
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3158

Abstract— As a structure for processing string problem, suffix

array is certainly widely-known and extensively-studied. But if the
string access pattern follows the “90/10” rule, suffix array can not take
advantage of the fact that we often find something that we have just
found. Although the splay tree is an efficient data structure for small
documents when the access pattern follows the “90/10” rule, it
requires many structures and an excessive amount of pointer
manipulations for efficiently processing and searching large
documents. In this paper, we propose a new and conceptually powerful
data structure, called splay suffix arrays (SSA), for string search. This
data structure combines the features of splay tree and suffix arrays into
a new approach which is suitable to implementation on both
conventional and clustered computers.

Keywords— suffix arrays, splay tree, string search, distributed
algorithm

I. INTRODUCTION
ODAY large databases become available, such as full text of
newspapers of Web pages, and Genome sequences,

therefore it is important to efficiently store them on memory for
quick queries. In order to achieve this goal, some indexing data
structures and searching tools have been introduced. The main
approaches are: word indexes, character n-gram indexes, and
suffix indexes.

Word indexes have the advantage of supporting very fast
word queries, while they have difficulty with indexing
unstructured texts- like DNA-sequences or some Asian
language texts [1]. While character n-gram indexes enable us to
index unstructured texts, the search for a lengthy query or
regular expression is complicated and inefficient [2].Suffix
indexes have been designed to overcome the above limitations
by dealing with arbitrary texts, but this increases the cost due to
the additional space occupied by the underlying indexing data

Manuscript received November 14, 2005.
TU Kun is with the Department of Computer science and technology,

University of Science and Technology of China, Hefei, Anhui, P.R.China,
230027(corresponding author to provide phone: 86-551-3601547; e-mail:
tukun@ustc.edu).

GU Nai-jie is with the Department of Computer science and technology,
University of Science and Technology of China, (e-mail: gunj@ustc.edu.cn).

BI Kun is with the Department of Computer science and technology,
University of Science and Technology of China, (e-mail:
bikun@mail.ustc.edu.cn).

LIU Gang is with the Department of Computer science and technology,
University of Science and Technology of China,(e-mail:
liugang@mail.ustc.edu.cn).

DONG Wan-li is with the Department of Computer science and technology,
University of Science and Technology of China, (e-mail:
danli@mail.ustc.edu.cn)

structure [3] [4] [5]. Examples of such indexes are: suffix tree
[6], suffix array [7]. Similar concepts were independently
proposed in Oxford English Dictionary project [8] and in
corpus-based natural language processing [9]. Suffix indexes
can be used in many applications [10].

A suffix tree for a text of length n over an alphabet ∑ is of
size ()O N (where N is the text size) and can be built
in (log)O N ∑ . Suffix tree enables us to find the longest substring
of a text that matches the query string in ()O M time, where M is
the length of the pattern string. A problem of the suffix tree is
its size and ∑ can be quite large for many applications. The
suffix array is the most compact and simple among the suffix
indexes mentioned above. The construction and searching time
of the suffix array does not depend on the size of alphabet. The
searching time is competitive with the suffix tree’s in practice.

There are a number of different distributed multilevel data
structures that have been investigated for multikey searching
and sorting on both conventional and distributed computers
[11] [12]. But they have shortcomings and drawbacks dealing
with string problems. MSA (Multidimensional Suffix Arrays)
[13] is a new data structure for string search which combines
the features of suffix arrays and B-Trees, and is very amenable
to implementation on both conventional and clustered
computers. But MSA does not consider about the situation that
access pattern follows the “90/10” rule. That means we should
pay the same cost when we find something that has been just
found.

This paper focuses on the performance of string search using
suffix array when the access pattern follows the “90/10” rule. In
this paper, we propose a new structure, the splay suffix arrays,
for investigating and refining high-performance algorithms for
searching strings on both conventional computers and clusters.

The paper is organized as follows. Section II introduces the
related work of string search using suffix array. Section III
gives the problem statement. Then we describe the splay suffix
array (SSA) and distributed splay suffix array (DSSA) and their
algorithms in section IV. Section V shows the experimental
results, and section VI is the conclusion.

