means high testability.

B. The Interpretation of Domain Testability

Observable extension adds new input parameters so it
expands the domain of the function. Controllable extension is
possible is because the domain of values of the evaluation map
for expressions is a subset of the target type. “It is depends on
the richness of type-domain definitions” [2]. For f(x) =x mod 5,
the domain of f is N. While the range of the function is [0..4],

there are no program data type that just coincide the function
range, and then define the return result type as integer, this
makes it uncontrollable. So we extend it to be controllable by
custom a data type as 5_Type= [0,1,2,3,4] as a subset of integer
and Ct=log25=2.32. For f(x) =x mod 501, its controllable
extension must custom data type 501_Type= [0…501] and
Ct=log2501=8.97. Controllable extension doesn’t change the
range of the function but just change the range of the
implementation data type to make the output range more
obvious by explicit bound. The bigger b is and the bigger
controllable extension needed. This results in low domain
testability.

For certain observable extensions, it can find the
controllability tendency of f(x) =x mod b, Ct=log2b, decreases
as b increases (Because domain controllable is 0).When b
achieves , no extensions is needed, and its Ctis 0. This is a
sharply distinct from the tendency.

C. The Discussion

The kernel of testability is observability and controllability.
Observability is more important than controllability in terms of
finding the latent fault. Both domain testability and DRR view
onto function as the most testable function and try to make the
non-priori onto function to or near to ‘onto’. Voas listed two
main differences between Freedman’s approach and DRR as 1)
assume observability in his description 2) domain testability
bases on extensions that would be required to make the code
observable and controllable, while DRR is particularly useful
during design when extensions may be difficult to assess”.

DRR denote the closeness of the program to onto-function.
DRR indicates SFSZLT became smaller when b decreases, while
SFSZBT is independent of b. This leads to the lower fault
detection probability bound increase. So it is reasonable to say
when b decreases the testability decrease.

Program functions and data types are two basic conceptual
units in system design and construction and occur at all levels
of abstraction in the description of a system or component. The
variables and data structures in a program can be looked at in
two ways. One way is as denoting objects of a certain type and
the other way is as storage structures for holding objects of the
appropriate type [16]. Domain testability takes the first view
while [3] the second way as generally do. This makes the
contradiction.

D. A New Testability Measure

For a faulty version of program p, that is pf, which maps Df

into Rf, Can get:

݁ݖ݅ݏ ݐ݈ݑ݂ܽ ܿ݅ݐܿܽ݉݁ݏ ݐݑ݌݊ܫ ൌ
|௙ܦ|
|ܦ|

݁ݖ݅ݏ ݐ݈ݑ݂ܽ ܿ݅ݐܿܽ݉݁ݏ ݐݑ݌ݐݑܱ ൌ
|ܴ݂|
|ܴ|

௣ܴܴܦ ൌ
|ܦ|
|ܴ|

ൌ
|ܦ|
|௙ܦ|

ൈ
|௙ܦ|
| ௙ܴ|

ൈ
| ௙ܴ|
|ܴ|

That is:

௣ܴܴܦ ൌ ௙ܴܴܦ ൈ
݁ݖ݅ݏ ݐ݈ݑ݂ܽ ܿ݅ݐ݊ܽ݉݁ݏ ݐݑ݌ݐݑ݋
 ݁ݖ݅ݏ ݐ݈ݑ݂ܽ ܿ݅ݐ݊ܽ݉݁ݏ ݐݑ݌݊݅

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:8, 2014

1342

The result seems wonderful. But carefully study can find
now, Df is not the domain of Pf, but just the fault exposing
domain, so it is the domain of another program pf’.

For clarity, use an example to show the true relation of Pf
If g(x) is a wrong version of f(x), limit the domain to [0..100],

then:

ܴܦ ௙ܴ ൌ
100

2
ൌ ௚ܴܴܦ 50 ൌ

100
5

ൌ 20

݁ݖ݅ݏ ݐ݈ݑ݂ܽ ܿ݅ݐ݊ܽ݉݁ݏ ݐݑ݌݊ܫ ൌ
4
5

݁ݖ݅ݏ ݐ݈ݑ݂ܽ ܿ݅ݐ݊ܽ݉݁ݏ ݐݑ݌ݐݑܱ ൌ
5
2

ܴܦ ௙ܴ ൌ 50 ് ௚ܴܴܦ ൈ
݁ݖ݅ݏ ݐ݈ݑ݂ܽ ܿ݅ݐ݊ܽ݉݁ݏ ݐݑ݌ݐݑ݋
݁ݖ݅ݏ ݐ݈ݑ݂ܽ ܿ݅ݐ݊ܽ݉݁ݏ ݐݑ݌݊݅

ൌ
125

2

This is because the Pf contain not only wrong mapping, but

still some right mappings while Df is just part of its domain. So
it is another version faulty program that just maps Df to Rf, but
not the version of Pf.