II. RELATED WORK
A suffix array is a linear structure composed of pointers to

every suffix in the text (since the user normally bases his
queries upon words and phrases, it is customary, in documents,
to index only word beginnings). These index pointers are sorted
according to a lexicographical ordering of their respective
suffixes. To find patterns in the text, binary search is performed

Distributed Splay Suffix Arrays：A New
Structure for Distributed String Search

Tu Kun, Gu Nai-jie, Bi Kun, Liu Gang and Dong Wan-li

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3159

on the array at (log)O N cost. Suffix array of string S, denoted
SA, is an array of size n storing the sorted order of suffixes of
text, i. e., SA[i] is j iff suffj is the ith lexicographically smallest
suffix. A closely related concept is the longest common prefix
(lcp) which is an array of some length often coupled with suffix
arrays. One important information about lcp is the length of lcp
of adjacent suffixes in the suffix arrays.

The simplest approach to build the suffix array sequentially
is to perform a traditional sort of the pointers, such as mergesort
of quicksort. However, there exist specialized algorithms for
sequential construction of suffix arrays, such as the original one
of Manber and Myers [7] and, more recently, those of Sadakane
[14]. MSD radix sort [15] and Multikey Quicksort [16] are
known as the fastest algorithms for sorting strings
lexicographically. Many distributed algorithms for this
problem are generalizations of general purpose sorting
algorithms adapted to suffix arrays: mergesort(Msort [17])、
quicksort (Qsort [18] and G-Qsort [19]) and of MMsort [20]
have been used. All above algorithms paid main attention to the
construction of suffix array. Different from them, MSA
(Multidimensional Suffix Arrays) [13] proposed a new data
structure for investigating and refining high-performance
algorithms for searching strings on both conventional
computers and clusters. The main drawback of MSA is that we
should pay the same cost when we find something that has been
just found, especially when the access pattern follows the
“90/10” rule.

We combine the features of splay trees and suffix arrays into
a new data structure. The purpose of this is to improve the
performance of suffix arrays when the access pattern follows
the”90/10” rule and reduce the amount of pointer
manipulations for efficiently processing at the same time.

III. PROBLEM STATEMENT

Let S=a0, a1, …,aN-1 be a text of length N. Denote the
substring ai, ai+1, …, aj by SA[i,j]. Each ai is a member of the
finite alphabet ∑. Denote the suffix that starts at position i in the
text S by Si =SA[i,N]= ai, ai+1, …, aN-1 . The number i is called
index of the suffix Si .The suffix array SA built on S is an array
of length N storing the sequence of indexes p0,p1,…,pN-1 such
that S p0< S p1<…< S pN-1, where “<” denotes the lexicographic
order.

Now assume that we will perform a long series of T > N
operations on a suffix array. We concern about the performance
of suffix array when the access pattern follows the “90/10” rule.
That means we often find something that has been just found .

IV. DISTRIBUTED SPLAY SUFFIX ARRAYS (DSSA)

A. Splay tree
A splay tree [21] is a variety of self-adjusting binary search

tree. Static binary search trees either do not adjust in response
to changing balance or access patterns, or if they do (as in AVL
trees) , information is copiously maintained at each node to
maintain balance. Sleator and Tarjan [21] devised splay trees to

allow a binary tree to self-adjust in response to varying access
patterns and yet remain approximately balanced without storing
additional balance information. Then, instead of providing a
firm (log)O N time guarantee for each operation, the amortized
time is (log)O N while some individual operations may be more
expensive. The fundamental heuristic used in splay trees to
accomplish this task is called SPLAYING. SPLAYING moves
the currently accessed node to the root of the tree through a
series of rotations while keeping the tree roughly balanced
during this move. Thus, SPLAYING can re-balance a tree as
well as reduce the amortized cost of accessing nodes by
keeping frequently accessed nodes near the root of the tree.

B. SSA and SSA algorithms
Different from standard splay trees, each node in splay suffix

array contains a value to point out the start position of the
correspond suffixes in suffix arrays. So we can apply Manber
and Myer’s string searching method [7] firstly to the suffixes
which are often accessed. We show the splay suffix arrays of
text “BANANA” in Fig1.

 Fig 1. Splay Suffix Arrays (SSA)

1) The construction of SSA

Compare with suffix array, splay suffix array takes
advantage of splay tree to improve the performance of string
searching. The cost is the operation of SPLAYING and the
space to store the splay tree. The following lemma captures the
essence of how we construct the splay suffix array.

Lemma 1: Let P(x, M, N) be the performance of string
searching using data structure x., then

(, ,) (, ,)P SSA M N P suffixarray M N≤ ,

if log() log1 1
T TN R Ni ii i∑ ∑∗ ≤= =

Where M is the size of pattern string, and N is the size of text,
R is the number of nodes of splay suffix array, and Ni is the
number of the suffixes that belong to the node Ri of splay suffix
arrays.

Proof: From [21] and [7], we know that the max complexity
of T operations of splay tree which has R nodes
is (log)O T R ,and the complexity of string searching of suffix
array is (log)O M N+ . Then it is easy to see:

(, ,) log * log1
TP SSA M N T R T M Nii∑= + + =

* log(*)1
TT M N Rii∑= + =

 (, ,) * logP suffixarray M N T M T N= +

 * log1
TT M Ni∑= + =

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3160

log(*) log1 1
T TN R Nii i∑ ∑≤= =Q

(, ,) (, ,)P SSA M N P suffixarray M N∴ ≤ ■
Now we are ready to describe the algorithm of the

construction of SSA. The key point here
is log() log1 1

T TN R Ni ii i∑ ∑∗ ≤= = . That means to keep Ni≤［N/R

］when the correspond node in SSA is deep, and let the nodes
that have more than［N/R］suffixes to be near the root.

So when we construct the SSA, we perform the following
steps:
a) Divide all suffixes into different buckets according to

their first three characters. We first propose that strings be
processed on a character by character for the first three
characters. The reason for this splitting after the first three
characters is that many common words in the English
dictionary contain the same first three characters [13]. For
example, “then”, “theory”, “theatre”. So we can divide the
text into different buckets, suffixes in the same bucket
have same first three characters. We can put one or more
buckets into a node. On the other hand, if there are too
many suffixes in one bucket, we can divide it into several
nodes. Then we can apply Manber and Myer’s string
sorting method [7] to each node to finish the construction
of splay suffix array. The complexity will be ()O N .

b) Let every bucket be a node of SSA.The complexity will
be ()O R .

c) Use Manber and Myer’s string sorting method [7] to
finish the construction of suffix array in each node. The
complexity will be 1

()T
ii

O N
=∑ .

2) String searching
Let ()f s denote the first three characters of string s,

()g Ri denote the first suffix of the suffixes that belong to the

node Ri of SSA, where R0 denotes the root node. Let m denote

the pattern string. Then we can perform the following steps:
a) If () (())0f m f g R= ,then use Manber and Myer’s string

searching method, the complexity will
be (log)0O N M+ ;else do b).

b) If () (())f m f g Ri< ,then compare f(m)
and ((.))f g R lchildi ;else compare f(m) and

((.))f g R rchildi .
c) Do this recursively till we find the node Ri

that () (())f m f g Ri= and then do d), or if there is no such
node then we can say that no match position. The
complexity will be (log)O R .

d) Use Manber and Myer’s string searching method, the
complexity will be (log)O N Mi + . Adjust the structure;
the complexity will be (log)O R

C. DSSA and DSSA algorithms
Our distributed model is that of a cluster. Assume that we

have a number p of computers, we call each one computing

node. A problem in the implementation of DSSA is how to
reduce the amount of pointer manipulations and
communication complexity for efficiently processing. In order
to resolve this we change the structure of SSA a little.

If there are too many nodes in SSA, then the cost will be high
when there is only one computing node to maintain all of SSA
nodes. So we choose some of computing nodes to maintain the
nodes of SSA. We just keep 3~5 SSA nodes in one computing
node, and then the SPLAYING can be operated efficiently in it.
We call these computing nodes “SSA-keeping ” nodes. Each
leaf node in “SSA-keeping” node keeps a value to point another
“SSA-keeping” node. The relationships between these
“SSA-keeping” nodes are same as the relationships between the
nodes of splay tree. We choose one computing node, called
Home node, to maintain the splay tree that represents the
relationship between the “SSA-keeping” nodes. We show the
DSSA of a cluster which has 10 nodes in Fig .2a and Fig .2b.

Fig .2(a) The real structure of the cluster

Home node

Fig. 2 (b) The correspond logical structure of DSSA of the cluster

in Fig. 2 (a)

We keep the structure of SSA in the SSA keeping nodes

(node 1, 4, 7) instead of keeping the structure in all of the
computing nodes. And we maintain the splay tree that
represents the relationship of SSA keeping nodes in the Home
node (node 0). Now only Home node and “SSA-keeping”
nodes need to communicate when the pattern string is not
found, and each node needs to communicate no more than two
“SSA-keeping” nodes.