To make the situation more clearly, we make the definition
of semantic fault distance to indicate the distance of the faulty
version to the correct version as:

݁ܿ݊ܽݐݏ݅݀ ݐ݈ݑ݂ܽ ܿ݅ݐ݊ܽ݉݁ݏ ൌ
݁ݖ݅ݏ ݐ݈ݑ݂ܽ ܿ݅ݐ݊ܽ݉݁ݏ ݐݑ݌ݐݑ݋

1 െ ݁ݖ݅ݏ ݐ݈ݑ݂ܽ ܿ݅ݐ݊ܽ݉݁ݏ ݐݑ݌݊݅

The tendency of the function is like Fig. 1. The bigger the

output semantic fault size and the bigger the input semantic
fault size, the big the semantic distance of the faulty program to
the correct program, and easier to detect it. Particularly input
fault size is near 1 means all the inputs are mapped to wrong
output and can be found by any test case from the domain. This
also corresponds with our assertion that observability is the
more important part of testability.

Fig. 1 Semantic Fault Distance

V. CONCLUSION

In this paper we focus on interpreting the contradiction
between DRR and domain testability, both are
specification-based testability measures. The contribution of
this paper is to use the semantic fault size to calculate the
probability of the fault to be found by random test. This is
deeper than formula represented in [6] and make DRR measure
has more semantic relations to the testability. This kind of
analysis can be used to study how the testability of VDVR

software varies. Secondly we make it clear that domain
testability refers to the data type and its controllable extensions
is depended the richness of type-domain definitions, while
DRR refers to the domain and range ratio of the function. It
may still have type problem in certain implementation
language. We propose semantic fault distance to indict the
easiness to detect the fault in the software. Compared to
semantic fault size, it combined the effect of input and output
semantic fault size, and making the result more clearly. This
definition extends the restriction of DRR metric only work on
mathematical-type problems and can get more wide
application.

Software testability is becoming more and more intriguing,
and accurate measure is becoming more and more necessary
and important. Future work includes clearly and practically
defining software testability and proving the validity of
semantic fault distance. We hope to engage the testability in the
evaluation of software testing.

REFERENCES
[1] H. Fujiwara, “Logic Testing and Design for Testability,” London England:

The MIT Press, 1985.
[2] R.S. Freedman “Testability of software components,” IEEE Trans. Soft.

Eng., vol. 17, June. 1991, pp. 553–564.
[3] J.M.Voas, and K.W. Miller, “A design Phase Semantic Metric for

Software Testability”, The Journal of System and Software,
Vol..20,March 1993,pp:207-216.

[4] A.J.Offutt, and J.H.Hayers, “A semantic model of program faults”, in
Proc.Int.Symp. On Software Testing and Analysis (ISSTA’96), San Diego,
1996, pp.195-200.

[5] J.M.Voas. “Factors That Affect Program Testability”. In Proc. 9th Pacific
Northwest Software Quality Conf., Portland, 1991, pp.235-247.

[6] M.R.Woodward, Z.A.AI-Khanjari, “Testability, Fault Size and the
Domain-to-Range Ratio: An Eternal Triangle”, in Proc.Int.Symp. On
Software Testing and Analysis (ISSTA’00), Portland, Oregon.pp.168-172.

[7] T.B.Nguyen, M.Delaunay, C.Robach, “Testability Analysis For Software
Components”, in Proc.Int. Con. on Software Maintenance. 2002,
pp.422-429.

[8] IEEE Standard Glossary of Software Engineering Terminology,
ANSI/IEEE Standard 610.12-1990, IEEE Press, New York,1990.

[9] ISO/IEC 9126:Software Engineering-Product quality.
[10] B.B,Traon,Y.Le,Sunye G. “Testability analysis of UML class diagram”,

In Proc. 8th IEEE Symp. on Software Metrics, 2002. pp.54-63.
[11] R.Bache and M.Mullerburg. “Measures of testability as a basis for quality

assurance”, Software Engineering Journal, March,1990.pp.86-92.
[12] Pu-Lin Yeh and Jin-Cheng Lin. “Software Testability Measurements

Derived from Data Flow Analysis”, In Proc. of the CSMR’98, Florence,
Italy, March 8-11, 1998, pp.96-102.

[13] J.M.Voas, “PIE:A Dynamic Failure-Based Technique”, IEEE Trans.
Software Eng.,Vol.18, August,1992, pp.717-727.

[14] Jin-Cherng Lin, Szu-Wen Lin &Ian-Ho. “An estimated method for
software testability measurement”, In Proc. 8th International
WorkShopOn Software Technology and Engineering Practices1997.pp.

[15] Bruce W.N.Lo and Haifeng Shi, “A preliminary Testability Model for
Object-Oriented Software”, In Proc. Int. Con. on Software Engineering:
Education & Practicem1998,pp.330-337.

[16] W E.Howden, “Functional Program Testing and Analysis”, McGraw-Hill
Book Company, ISBN 0-07-030550-1.

[17] Ed Adams, Sam Guckenheimer. “Achieving quality by design-part
II:UsingUML.”White paper by Rational. (http://www.rational.com/).