1) The construction of DSSA
Let R be the number of SSA keeping nodes and P denote the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3161

number of computing nodes. It’s clear that R P≤ . Then we can
perform the following steps:
a) Divide all suffixes into different buckets according to

their first three characters. The complexity will be ()O N .
Send each bucket to the correspond computing node. The
communication complexity will be ()O P .

b) Let every bucket be a node of SSA and choose some of the
computing nodes to be “SSA keeping node”. Construct
the splay tree that represents the relationship between the
“SSA-keeping” nodes in Home node. The complexity will
be ()O R .

c) Use Manber and Myer’s string sorting method [7] to
finish the construction of suffix array in each node.
Because every node can do this parallel, the complexity
will be O(logNmax), where Nmax=max (Ni, 1≤i≤P).

2) String searching
a) Find the “SSA keeping” node Ri in Home node R0

that () (())f m f g Ri≤ , and adjust the structure of splay tree
that R0 keeps. The complexity will be (log)O T R , if we do
this operation T times.

b) Let .R lSSAi denote the left SSA keeping node of Ri
and .R rSSAi denote the right SSA keeping node of Ri.

If () (())f m f g Ri< ,then send message to .R lSSAi , and
compare ()f m and ((.))f g R lSSAi ;else send message
to .R rSSAi ,compare ()f m and ((.))f g R rSSAi .
Do this recursively till we find the node Ri that

() (())f m f g Ri= and then do c), or if there is no such node
then we can say that no match position. The complexity
will be (log)O R . And the communication complexity will
be (log)O R .

c) Use Manber and Myer’s string searching method, the
complexity will be (log)O N Mi + . Adjust the structure;
the complexity will be (log)O R .

We show the process of string searching in Fig 3. Assume
that the string we find is in node 5. Firstly, we find the right
SSA keeping node in Home node. In this case, the word “right”
means that we can find the clue of node 5 in it. And then adjust
the structure of splay tree in Home node. Secondly, we search
the SSA keeping node continuously till we find the node 5.
Finally, use Manber and Myer’s string searching method to find
the string. And then we adjust the structure.

V. EXPERIMENTAL RESULTS

In this section, we show the performance of DSSA. We
implemented DSSA using MPI. The programs were executed
on HP RX2600 cluster. Fig 5 shows the relationship between
the SSA and the access patterns which are shown in Fig 4. The
size of text string is 16kB, and the pattern string’s is 8kB. From
Fig.4 we know that when the access pattern follows the “90/10”
rule, we access the strings that begin with “the” more often than
we access the strings that begin with “acc”.

It’s clear in Fig.5 that the DSSA is inefficient when we find

something randomly. The reason is that we should change the
structure of DSSA when we access it. But it is amenable to
improvement when the access pattern follows the “90/10” rule.
Because it takes advantage of the fact that we often find
something that we have just found.

We compare the string searching time between the DSSA
and one of the distributed versions of suffix array [20]. The
results presented in Fig 6 show the fact that DSSA is very
suitable for the situation that we often find something that we
have just found.

 Fig. 3 The process of string searching

0 2 4 6 8 10

acc

add

sea

the

Th
e

fir
st

 th
re

e
ch

ar
ac

te
rs

 o
f p

at
te

rn
 s

tri
ng

s

T ime (s)

 "90/10" pattern
 Random pattern

 Fig. 4 Two different access patterns

0 2 4 6 8 10

1.0

1.1

1.2

1.3

1.4

1.5

Ac
ce

ss
 ti

m
e

of
 D

SS
A

(s
)

 "90/10" patte rn
 R andom patte rn

T im e (s)

 Fig. 5 The relationship between DSSA and access pattern

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:10, 2007

3162

VI. CONCLUSION
We propose a new structure for string searching. The

structure, called Splay Suffix Array (SSA), combines the
features of splay trees and suffix arrays into a new data
structure. The purpose of this is to improve the performance of
suffix arrays when the access pattern follows the”90/10” rule
and reduce the amount of pointer manipulations for efficiently
processing. DSSA offer substantial advantages over both string
splay trees and suffix arrays in terms of memory space and
time.

The complexity of DSSA is very amenable to performance
improvement through several parameters, including efficient
implementation of DSSA, exploitation of parallelism, and the
high-performance capabilities of computer cluster architecture.

0 2 4 6 8 10

1.0

1.1

1.2

1.3

1.4

1.5

E
xe

cu
tin

g
tim

e
(s

)

 DSSA
 Suffix Array

Time (s)

REFERENCES
[1] I. H. Written, A. Moffat, and T. C. Bell. Managing Gigabytes:

Compressing and Indexing Documents and Images. Van Nostrand
Reinhold, 1994.

[2] W. B. Cavnar. Using an n-gram based document representation with a
vector processing retrieval model. In Proc. Of the 3rd Text Retrieval
Conference (TREC-3), pages 269-277. NIST special publication, 1995.

[3] G. A. Stephen. String Searching Algorithms. World Scientific Publishing,
1994.

[4] M. Crochemore and W. Rytter. Text Algorithms. Oxford Univ. Press,
New York, 1994

[5] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge
Univ. Press, 1997

[6] E. M. McCreighl. A Space-Economical Suffix Tree Construction
Algorithm. Journal of the ACM, 23, pp. 262-272, 1976.

[7] U. Manber and G. Myers Suffix Arrays: A New Method for On-Line
String Searches. SIAM J. Comput. 22(5), pp 935-948, 1993.

[8] G. H. Gonnet, R. A. Baeza-Yates, et al. New indices for text: PAT trees
and PAT arrays. In W. B. Frakes and R. A. Baeza-Yates, editors,
Information Retrieval: Data Structure and Algorithms, pages 66-82.
Prentice-Hall, New Jersey, 1992.

[9] M. Nagao and S. Mori. A new method of n-gram statistics for large
number of n and automatic extraction of words and phrase form large text
data of Japanese. In Proc of COLING’94, pages 611-615,1994.

[10] A. Apostolico. The myriad virtues of subword trees. In Combinatorial
Algorithms on Words, pages 85-96. Springer-Verlag, 1985.

[11] A. Fellah. Concurrent and Distributed Data Structures for Multikeys
Sorting on Computer Clusters. IEEE Proc. Of the 16th Intern. Symp. On
High Performance Comput. Systems and Applications. Pp. 281-,
Moncton, Canada, 2002.

[12] A. Fellah, A. Maamir and M. Abaza. Distributed Data Structures for
Multikey Sorting. Intern. J. of Parallel and Distributed Systems and
Networks, Vol. 2(2), pp. 62-68, 1999.

[13] Fellah, A. and Mawson, R. Distributed multidimensional suffix arrays for
string search. Communications, Computers and signal Processing, 2003.
PACRIM. 2003 IEEE Pacific Rim Conference on , Volume: 2, pp.
792-795, 2003.

[14] K. Sadakane. A fast algorithm for making suffix arrays and for
burrows-wheeler transformation. In Proc. DCC’98, pages 129-138, 1998.

[15] D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer
Programming. Addison-Wesley, 1973.

[16] J. L. Bentley and R. Sedgewick. Fast algorithms for sorting and searching
strings. In the 8th Annual ACM-SIAM Sympo. On Descrete Algorithms,
pages 360-369, 1997.

[17] J. Kitajima, G. Navarro, B. Ribeiro, and N. Ziviani. Distributed generation
of suffix arrays: a quicksort-based approach. In Proc. WSP’97, pages
53-69. Carleton University Press, 1997.

[18] J. Kitajima, B. Ribeiro, and N. Ziviani. Network and memory analysis in
distributed parallel generation of PAT arrays. In Proc. 8th Brazilian Symp.
On Comp. Arch. – High-Performance Processing, pages 193-202.
Brazilian Comp. Soc., 1996.

[19] G. Navarro, J. Kitajima, B. Ribeiro, and N. Ziviani. Distributed generation
of suffix arrays. In Proc. CPM’97, LNCS 1264, pages 102-115, 1997.

[20] Kitajima, J.P., Navarro, G. A fast distributed suffix array generation
algorithm. String Processing and

[21] Information Retrieval Symposium,1999 and International Workshop on
Groupware, Sept,1999,22-24 Pages:97-104

[22] D. D. Sleator and R. E. Tarjan. Self-adjusting Binary Search Trees.
Journal of the ACM 32, pp. 652-686, 1985.

Tu Kun was born in 1980. He is a Ph.D. student in the Department of Computer
Science and Technology, USTC. His research interests include parallel and
distributed computing.
Gu Nai-jie was born in 1961. He is a Professor and Doctoral Advisor in the
Department of Computer Science and Technology, USTC. His research
interests include parallel computing architecture, interprocessor
communication, and high-performance computing
Bi Kun was born in 1981. He is a Ph.D. student in the Department of Computer
Science and Technology, USTC. His research interests include parallel and
distributed computing.
Liu Gang was born in 1978. He is a Ph.D. student in the Department of
Computer Science and Technology, USTC. His research interests include
interprocessor communication and mobile computing.
Dong Wan li was born in 1981. He is a Ph.D. student in the Department of
Computer Science and Technology, USTC. His research interests include
parallel and distributed computing

Fig. 6 Comparison between DSSA and Suffix Array

